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Abstract. The region of validity of Spira’s strict inequality, given by |ζ (1− s)| = g(s) |ζ (s)|
where g(s) := 21−sπ−s cos(πs/2)Γ(s) , with g(s) > 1 , involving the size of the Riemann zeta-
function, ζ (s) , at places symmetric with respect to the critical line, is enlarged to the subset
Ht∗ := H∩{t > t∗} of the semi-infinite critical half-strip H := {(σ ,t) ∈C : 1/2 < σ < 1,t > 0} ,
where s = σ + it and t∗ = 2π + ε = 6.380685+ . It is conjectured that a smooth line, � , exists
in H such that the Spira’s inequality holds above � , while the opposite inequality holds below
� , and equality holds on � . Moreover, if a nontrivial zero, s0 , of ζ (s) of multiplicity k exists in
Ht∗ , it is shown that |ζ (k)(1− s0)| > |ζ (k)(s0)| .

1. Introduction

In 1965, R. Spira [12] proved the strict inequality given by

|ζ (1− s)|= g(s) |ζ (s)| with g(s) > 1, (1)

where g(s) := 21−sπ−s cos(πs/2)Γ(s) (see [14, Ch. 2, (2.1.8)]), valid for all σ ,t with
1/2 < σ < 1, t � 10, being s = σ + it , observing that it fails for t around 2π , but
except for the zeros of the Riemann zeta function ζ (s) (if they exist).

It was also observed that the strict inequality |ζ (1− s)|> |ζ (s)| for 1/2 < σ < 1,
t � 10 (that is not the same as that in (1)), would imply the validity of the Riemann
Hypothesis (RH). Unfortunately, what was proved in [12, Theorem 2, p. 250], and in
the weaker form, namely with the sign � , in [9, Note 1, p. 147], [10, Note, p. 115], and
for t � 2π +1, is only that ζ (s) �= 0, 1/2 < σ < 1, t � 10 implies |ζ (1− s)|> |ζ (s)| ,
[13, p. 314].

In fact, recall the functional equation, obeyed by the zeta function,

ζ (s) = 2sπ s−1 sin
(π

2
s
)

Γ(1− s)ζ (1− s), (2)
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[14, Ch. II, (2.1.1), p. 13], also written, changing s into 1− s ,

ζ (1− s) = 21−sπ−s cos
(π

2
s
)

Γ(s)ζ (s),

[14, Ch. II, (2.1.8), p. 16], [14, Ch. II, p. 13, eq. (2.1.1)], [2, eq. (4), p. 13]. It implies that
if ζ (s0) = 0, also ζ (1− s0) = 0 whichever the factor g(s) (either g(s) > 1, g(s) = 1,
or g(s) < 1) might be.

Indeed, note that if a > 0 and b > 0, then a = gb > b implies that g > 1, but
if b = 0, then gb = 0 whichever g might be, hence, e.g., g > 1 does not imply that
a = gb > b . In our case, b = |ζ (s)| vanishes if and only if s is a zero of ζ (s) .

Establishing this kind of inequality is related to studying the so-called “horizontal
monotonicity” of the modulus of ζ (s) , of the Riemann xi-function, ξ (s) , as well as that
of the Dirichlet function, η(s) . This amounts to investigate the possible monotonic be-
havior of the aforementioned functions on horizontal lines of the complex plane (σ ,t) ,
i.e., as functions of σ for fixed values of t . If one could prove that, e.g., |ζ (σ + it)|
grows strictly monotonically with σ as σ increases in 1/2 < σ < 1, for any fixed t ,
then, clearly, the validity of the RH would follow. Unfortunately, a monotonic behavior
has been proved only outside the critical strip, see [9]. For instance, in [11, Theorem 1,
p. 38], the authors proved that the modulus of ξ (s) increases along every horizontal
half-line lying in any open right half-plane that contains no zeros of ξ (s) . It decreases
along each horizontal line contained in any zero-free, open left half-plane. In [6, Theo-
rem 1.4, p. 91] it was proved that the moduli of the three functions ζ (s) , ξ (s) , and η(s)
all decrease with respect to σ in the set σ � 0, |t|� 8. Unfortunately, the extension to
σ � 1/2, for any of the three functions could not be attained.

