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ESTIMATIONS OF COVERING FUNCTIONALS OF SIMPLICES

MAN YU, SHENGHUA GAO, CHAN HE AND SENLIN WU ∗

(Communicated by H. Martini)

Abstract. Let Sn be an n -dimensional simplex and Γp(Sn) be the smallest positive number γ
such that Sn can be covered by p translates of γSn . We obtain an upper bound of the least
positive number β such that −Sn can be covered by two translates of βSn , which is tight when
n = 3 . In addition, we get the exact value of Γn+2(Sn) and an upper bound of Γn+3(Sn) . We
also provide the precise value of Γ6(S3) , new lower and upper bounds of Γ7(S3) , and an upper
bound of Γ8(S3) .

1. Introduction

Let R
n be the n -dimensional Euclidean space and e1,e2, · · · ,en be the standard

orthogonal basis of R
n . For A⊆R

n , we denote by affA the affine hull of A . A compact
convex subset K of R

n having interior points is called a convex body, whose relative
interior, relative boundary, interior, and boundary are denoted by relintK , relbdK ,
intK , and bdK , respectively. The set of extreme points of K is denoted by extK . We
denote by K n the collection of convex bodies in R

n . For each K ∈K n , we denote by
c(K) the least number of translates of intK needed to cover K . Concerning the least
upper bound of c(K) in K n , there is a long-standing conjecture:

CONJECTURE 1. (Hadwiger’s covering conjecture) For each K ∈ K n , we have

c(K) � 2n,

and the equality holds if and only if K is a parallelotope.

Although many in-depth studies have been carried out (see, e.g., [1, 2, 3, 4, 5, 6, 7,
8,9,11,12,13,14,16,17,18,19,21,23,25]), this conjecture is completely solved only in
the two-dimensional case. Note that, for each K ∈ K n , c(K) equals the least number
of smaller homothetic copies of K (i.e., sets having the form c + γK with γ ∈ (0,1)
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and c ∈ R
n ) needed to cover K (cf., e.g., Theorem 34.3 in [8]). Therefore, c(K) � p

for some p ∈ Z
+ if and only if

Γp(K) := min
{

γ > 0 | ∃{
c j | j ∈ [p]

} ⊆ R
n s.t. K ⊆

⋃
i∈[p]

(ci + γK)
}

< 1,

where [p] := {i ∈ Z
+ | 1 � i � p} . The map

Γp(·) : K n → [0,1]
K �→ Γp(K)

is called the covering functional with respect to p . For each p ∈ Z
+ , Γp(·) is an affine

invariant. More precisely, Γp(K) = Γp(T (K)) holds for each non-degenerate affine
transformation T on R

n .
The convex hull of n+1 affinely independent vectors in R

n is called an n-simplex,
which is denoted by Sn . Any n -simplex is the image of the standard n-simplex

Δn :=
{
(α1, · · · ,αn) ∈ R

n | ∑
i∈[n]

αi � 1 and α j � 0, ∀ j ∈ [n]
}

(1)

under a non-degenerate affine transformation. Therefore, Γm(Δn) = Γm(Sn) holds for
each pair of m,n ∈ Z

+ . In [13], M. Lassak provided exact values of Γm(S2) when
3 � m � 9. Chuanming Zong [27] mentioned that Γ4(S3) = 3/4 and Γ5(S3) = 9/13.
Fangyu Zhang et al. proved that Γ6(S3) � 27/40, Γ7(S3) � 81/121, and Γ8(S3) � 5/8
(cf. [26]). Exact values of Γ6(S3) , Γ7(S3) , and Γ8(S3) were not known. In a recent
work [15], Xia Li et al. obtained some estimations of Γm(Sn) for large n . Moreover,
they showed that, if P ∈ K n is a convex polytope with m+1 vertices, then

Γp(P) � Γp(Sm), (2)

which shows the importance of estimating Γm(Sn) . For this purpose, several lemmas
are proved in Section 2. In Section 3, we provide the precise value of Γn+2(Δn) . Mean-
while, we prove that −Δn can be covered by two translates of (n− 1)Δn when n � 3
and that the coefficient is best possible if n = 3. Based on this result, we provide an
upper bound of Γn+3(Δn) and the exact value of Γ6(Δ3) . In Section 4, new lower and
upper bounds of Γ7(Δ3) and an upper bound of Γ8(Δ3) are presented. Covering func-
tionals of Δ4 are also estimated by using results in [22]. By (2), results mentioned above
yield also estimations of covering functionals of convex polytopes with few vertices.

