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DISCRETE OPIAL TYPE INEQUALITIES

FOR INTERVAL–VALUED FUNCTIONS
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(Communicated by I. Perić)

Abstract. We introduce the forward (backward) gH-difference operator of interval sequences,
and establish some new discrete Opial type inequalities for interval-valued functions. Further, we
obtain generalizations of classical discrete Opial type inequalities. Some examples are presented
to illustrate our results.

1. Introduction

The theory of inequalities has a long history but, from the applicative point of
view, it fell into neglect for hundreds of years because of lack of applications to other
branch of mathematics as well as other sciences, such as physics and engineering. Only
in 1934 did Hardy, Littlewood and Pólya transformed the field of inequalities from a
collection of isolated formulas into a systematic discipline [24]. After that, an enormous
amount of effort has been devoted to the discovery of new types of inequalities and to
applications of inequalities [1].

It is known that many physical problems in various applications are governed by
finite difference equations. Moreover, discrete inequalities play an important role in the
continuing development of the theory of difference equations. This importance seems
to have increased considerably during the past decades. It has attracted the attention of a
large number of researchers, stimulated new research directions, and influenced various
aspects of difference equations and applications. Among the many types of inequalities,
those associated with the names of Jensen [12, 17, 18], Hilbert [26, 45], Wirtinger [2,
4, 19], Chebyshev [36, 49], Gronwall–Bellman [20, 37] and Opial [5, 7, 23, 27, 34, 35]
have deep roots and made a great impact on various branches of mathematics. The
development of discrete inequalities resulted in a renewal of interest in the field and has
attracted interest from more researchers [6, 10, 11, 16, 22, 28, 29, 30, 31, 39, 40, 41, 42].

More recently, some of classical inequalities have been extended to set-valued
functions by Nikodem et al. [32], Štrboja et al. [44], and Zhang et al. [46, 47], espe-
cially to interval-valued functions by Chalco-Cano et al. [8, 9], Costa et al. [13, 14, 15],
Flores-Franulič et al. [21], Román-Flores et al. [38], and Zhao et al. [48, 49, 50, 51].
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The present article is, in some sense, a continuation of the previous work [50]. Here, we
establish some new discrete inequalities of Opial type involving sequences of intervals
and their forward (backward) difference operator. Furthermore, our present results can
be considered as tools for further research in interval difference equations and inequal-
ities for interval-valued functions, among others.

The paper is organized as follows. Section 2 contains some necessary prelimi-
naries. In Section 3, we present some new interval Opial type inequalities involving
the backward gH-difference operator, and present some examples to illustrate our the-
orems. In Section 4, some new discrete Opial type inequalities, involving the forward
gH-difference operator, are given. Finally, in the concluding Section 5, we summarize
our results and outline some possible future work directions.

2. Preliminaries

We begin by recalling some basic notations, definitions, and results of interval
analysis. We define an interval u by

u = [u,u] = {t ∈ R| u � t � u}.

We write len(u) = u−u . If len(u) = 0, then u is called a degenerate interval. The set
of all intervals of R is denoted by RI . For λ ∈ R and u ∈ RI , λu is defined by

λ [u,u] =

{
[λu,λu] if λ � 0,

[λu,λu] if λ < 0.

For u = [u,u] and v = [v,v] , the four arithmetic operators (+,-, · ,/) are defined by

u+ v = [u+ v,u+ v],

u− v = [u− v,u− v],

u · v =
[
min{uv,uv,uv,uv},max{uv,uv,uv,uv}],

u/v =
[
min{u/v,u/v,u/v,u/v},max{u/v,u/v,u/v,u/v}],where 0 /∈ [v,v].

Note that RI with the above operations (i.e., the Minkowski addition and the scalar
multiplication) is not a linear space since an interval does not have inverse element
and, therefore, the subtraction does not have adequate properties. For example, when
subtracting two intervals u and v , the width of the result is the sum of the widths of u
and v , i.e.,

len(u− v) = len(u)+ len(v).

To partially overcome this situation, Hukuhara [25] introduced the followingH-difference:

u� v = w ⇔ u = v+w.

Unfortunately, the H-difference does not always exist for any u and v .
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In [43], Stefanini introduced the gH-difference as follows:

u�g v = w ⇔
{

(a) u = v+w,

or (b) v = u+(−1)w.