In section 2, Spira’s inequality (1), established in [12], will be improved, extending
it to the “upper subset” of H , Ht∗ := {(σ ,t)∈C : 1/2< σ < 1,t > t∗ := 2π +ε} , where
ε = 0.0975 . . . , refining a method developed by Saidak and Zvengrowski [9]. Indeed,
in [9] a similar inequality was established, independently, but in the weaker form, with
the sign � , and for t � 2π + 1 (actually, t � 7 was enough, as stated there). In [12]
Spira proved the inequality for t � 10, while in [1] the result was improved to hold for
t � 6.8. Nazardonyavi and Yakubovich adopted a simpler approach to establish Spira’s
inequality for t � 12, [7].

In the same section it is also conjectured that such inequality is valid on a more
general subset of H , namely, H� := {(σ ,t) ∈ C : 1/2 < σ < 1,t > L(σ)} , that is the
subset of H above a certain smooth line, � , described by t = L(σ) , while the opposite
inequality holds (in H ) below � , and the equality holds on � . Some figures, generated
with MATHEMATICA, support these conjectures.

In section 3, it will be established a result similar to Spira’s inequality for the (first
nonvanishing) derivative of the zeta function at the nontrivial zeros, off the critical line
(if any of them exist), see (16). More precisely, while it is not known the multiplicity
of the nontrivial zeros off the critical line, if any of them exist, an inequality similar
to Spira’s inequality can be shown to hold for the derivatives of ζ (s) at such zeros. If
s0 ∈ Ht∗ is one of these and is simple, then ζ (s0) = ζ (1− s0) = 0, while ζ ′(s0) �= 0,
ζ ′(1− s0) �= 0. Below, it will be shown that |ζ ′(1− s0)| > |ζ ′(s0)| . More generally, if
s0 is a nontrivial zero (off the critical line), with multiplicity k , located in subset Ht∗ ,
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then
|ζ (k)(1− s0)| > |ζ (k)(s0)|. (3)

In section 4, finally, the results of the paper are summarized.

2. Improving Saidak-Zvengrowski’s result

In 2003, Saidak and Zvengrowski proved that∣∣∣∣ζ
(

1
2
−Δ + it

)∣∣∣∣�
∣∣∣∣ζ
(

1
2

+ Δ + it

)∣∣∣∣ (4)

for 0 � Δ � 1/2, where they set Δ := σ − 1/2, for convenience, and t � 2π + 1, but
actually, as they wrote, t � 7 suffices, [9]. However, they observed that this result is
false for t � 2π .

As Saidak and Zvengrowski, Spira had stated that the RH is true if and only if
|ζ (1− s)| > |ζ (s)| for t � 10, 1/2 < σ < 1 [12, Theorem 2, p. 250]. Indeed, if one
could establish the strict inequality |ζ (1− s)|> |ζ (s)| for all points of the critical strip,
the validity of the Riemann hypothesis (RH) would follow [9, Note 1, p. 147], [10,
Note, p. 115]. This is due to the symmetry around the line σ = 1/2) , which follows
from the validity of the functional equation (2), obeyed by ζ (s) . However, if the ratio

α(Δ,t) :=

∣∣ζ ( 1
2 −Δ + it

)∣∣∣∣ζ ( 1
2 + Δ + it

)∣∣ (5)

is defined, where, for convenience, α(Δ,t) ≡ α(s− 1/2,t) is used in place of g(s) ,
proving the sharper estimate α(Δ,t) > 1 for all points of the critical strip, is not equiv-
alent to prove that |ζ (1− s)| > |ζ (s)| in the same region. The equivalence fails at the
nontrivial zeros (if any exist).

Here the following is proved.

THEOREM 1. The strict inequality α(Δ,t) > 1 holds for all σ and t with 1/2 <
σ < 1 and t > t∗ := 2π + ε (= 6.380685 . . .) , t∗ being the unique root of the equation

ϕ(t) := ln
( t

2π

)
+

1
2(4t2 +1)

− 2
4t2−1

= 0. (6)

Therefore, Spira’s inequality (1) holds in the open critical half-strip {(σ ,t)∈C : 1/2 <
σ < 1, t > t∗} , except on the nontrivial zeros of the zeta function (if they exist).