2. Auxiliary Lemmas

For c ∈ R
n and γ > 0, set Δc,γ

n = c+ γΔn . For each x ∈ R
n and each i ∈ [n] , we

denote by pi(x) the i-th coordinate of x . Clearly, we have

LEMMA 1. Let x = (α1, . . . ,αn) and c = (β1, . . . ,βn) be two points in R
n . Then

x ∈ Δc,γ
n if and only if

∑
i∈[n]

(αi −βi) � γ and α j −β j � 0, ∀ j ∈ [n]. (3)
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For a finite set S ⊆ R
n , let γ(S) = min

{
γ > 0 | ∃c ∈ R

n s.t. S ⊆ Δc,γ
n

}
.

LEMMA 2. Let S ⊆ R
n be a finite set. Then

γ(S) = max

{
∑
i∈[n]

(pi(x)−βi) | x ∈ S

}
,

where βi = min{pi(x) | x ∈ S} , ∀i ∈ [n] .

Proof. Let α = max
{

∑i∈[n] (pi(x)−βi) | x ∈ S
}

and c = (β1, · · · ,βn) . For any
x ∈ S , we have

∑
i∈[n]

(pi(x)−βi) � α and p j(x)−β j � 0, ∀ j ∈ [n].

Thus S ⊆ Δc,α
n , which implies that γ(S) � α . Conversely, let c′ ∈ R

n be a point satis-

fying S ⊆ Δc′,γ(S)
n . Then pi(c′) � pi(x) holds for each x ∈ S and each i ∈ [n] . Hence

pi(c′) � βi , ∀i ∈ [n] , which implies that

∑
i∈[n]

(pi(x)−βi) � ∑
i∈[n]

(pi(x)− pi(c′)) � γ(S), ∀x ∈ S.

Therefore, α � γ(S) . This completes the proof. �

For K ∈ K n and p ∈ Z
+ , a set C of p points satisfying

K ⊆ Γp(K)K +C =
⋃
c∈C

(Γp(K)K + c)

is called a p-optimal configuration of K .

LEMMA 3. For γ ∈ (0,1) and c ∈ R
n , there exists c′ ∈ (1− γ)Δn such that

Δc,γ
n ∩Δn ⊆ Δc′,γ

n .

Proof. We only need to consider the case when Δc,γ
n ∩Δn �= /0 and c = (β1, · · · ,βn)

�∈ (1− γ)Δn . Let I = {i ∈ [n] | βi < 0} . We distinguish two cases.

Case 1. I = /0 . Then ∑i∈[n] βi > 1− γ . Put

β ′
i =

(1− γ)βi

∑
j∈[n]

β j
, ∀i ∈ [n] and c′ = (β ′

1, · · · ,β ′
n).

Then
0 � β ′

i � βi, ∀i ∈ [n] and c′ ∈ (1− γ)Δn.
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For each point x = (α1, · · · ,αn) ∈ Δc,γ
n ∩Δn , we have

αi −β ′
i � αi −βi � 0, ∀i ∈ [n] and ∑

j∈[n]
(α j −β ′

j) = ∑
j∈[n]

α j − (1− γ) � γ.

Thus Δc,γ
n ∩Δn ⊆ Δc′,γ

n .

Case 2. I �= /0 . Set c′ = (β ′
1, · · · ,β ′

n) , where β ′
i = βi if i ∈ [n] \ I and β ′

i = 0
otherwise. Let x = (α1, · · · ,αn) be an arbitrary point in Δc,γ

n ∩Δn . We have

αi −β ′
i =

{
αi, i ∈ I

αi −βi, i ∈ [n]\ I
� 0, ∀i ∈ [n]

and

∑
j∈[n]

(α j −β ′
j) � ∑

j∈[n]
(α j −β j) � γ.

Thus ∑ j∈[n] β ′
j � ∑ j∈[n] α j � 1 and x ∈ Δc′,γ

n ∩Δn . Hence

c′ ∈ Δn and Δc,γ
n ∩Δn ⊆ Δc′,γ

n ∩Δn.

If c′ ∈ (1− γ)Δn , then the proof is complete. Otherwise, by Case 1, there exists c′′ ∈
(1− γ)Δn such that

Δc,γ
n ∩Δn ⊆ Δc′,γ

n ∩Δn ⊆ Δc′′,γ
n .

I.e., c′′ is a point with the desired property. �

COROLLARY 4. For each positive integer p, there exists a p-optimal configura-
tion of Δn contained in (1−Γp(Δn))Δn .

LEMMA 5. For γ > 0 and c ∈ R
n , there exists c′ ∈ [−1,0]n such that

Δc,γ
n ∩ (−Δn) ⊆ Δc′,γ

n .