The gH-difference always exists for any u and v . We also have

u�g v =
[
min{u− v,u− v},max{u− v,u− v}].

The Hausdorff distance between u and v is defined by

d(u,v) = max
{
|u− v|, |u− v|

}
.

Then, (RI ,d) is a complete metric space. Note that (RI ,+, ·) is a quasi-linear space
(see [15]) equipped with the quasi-norm ‖ · ‖ , which is given by

‖u‖ = d(u, [0,0]) = d([u,u], [0,0]) = max{|u|, |u|}
for all u ∈ RI .

On [a,b] , ui is called increasing if and only if ui and ui are increasing; ui and
vi are synchronous (asynchronous) monotone if they have the same (opposite) mono-
tonicity; ui is μ -increasing if len(ui) is increasing. One defines uλ by

uλ = {tλ | t ∈ [u,u]}.
For convenience, we now recall the classical Opial’s inequality:

THEOREM 1. (continuous Opial inequality [33]) Let F ∈C1[0,h] , F(0)= F(h)=
0 and F(t) > 0 for t ∈ (0,h) . Then,

∫ h

0
|F(t)F ′(t)|dt � h

4

∫ h

0

(
F ′(t)

)2
dt, (1)

where h
4 is the best possible.

A discrete analogue of Theorem 1 is the following:

THEOREM 2. (discrete Opial inequality [3]) Let {ui}n
i=0 be a sequence of num-

bers with u0 = 0 and un = 0 . Then,

n−1

∑
i=1

|uiΔui| � 1
2

[n+1
2

]n−1

∑
i=0

|Δui|2, (2)

where Δ is the forward difference operator and [·] is the greatest integer function.

Many generalizations of Theorem 2 are available in the literature: see, e.g., [5, 7,
23]. In Sections 3 and 4, we give several extensions of Theorem 2 for sequences of
intervals.
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3. Opial type inequalities involving the backward/nabla gH-difference operator

DEFINITION 1. Let {ui} be a sequence of intervals. We define the forward (delta)
gH-difference operator Δu by

Δui = ui+1�g ui.

Similarly, we define the backward (nabla) gH-difference operator ∇u by

∇ui = ui�g ui−1.

REMARK 1. Note that if {ui} is a sequence of degenerate intervals, then the for-
ward (backward) gH-difference operator reduces to the classical forward (backward)
difference operator.

Lemma 1 has been obtained by Lee in [27]. Here we give a new and more direct
proof.

LEMMA 1. (cf. [27]) Let {ui}n
i=1 be a non-decreasing sequence of non-negative

real numbers, u0 = 0 , and λ1, λ2 � 1 . Then,

n

∑
i=1

uλ1
i

(
∇ui
)λ2 � λ2(n+1)λ1

λ1 + λ2

n

∑
i=1

(
∇ui
)λ1+λ2 . (3)

Proof. Since ∇ui = ui−ui−1 , we have ui = ∑i
j=1 ∇u j . We may rewrite (3) as

n

∑
i=1

( i

∑
j=1

∇u j

)λ1(
∇ui
)λ2 � λ2(n+1)λ1

λ1 + λ2

n

∑
i=1

(
∇ui
)λ1+λ2 . (4)

We shall prove (4) by induction on n . Clearly, (4) holds with n = 1. Assume that it
holds for n , so that

n+1

∑
i=1

( i

∑
j=1

∇u j

)λ1(
∇ui
)λ2

� λ2(n+1)λ1

λ1 + λ2

(
n

∑
i=1

(
∇ui
)λ1+λ2 +

λ1 + λ2

λ2

(
1

n+1

n+1

∑
j=1

∇u j

)λ1(
∇un+1

)λ2

)

� λ2(n+1)λ1

λ1 + λ2

(
n

∑
i=1

(
∇ui
)λ1+λ2 +

λ1 + λ2

λ2
Aλ1

n+1

(
∇un+1

)λ2

)
,

(5)

where An+1 = 1
n+1 ∑n+1

j=1 ∇u j . Using Young’s inequality, we have

Aλ1
n+1

(
∇un+1

)λ2 � λ1

λ1 + λ2
Aλ1+λ2

n+1 +
λ2

λ1 + λ2

(
∇un+1

)λ1+λ2 .
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Then,

λ1 + λ2

λ2
Aλ1

n+1

(
∇un+1

)λ2 � λ1

λ2
Aλ1+λ2

n+1 +
(
∇un+1

)λ1+λ2 . (6)