Proof. In [9, eq. (7), p. 154], the authors first established for the function α(Δ, t)
the form

α(Δ, t) =
(2π)1/2−Δ

π

∣∣∣∣Γ
(

1
2

+ Δ + it

)∣∣∣∣
∣∣∣∣sin

(
π
2

(
1
2
−Δ + it

))∣∣∣∣ . (7)

They stressed that, strictly speaking, the definition of α(Δ, t) in (5) is meaningless
when ζ (1/2+ Δ + it) = 0. The explicit formula (7), however, shows that the points



786 R. SPIGLER

where this happens actually are not singular points (it has removable singularities). The
function α(Δ, t) does not vanish for t > 0 and is a real analytic function of Δ,t , namely,
the modulus of the holomorphic function

A(s) :=
(2π)1/2−Δ

π
Γ
(

1
2

+ Δ + it

)
sin

(
π
2

(
1
2
−Δ,+it

))
, (8)

see [9, Remark, p. 154].
Then, authors obtained the fine estimate

α(Δ,t) � β (Δ,t) :=
( |s|

2π

)Δ(
1− 4σ3−σ

12 t2

)
, (9)

[9, Theorem 3 and Theorem 4, p. 148], and proved that

α(Δ,t) � 1 (10)

for 0 � Δ � 1/2 and t � 2π + 1 (actually, for t � 7, see [9, Note 2, p. 148]). This
estimate was established in few careful steps, going well beyond what could be obtained
using the well-known inequality satisfied by the Euler Gamma function in the complex
field due to Lerch [3, pp. 14–15], [5], [4, (1.1), p. 2].

Below, it is possible to go further, beyond the findings of [9], showing the validity
of the strict inequality α(σ − 1/2,t) > 1, for 1/2 < σ < 1 and t � t∗ = π + ε , for
some ε . In fact, using (9), one can claim theor

α(Δ, t) � β (Δ,t) =

(√
σ2 + t2

2π

)σ−1/2(
1− σ(σ2 −1/4)

3t2

)
> 1, (11)

or, equivalently, taking the logarithms of both sides,

1
2

(
σ − 1

2

)
ln

(
σ2 + t2

(2π)2

)
+ ln

(
1− σ(σ +1/2)(σ −1/2

3t2

)
> 0, (12)

restricting to t > 1/2 (so that σ(σ +1/2)(σ −1/2)/(3t2),1/(4t2) < 1). Now,

ln

(
σ2 + t2

(2π)2

)
= ln

[( t
2π

)2
(

1+
σ2

t2

)]

= ln

(( t
2π

)2
)

+ ln

(
1+

σ2

t2

)

> 2ln
( t

2π

)
+

1
1+ t2/σ2

> 2ln
( t

2π

)
+

1
1+4t2

,

where the inequality ln(1+ x) > x/(1+ x) , valid for all x > −1, x �= 0 has been used
[8, § 4.5 (i), 4.5.1], with x := σ2/t2 , confining to t > 1 (> σ ), and 1/2 < σ < 1.



AN IMPROVED SPIRA’S INEQUALITY 787

On the other hand,

ln

(
1− σ(σ +1/2)(σ −1/2

3t2

)
> − σ(σ +1/2)(σ −1/2)

3t2−σ(σ +1/2)(σ −1/2)

> − 2
4t2−1

,

having used ln(1−x) > −x/(1−x) , valid for all x < 1, x �= 0 [8, § 4.5 (i), 4.5.1], with
x := σ(σ +1/2)(σ −1/2)/(3t2) (confining to t > 1/2).

Therefore, one can claim more, that is, from (12),

1
2

(
σ − 1

2

)
ln

(
σ2 + t2

(2π)2

)
+ ln

(
1− σ(σ +1/2)(σ −1/2

3t2

)

>

(
σ − 1

2

){
ln
( t

2π

)
+

1
2(1+4t2)

− 2
4t2−1

}
> 0,

that is

ϕ(t) := ln
( t

2π

)
+

1
2(4t2 +1)

− 2
4t2−1

> 0. (13)

It is easy to show that the function ϕ(t) is strictly (monotonically) increasing from −∞
to +∞ as t increases from 0 to +∞ . Therefore, ϕ(t) > 0, that is (13) holds, and,
a fortiori, (12) and (11) hold for t > t∗ := 2π + ε , where t∗ is the unique solution of
the equation ϕ(t) = 0 (t∗ = 6.380685 . . ., ε = 0.0975 . . .). Being ϕ(2π) = −(48π2 +
5)/(2(256π4−1)) < 0 and, for instance, ϕ(2π +0.1) = 0.00649 . . . > 0, it is inferred
that t∗ ∈ (2π ,2π +0.1) , and (13) holds for t > 2π +0.1.