Proof. It sufficies to consider the case when Δc,γ
n ∩(−Δn) �= /0 and c = (β1, · · · ,βn)

�∈ [−1,0]n . Let
I = {i ∈ [n] | βi < −1} .

Then βi � 0 for each i∈ [n] and I �= /0 . Set c′ = (β ′
1, · · · ,β ′

n) , where β ′
i = βi if i∈ [n]\ I

and β ′
i = −1 otherwise. Clearly, c′ ∈ [−1,0]n . For each point x = (α1, · · · ,αn) in

Δc,γ
n ∩ (−Δn) , we have

αi −β ′
i =

{
αi +1, i ∈ I

αi −βi, i ∈ [n]\ I
� 0, ∀i ∈ [n]

and

∑
i∈[n]

(αi −β ′
i ) � ∑

i∈[n]
(αi −βi) � γ.

Thus c′ is a point with the desired property. �



ESTIMATIONS OF COVERING FUNCTIONALS OF SIMPLICES 797

LEMMA 6. Let γ ∈ (0,1) , c ∈ (1− γ)Δn , and x ∈ bdΔn∩Δc,γ
n . We have

(a) c ∈ bd((1− γ)Δn) ,
(b) c = o if x = o,
(c) c = (1− γ)ei if x = ei for some i ∈ [n] .

Proof. Assume that c = (β1, · · · ,βn) and x = (α1, · · · ,αn) .
(a) Otherwise, we have

βi > 0, ∀i ∈ [n] and ∑
j∈[n]

β j < 1− γ.

Since x ∈ bdΔn , either ∑ j∈[n] α j = 1 or there exists i ∈ [n] such that αi = 0. In the
former case, we have

∑
j∈[n]

(α j −β j) > γ,

a contradiction to (3); in the later case, we have αi−βi < 0, yields also a contradiction.
(b) If x = o , then 0 � βi � αi = 0, ∀ i ∈ [n] . Thus c = o .
(c) Without loss of generality, we may assume that x = e1 . By (3) again, βi = 0

when i �= 1. Therefore,

∑
j∈[n]

(α j −β j) = α1 −β1 = 1−β1 � γ,

which implies that β1 � 1− γ . Since c ∈ (1− γ)Δn , we have β1 � 1− γ . Hence
β1 = 1− γ . �

For γ ∈ [0, n
n+1 ] , set

P(n,γ) =

{
(α1, · · · ,αn) ∈ R

n | γ � ∑
i∈[n]

αi � 1 and 0 � α j � 1− γ, ∀ j ∈ [n]

}
.

Obviously, P(n,α) ⊆ P(n,γ) if α � γ . By (1), we have

Δn = P(n,γ)∪ (
n⋃

i=0

Δci,γ
n ), (4)

where c0 = o and ci = (1− γ)ei , ∀i ∈ [n] . Indeed, it is clear that

P(n,γ)∪ (
n⋃

i=0

Δci,γ
n ) ⊆ Δn.

If x = (α1, · · · ,αn) ∈ Δn \P(n,γ) , then either 0 � ∑
i∈[n]

αi < γ , which implies that x ∈
Δo,γ

n , or there exists k ∈ [n] such that αk ∈ (1− γ,1] , which shows that x ∈ Δck ,γ
n .
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LEMMA 7. For γ ∈ (0,1) and p∈Z
+ , Γp+n+1(Δn) � γ if and only if P(n,γ) can

be covered by p translates of γΔn .

Proof. Let c0 = o and ci = (1− γ)ei , ∀i ∈ [n] . If Γp+n+1(Δn) � γ , then there
exists a set C ⊆ R

n with |C| = p+n+1 such that

Δn ⊆C+ γΔn.

By Lemma 3, we may assume that C ⊆ (1− γ)Δn . Since o and {ei | i ∈ [n]} are con-
tained in bdΔn , Lemma 6 shows that {ci | i ∈ [n]∪{0}} ⊆C . For each i ∈ [n]∪{0} ,
we have intP(n,γ)∩Δci,γ

n = /0 . Thus

intP(n,γ) ⊆ (C \ {ci | i ∈ [n]∪{0}})+ γΔn.

Since γΔn is closed,

P(n,γ) ⊆ (C \ {ci | i ∈ [n]∪{0}})+ γΔn.

Conversely, let C′ ⊆ R
n be a p -element set satisfying P(n,γ) ⊆C′ + γΔn . By (4), we

have
Δn ⊆ (C′ ∪ {ci | i ∈ [n]∪{0}})+ γΔn,

which implies that Γp+n+1(Δn) � γ . �

LEMMA 8. For n ∈ Z
+ and γ ∈ [ n−1

n , n
n+1 ] , we have

P(n,γ) = (γ −n+nγ)Δn +(1− γ) ∑
i∈[n]

ei.

Proof. The case when γ = n
n+1 is clear. In the following, we assume that γ ∈[

n−1
n , n

n+1

)
. Let S = P(n,γ)− (1− γ)∑i∈[n] ei . Then

S =

{
(β1, · · · ,βn) ∈ R

n | β j +(1− γ)∈ [0,1− γ], ∀ j ∈ [n], ∑
i∈[n]

βi +n(1− γ)∈ [γ,1]

}

=

{
(β1, · · · ,βn) ∈ R

n | β j ∈ [γ −1,0], ∀ j ∈ [n], ∑
i∈[n]

βi ∈ [γ −n+nγ,1−n+nγ]

}
.

Since γ −1 � γ −n+nγ < 0 and 1−n+nγ � 0, we have

S =

{
(β1, · · · ,βn) ∈ R

n | β j ∈ [γ −n+nγ,0], ∀ j ∈ [n], ∑
i∈[n]

βi ∈ [γ −n+nγ,0]

}

=

{
(γ −n+nγ)(α1, · · · ,αn) ∈ R

n | α j ∈ [0,1], ∀ j ∈ [n], ∑
i∈[n]

αi ∈ [0,1]

}

= (γ −n+nγ)Δn.

This completes the proof. �
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LEMMA 9. Supposed that K is bounded and relbdK ⊆ ⋃
i∈[m] Ki , where Ki is

convex, ∀i ∈ [m] . If there exists p ∈ K such that p ∈ ⋂
i∈[m] Ki , then K ⊆ ⋃

i∈[m] Ki .

Proof. Let x ∈ K . We claim that there exist a number α ∈ [0,1] and a point
y ∈ relbdK such that x = α p+(1−α)y . When x ∈ relbdK , take α = 0 and y = x .
The case when x = p is also clear. Now suppose that x ∈ relintK \ {p} . Since K is
bounded, there exists y∈ ([p,x〉\ [p,x])∩relbdK . Then x∈ [p,y] . The claim is proved.

Since relbdK ⊆ ⋃
i∈[m] Ki , there exists j ∈ [m] such that y ∈ Kj . By the convexity

of Kj , we have
x ∈ Kj ⊆

⋃
i∈[m]

Ki. �

3. Covering a simplex by its negative homothetic copies

Let K ∈ K n . For each x ∈ K , put

rK(x) = max{γ � 0 | (1+ γ)x− γK ⊆ K} .

The number
rK = max{rK(x) | x ∈ K}

is called the critical ratio of K (cf. [24]). A point x ∈ intK satisfying rK(x) = rK is
called the critical point of K . It is shown that rK � 1/n holds for each K ∈ K n and
the equality holds if K is an n -simplex (cf. [24] again). Thus n is the least positive
number γ such that −Sn is contained in a translate of γSn . Indeed, we may assume,
without loss of generality, that o is a critical point of Sn . Then −Sn ⊆ nSn . Suppose
that there exist c ∈ R

n and β ∈ (0,n) such that −Sn ⊆ c+ βSn . Then(
1+

1
β

) (
− c

1+ β

)
− 1

β
Sn ⊆ Sn and − c ∈ (1+ β )Sn,

which implies that rSn � 1/β > 1/n , a contradiction.

THEOREM 10. For n ∈ Z
+ , we have Γn+2(Δn) = n2

n2+n+1
.

Proof. In [20], it is proved that Γn+2(Δn) � n2

n2+n+1
. We only need to prove the

reverse inequality. Clearly, n−1
n < n2

n2+n+1
< n

n+1 . By Lemma 8, we have

P(n,
n2

n2 +n+1
) = − n

n2 +n+1
Δn +

n+1
n2 +n+1 ∑

i∈[n]
ei.

By Lemma 7, Γn+2(Δn) � n2

n2+n+1
. �

Lemma 8 shows that it is important to study the problem of covering a simplex by
its negative homothetic copies. Januszewski et al. proved that K can be covered by two
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translates of (−4/3)K for each K ∈ K 2 , and if K is a 2-simplex, then −4/3 is the
best negative ratio (cf. [10]). Similar results are still missing for higher dimensions.

Let C be a finite set in R
n satisfying Δn ⊆ C− γΔn and P be a permutation of

coordinates on R
n . Then Δn ⊆ P(C)− γΔn . We shall use this simple observation in the

proof of the next result.