One may conclude that (11) holds, for all t > t∗ := 2π + ε > 2π + 0.1, e.g., ex-
cept on the nontrivial zeros of the zeta function (if they exist) in the critical strip for
|t| > 2π + 0.1. Clearly, the value 0.1 can be reduced. Compare these values with the
limitations on t given in [9, 12, 1, 7]. �

REMARK 1. One may conjecture that a certain smooth line, say � , given by t =
L(σ) for 1/2 < σ < 1, exists, implicitly defined by F(σ ,t) := α(σ −1/2,t)= 1, such
that F(σ , t) increases (strictly) monotonically for each fixed value of σ , 1/2 < σ < 1,
as a function of t , for t > 0. Thus, F(σ ,t) > 1 in H above the line � , and F(σ , t) < 1
in H below � .

Therefore, Spira’s inequality would hold above � , the opposite inequality would
hold below � , and equality would hold on � . One may also conjecture that F(σ ,t)
decreases monotonically as σ increases from 1/2 to 1, and α(0) = g(1/2) ≈ 6.29
and α(1/2) = g(1) ≈ 2π , see Fig. 2.

Figures 1, 2, and 3, support all these conjectures. In Fig.s 1, 2, and 3, several level
curves F(σ , t) = const. , generated with MATHEMATICA, are shown. Observe also
the location of the ordinate 2π in Fig. 2.
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Figure 1: Level curves α(Δ,t) = c for various c , showing regions where α(Δ,t) > 1 , α(Δ,t) =
1 (line � in the text), or α(Δ,t) < 1 .
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Figure 2: Enlarged view of the level curve α = 1 (line � in the text).
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Figure 3: Enlarged view of the regions where α(Δ,t) > 1 , α(Δ,t) = 1 , and α(Δ,t) < 1 , better
showing the line where α(Δ,t) = 1 (line � in the text).

3. Spira’s inequality for the derivatives of the zeta function

A similar inequality for derivatives of the zeta function was also considered by
Saidak [10], where he observed that if

|ζ ′(1/2−Δ + it)|� |ζ ′(1/2+ Δ + it)|
would hold for 0 � Δ � 1/2, t � 2π +1, then the validity of the RH would follow [10,
Theorem 3.1, p. 116]. The same was noticed to be true, as it was recalled above, for the
zeta function, in place of their first derivatives, but with the strict inequality sign.

Writing
ζ (1− s) = A(s)ζ (s), (14)

for s ∈H , so that α(s−1/2,t)≡ A(s) (see (8), if s0 is a simple nontrivial zero, off the
critical line (if it exists), obtains, differentiating,

−ζ ′(1− s0) = A′(s0)ζ (s0)+A(s0)ζ ′(s0) = A(s0)ζ ′(s0).

It follows that the first derivative of the zeta function satisfies the same relation due to
Spira,

ζ ′(1− s0)| = |A(s0)| |ζ ′(s0)| ≡ α(s−1/2) |ζ ′(s0)| > |ζ ′(s0)|, (15)

at the zero s0 ∈ Ht∗ . It s0 has multiplicity k , then, differentiating both sides of (14),
being ζ ( j)(s0) = 0 for j = 0,1, . . . ,k−1, while ζ (k)(s0) �= 0, yields

(−1)kζ (k)(1− s0) = A(s0)ζ (k)(s0),
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so that one can infer

|ζ (k)(1− s0)| = |A(s0)| |ζ (k)(s0)| ≡ α(s−1/2) |ζ (k)(s0)| > |ζ (k)(s0)|, (16)

where t∗ = 2π + ε = 6.380685+ , if s0 ∈ St∗ . One can stress that these inequalities can
be established immediately by merely exploiting the results obtained above for the zeta
function. In addition, the conjectures of Remark 1 also hold in this case for the same
token.

4. Summary

In this paper, refining an argument due to Saidak and Zvengrowski [9], the validity
of Spira’s inequality (1), first established in [12], was extended to the subset Ht∗ :=
H ∩{t > t∗} of the semi-infinite critical half-strip H := {(σ ,t) ∈ C : 1/2 < σ < 1,t >
0} , where t∗ = 2π + ε = 6.380685+ . This inequality does not necessarily hold at the
nontrivial zeros (if they exist). It is conjectured that this inequality holds in H , above
some smooth line, � , and that the opposite inequality holds below it, and equality on it.
A Spira-type inequality for the k th derivative of the zeta function at any nontrivial zero
off the critical line, it is also established, if k is its multiplicity (assuming that such a
zero exists).
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