THEOREM 11. For an integer n � 3 , −Δn can be covered by two translates of
(n−1)Δn . When n = 3 , the coefficient n−1 is best possible.

Proof. Let

c1 = (β −1)e1− ∑
i∈[n]\{1}

ei and c2 = −e1 +(β −1) ∑
i∈[n]\{1}

ei,

where β = 1
n−� n

2 � . Obviously, −Δn = I1∪ I2∪ I3 , where

I1 =

{
(α1, · · · ,αn) ∈ −Δn | α1 ∈ [β −1,0] and ∑

i∈[n]
αi ∈ [−1,β −1]

}
,

I2 =

{
(α1, · · · ,αn) ∈ −Δn | α1 ∈ [β −1,0] and ∑

i∈[n]
αi ∈ [β −1,0]

}
,

I3 =

{
(α1, · · · ,αn) ∈−Δn | α1 ∈ [−1,β −1] and ∑

i∈[n]
αi ∈ [−1,β −1]

}
.

Since

I1− c1 =
{
(α1, · · · ,αn) ∈ R

n | α1 ∈ [0,1−β ], α j ∈ [0,1], ∀ j ∈ [n]\ {1},

∑
i∈[n]

αi ∈ [n−1−β ,n−1]
}

⊆ (n−1)Δn,

we have I1 ⊆ c1 +(n−1)Δn . Let x = (α1, · · · ,αn) ∈ I2 ∪ I3 . When n is odd, we have
β = 2/(n+1) � 1/2. It follows that

∑
i∈[n]

αi − [(n−1)β −n] � −(n−1)β +n =
n2−n+2

n+1
� n−1. (5)

When n is even, we have n � 4 and β = 2/n � 1/2. Hence

∑
i∈[n]

αi − [(n−1)β −n] � −(n−1)β +n � n2−2n+2
n

� n−1. (6)

Moreover,
α j � β −1, ∀ j ∈ [n]\ {1}. (7)
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Since, otherwise, we would have

∑
i∈[n]

αi <

{
β −1, x ∈ I2,

2(β −1) � −1, x ∈ I3,

which yields a contradiction. By (5), (6), and (7), we have I2 ∪ I3 ⊆ c2 +(n− 1)Δn .
Consequently, −Δn ⊆ ⋃

i∈[2] (ci +(n−1)Δn) .
In the following, we consider the case when n = 3 and show that 2 is the least

positive number γ such that −Δ3 can be covered by two translates of γΔ3 . Otherwise,
there exist γ ∈ (0,2) and a set C = {c1,c2} such that −Δ3 ⊆C+ γΔ3 . If there exists
c ∈ C such that c + γΔ3 contains at least three vertices of −Δ3 , then, by Lemma 2,
γ � 2, a contradiction. Therefore, for any c∈C , c+γΔ3 contains precisely two vertices
of −Δ3 . By applying a permutation of coordinates if necessary, we may assume that

{−e1,−e2} ⊆ c1 + γΔ3 and {−e3,o} ⊆ c2 + γΔ3. (8)

Applying Lemma 5, we may assume that pi(c1), pi(c2) ∈ [−1,0] , ∀i ∈ [3] . By Lemma
1, there exist real numbers α , β , and η such that

c1 = (−1,−1,α) and c2 = (β ,η ,−1).

Since −e1 and o are covered by different translates of γΔ3 , by (8), there exists μ1 ∈
[−1,0] such that

{(α1,0,0) ∈ [−e1,o] | α1 ∈ [−1,μ1]} ⊆ c1 + γΔ3,

{(α1,0,0) ∈ [−e1,o] | α1 ∈ [μ1,0]} ⊆ c2 + γΔ3.

For any point x = (α1,α2,α3) ∈ [−e1,o]∩ (c1 + γΔ3) , we have

∑
i∈[3]

αi − ∑
i∈[3]

pi(c1) � μ1 +2−α � γ < 2.

For each point x = (α1,α2,α3) ∈ [−e1,o]∩ (c2 + γΔ3) , we have

α1 � μ1 � p1(c2) = β and ∑
i∈[3]

αi − ∑
i∈[3]

pi(c2) � −β −η +1 � γ < 2.

Therefore, we have
β � μ1 < α (9)

and
β + η > −1. (10)

Similarly, there exists μ2 ∈ [−1,0] such that

{(0,α2,−1−α2) ∈ [−e2,−e3] | α2 ∈ [−1,μ2]} ⊆ c1 + γΔ3,

{(0,α2,−1−α2) ∈ [−e2,−e3] | α2 ∈ [μ2,0]} ⊆ c2 + γΔ3.



802 M. YU, S. GAO, C. HE AND S. WU

If x = (α1,α2,α3) ∈ [−e2,−e3]∩ (c1 + γΔ3) , then

α3 � −1− μ2 � p3(c1) = α;

if x = (α1,α2,α3) ∈ [−e2,−e3]∩ (c2 + γΔ3) , then

α2 � μ2 � p2(c2) = η .

Thus
α + η � α + μ2 � −1. (11)

By (10) and (11), we have β > α , a contradiction to (9). �

From Lemma 8 and Theorem 11, it follows that

COROLLARY 12. For an integer n � 3 , we have Γn+3(Δn) � n−1
n , the equality

holds when n = 3 .

By Theorem 10, Corollary 12, and (2), we have

COROLLARY 13. For a convex polytope with m vertices Pm in R
n , we have

Γm+2(Pm+1) � m2

m2 +m+1
and Γm+3(Pm+1) � m−1

m
.

4. New estimations for 3-simplies

When γ ∈ (1/2,2/3) , P(3,γ) is an octahedron with vertices:

v1 = (1− γ,0,1− γ), v2 = (2γ −1,0,1− γ), v3 = (0,2γ −1,1− γ),
v4 = (0,1− γ,1− γ), v5 = (2γ −1,1− γ,1− γ), v6 = (1− γ,2γ −1,1− γ),

v7 = (0,1− γ,2γ −1), v8 = (2γ −1,1− γ,0), v9 = (1− γ,2γ −1,0),
v10 = (1− γ,0,2γ −1), v11 = (1− γ,1− γ,0), v12 = (1− γ,1− γ,2γ−1);

four triangular facets:

A1 = conv({v3,v4,v7}), A2 = conv({v1,v2,v10}),
A3 = conv({v8,v9,v11}), A4 = conv({v5,v6,v12});

and four hexagonal facets:

B1 = conv({v1,v2,v3,v4,v5,v6}), B2 = conv({v2,v3,v7,v8,v9,v10}),
B3 = conv({v1,v6,v12,v11,v9,v10}), B4 = conv({v4,v5,v12,v11,v8,v7}).

See Figure 1.
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x

z

y

v1v2
v3

v4 v5

v6

v7

v8

v9

v10

v12

v11

Figure 1: P(3,γ) when γ ∈ (1/2,2/3)

THEOREM 14. Γ7(Δ3) � 11/17 .

Proof. Let C = {c1,c2,c3} , where c1 = (3/17,3/17,0) , c2 = (0,2/17,2/17) ,
and c3 = (3/34,0,3/17) . Set

Ki = ci +
11
17

Δ3, ∀i ∈ [3].

Since
1
4 ∑

i∈[3]
ei ∈ P

(
3,

11
17

)
∩ (

⋂
j∈[3]

Kj),

by Lemma 9, it sufficies to show that relbdP(3,11/17)⊆ ⋃
j∈[3] Kj . By Lemma 1, we

have

v1 =
(

6
17

,0,
6
17

)
∈ K3, v2 =

(
5
17

,0,
6
17

)
∈ K3, v3 =

(
0,

5
17

,
6
17

)
∈ K2,

v4 =
(

0,
6
17

,
6
17

)
∈ K2, v5 =

(
5
17

,
6
17

,
6
17

)
∈ K1, v6 =

(
6
17

,
5
17

,
6
17

)
∈ K1,

v7 =
(

0,
6
17

,
5
17

)
∈ K2, v8 =

(
5
17

,
6
17

,0

)
∈ K1, v9 =

(
6
17

,
5
17

,0

)
∈ K1,

v10 =
(

6
17

,0,
5
17

)
∈ K3, v11 =

(
6
17

,
6
17

,0

)
∈ K1, and

v12 =
(

6
17

,
6
17

,
5
17

)
∈ K1.
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Hence, by the convexity of Ki , ∀i ∈ [3] , we have

A1 ⊆ K2, A2 ⊆ K3, A3 ⊆ K1, and A4 ⊆ K1.

By Lemma 1, λv2 + (1−λ )v3 ∈ K2 if λ ∈ [0,3/10] ; λv2 + (1−λ )v3 ∈ K3 if λ ∈
[3/10,1] . Thus [v2,v3] ⊆ ⋃

i∈[3]\{1}Ki . Similarly,

[v4,v5] ⊆
⋃
i∈[2]

Ki, [v7,v8] ⊆
⋃
i∈[2]

Ki, [v1,v6] ⊆
⋃

i∈[3]\{2}
Ki, and

[v9,v10] ⊆
⋃
i∈[3]

Ki.

Let b1 = (3/17,3/17,6/17) , b2 = (3/17,4/17,4/17) , b3 = (6/17,3/17,3/17) , and
b4 = (3/17,6/17,3/17) . Then

bi ∈ Bi∩ (
⋂
j∈[3]

Kj) and relbdBi ⊆
⋃
j∈[3]

Kj, ∀i ∈ [4].

x

y

v1v2

v3

v4 v5
v6

B1

x

z

y

v2

v3
v7

v8
v9

v10

B2

y

z

v1 v6
v12

v11v9

v10

B3

x

z

v4 v5
v12

v11v8

v7

B4

Figure 2: B1 , B2 , B3 , and B4 of P(3,11/17) . For any i ∈ [4] , the green, yellow and red parts
represent the intersection of Bi and K1 , K2 , and K3 , respectively.

By Lemma 9, Bi ⊆ ⋃
j∈[3] Kj , ∀i ∈ [4] , see Figure 2. Hence relbdP(3,11/17) ⊆⋃

i∈[3] Ki . Applying Lemma 9 again, P(3,11/17)⊆ ⋃
i∈[3] Ki . By Lemma 7, Γ7(Δ3) �

11/17. �
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THEOREM 15. Γ7(Δ3) � 0.6 .

Proof. Suppose the contrary that there exist a number γ ∈ (0,0.6) and a set C ⊆
R

3 of 3 points satisfying P(3,0.6) ⊆C+ γΔ3 . Let c be an arbitrary point in C and

S = (c+ γΔ3)∩ extP(3,0.6).

Claim 1. For each i∈ [4] and each point v∈ extP(3,0.6)\extAi , extAi∪{v} �⊆ S .
Otherwise, there exist i0 ∈ [4] and a point v ∈ extP(3,0.6) \ extAi0 such that

extAi0 ∪{v} ⊆ S . Then there exists j0 ∈ [4] \ {i0} such that v ∈ extAj0 . For the case
when i0 ∈ [3] , we may assume, without loss of generality, that i0 = 1. Then

min{p2(x) | x ∈ S} , min{p3(x) | x ∈ S} � 0.2 and min{p1(x) | x ∈ S} = 0.

If j0 �= 4, then min
{
p j0(x) | x ∈ S

}
= 0. Therefore, by Lemma 2,

γ(S) �

⎧⎪⎨
⎪⎩

∑
i∈[3]

pi(v4)−0.2, j0 �= 4

∑
i∈[3]

pi(v)−0.4, j0 = 4
= 0.6,

a contradiction. Now suppose that i0 = 4. We have

min{pi(x) | x ∈ S} � 0.2, ∀i ∈ [3] and min
{
p j0(x) | x ∈ S

}
= 0.

By Lemma 2 again,
γ(S) � ∑

i∈[3]
pi(v5)−0.4 = 0.6,

which yields also a contradiction. This completes the proof of Claim 1.

Claim 2. S cannot contain points from three distinct triangular facets of P(3,0.6) .
Otherwise, there exist i, j ∈ [3] with i �= j such that S contains a point u∈ extAi ,

a point v ∈ extAj , and a point w ∈ extP(3,0.6)\ (extAi ∪ extAj) . Then

min{pi(x) | x ∈ S} = min
{
p j(x) | x ∈ S

}
= 0 and pi(w), p j(w) > 0.

By Lemma 2, γ(S) � pi(w)+ p j(w) � 0.6. This completes the proof of Claim 2.

Claim 3. S contains precisely four vertices of P(3,0.6) and there are two trian-
gular facets of P(3,0.6) , each one of which contains two points in S .

By Claim 1 and Claim 2, S contains at most four vertices of P(3,0.6) . Thus S
contains precisely four vertices of P(3,0.6) . By Claim 2, S intersects at most two
triangular facets of P(3,0.6) . By Claim 1, each of these two facets contains two points
in S . This completes the proof of Claim 3.

Claim 3 shows that, for each v ∈ extP(3,0.6) , there exists a unique c ∈ C such
that v ∈ c+ γΔ3 . Clearly, there exist a triangular facets F of P(3,0.6) and two distinct
points c1, c2 ∈C such that

(c1 + γΔ3)∩ extF, (c2 + γΔ3)∩ extF �= /0.

Then we have |(c1 + γΔ3)∩extF |= |(c2 + γΔ3)∩extF |= 2, which is impossible. �
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THEOREM 16. Γ8(Δ3) � 8/13 .

Proof. Let C = {c1,c2,c3,c4} , where

c1 =
(

5
26

,0,0

)
, c2 =

(
0,

9
52

,
1
26

)
,

c3 =
(

17
104

,
17
104

,
3
52

)
, c4 =

(
3
52

,
1
26

,
3
13

)
.

Set Ki = ci +(8/13)Δ3 , ∀i ∈ [4] . Note that

1
4 ∑

i∈[3]
ei ∈ P

(
3,

8
13

)
∩ (

⋂
j∈[4]

Kj).

Therefore, we only need to show that relbdP(3,8/13) ⊆ ⋃
j∈[4] Kj . By Lemma 1, we

have

v1 =
(

5
13

,0,
5
13

)
∈ K1, v2 =

(
3
13

,0,
5
13

)
∈ K1, v3 =

(
0,

3
13

,
5
13

)
∈ K2,

v4 =
(

0,
5
13

,
5
13

)
∈ K2, v5 =

(
3
13

,
5
13

,
5
13

)
∈ K3, v6 =

(
5
13

,
3
13

,
5
13

)
∈ K3,

v7 =
(

0,
5
13

,
3
13

)
∈ K2, v8 =

(
3
13

,
5
13

,0

)
∈ K1, v9 =

(
5
13

,
3
13

,0

)
∈ K1,

v10 =
(

5
13

,0,
3
13

)
∈ K1, v11 =

(
5
13

,
5
13

,0

)
∈ K1, and

v12 =
(

5
13

,
5
13

,
3
13

)
∈ K3.

Hence
A1 ⊆ K2, A2 ⊆ K1, A3 ⊆ K1, and A4 ⊆ K3.

By Lemma 1, λv2 + (1− λ )v3 ∈ K2 if λ ∈ [0,1/4] ; λv2 + (1− λ )v3 ∈ K4 if
λ ∈ [1/4,5/6] ; λv2 + (1− λ )v3 ∈ K1 if λ ∈ [5/6,1] . Thus [v2,v3] ⊆ ⋃

i∈[4]\{3}Ki .
Similarly,

[v4,v5] ⊆
⋃

i∈[4]\{1}
Ki, [v7,v8] ⊆

⋃
i∈[2]

Ki,

[v1,v6] ⊆
⋃

i∈[4]\{2}
Ki, [v11,v12] ⊆

⋃
i∈[3]

Ki.

Put

b1 =
(

8
39

,
8
39

,
5
13

)
, b2 =

(
5
26

,
5
26

,
3
13

)
,

b3 =
(

5
13

,
9
52

,
3
13

)
, b4 =

(
5
26

,
5
13

,
3
13

)
.
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Hence

b j ∈ Bj ∩ (
⋂
i∈[4]

Ki) and relbdBj ⊆
⋃
i∈[4]

Ki, ∀ j ∈ [4].

x

y

v1v2

v3

v4 v5

v6
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x

z

y

v2
v3

v7

v8
v9

v10

B2

y

z

v1 v6

v12

v11v9

v10

B3

x

z

v4 v5

v12

v11v8

v7

B4

Figure 3: B1 , B2 , B3 , and B4 of P(3,8/13) . For any i ∈ [4] , the green, yellow, red, and blue
parts represent the intersection of Bi and K1 , K2 , K3 , and K4 respectively.

By Lemma 9, Bj ⊆⋃
i∈[4] Ki , ∀ j ∈ [4] , see Figure 3. Therefore, relbdP(3,8/13)⊆⋃

i∈[4] Ki . By Lemma 9 again, P(3,8/13)⊆ ⋃
i∈[4] Ki . This completes the proof. �

In [22], Senlin Wu and Ke Xu proved that, if K ∈ K n , then

Γm+1(C) � 1
2−Γm(K)

, ∀m ∈ Z
+, (12)

where p∈ R
n+1 \R

n×{0} and C = conv((K×{0})∪{p}) . Therefore, we obtain that
Γ8(Δ4) � 17/23 and Γ9(Δ4) � 13/18 by Theorem 14 and Theorem 16, respectively.

As we have mentioned in the introduction, Fangyu Zhang et al. proved that
Γ6(Δ3) � 27/40, Γ7(Δ3) � 81/121, and Γ8(Δ3) � 5/8 (cf. [26]); Senlin Wu and Ke
Xu [22] proved that Γ6(C) � 15/22, Γ7(C) � 2/3, and Γ8(C) � 11/17, where C is
a cone whose base is a triangle. Compared with these known estimations, we provide
better estimations about Γp(Δ3) when p ∈ {6,7,8} .
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