Thanks to Hölder’s inequality, it follows that

An+1 =
1

n+1

n+1

∑
j=1

∇u j

�
(

n+1

∑
j=1

(
1

n+1

) λ1+λ2
λ1+λ2−1

) λ1+λ2−1
λ1+λ2

(
n+1

∑
j=1

(
∇ui
)λ1+λ2

) 1
λ1+λ2

�
(

1
n+1

) 1
λ1+λ2

(
n+1

∑
j=1

(
∇ui
)λ1+λ2

) 1
λ1+λ2

.

Consequently, we get

Aλ1+λ2
n+1 � 1

n+1

n+1

∑
j=1

(
∇ui
)λ1+λ2 . (7)

Thus, combining (5), (6) and (7), we have

n+1

∑
i=1

( i

∑
j=1

∇u j

)λ1(
∇ui
)λ2

� λ2(n+1)λ1

λ1 + λ2

(
n

∑
i=1

(
∇ui
)λ1+λ2 +

λ1 + λ2

λ2
Aλ1

n+1

(
∇un+1

)λ2

)

� λ2(n+1)λ1

λ1 + λ2

(
n

∑
i=1

(
∇ui
)λ1+λ2 +

λ1

λ2
Aλ1+λ2

n+1 +
(
∇un+1

)λ1+λ2

)

� λ2(n+1)λ1

λ1 + λ2

(
n+1

∑
i=1

(
∇ui
)λ1+λ2 +

λ1

n+1

n+1

∑
j=1

(
∇ui
)λ1+λ2

)

=
λ2(n+1)λ1

λ1 + λ2
· n+1+ λ1

n+1
·
n+1

∑
j=1

(
∇ui
)λ1+λ2

=
λ2

[
(n+1)λ1 + λ1(n+1)λ1−1

]
λ1 + λ2

n+1

∑
j=1

(
∇ui
)λ1+λ2

� λ2(n+2)λ1

λ1 + λ2

n+1

∑
j=1

(
∇ui
)λ1+λ2 .

The proof is complete. �
Thanks to Lemma 1, we can easily obtain the following Lemma 2,
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LEMMA 2. Let {ui}n
i=1 be a sequence of numbers, u0 = 0 , and λ1, λ2 � 1 . Then,

n

∑
i=1

|ui|λ1
∣∣∇ui

∣∣λ2 � λ2(n+1)λ1

λ1 + λ2

n

∑
i=1

∣∣∇ui
∣∣λ1+λ2 . (8)

Proof. Since |∇ui| = |ui −ui−1| , we have |ui| � ∑i
j=1 |∇u j| . The rest of proof is

similar to that of Lemma 1 and is omitted here. �

We are now ready to formulate and prove our first original result.

THEOREM 3. Let {ui}n
i=1 be a sequence of intervals, u0 = [0,0] , and λ1,λ2 � 1 .

If ui is monotone and μ -increasing, then

n

∑
i=1

∥∥∥uλ1
i

(
∇ui
)λ2
∥∥∥� λ2(n+1)λ1

λ1 + λ2

n

∑
i=1

∥∥∇ui
∥∥λ1+λ2 . (9)

Proof. Suppose that ui is increasing and μ -increasing. Then,

uλ1
i =

[
ui

λ1 ,ui
λ1

]
,
(
∇ui
)λ2 =

[(
∇ui
)λ2 ,

(
∇ui
)λ2
]
.

Consequently, we obtain that

uλ1
i

(
∇ui
)λ2 =

[
ui

λ1
(
∇ui
)λ2 ,ui

λ1
(
∇ui
)λ2
]
.

If ui is decreasing and μ -increasing, then

uλ1
i =

⎧⎨
⎩
[
ui

λ1 ,ui
λ1

]
if λ1 is odd,[

ui
λ1 ,ui

λ1

]
if λ1 is even,

(
∇ui
)λ2 =

⎧⎨
⎩
[(

∇ui
)λ2 ,

(
∇ui
)λ2
]

if λ2 is odd,[(
∇ui
)λ2 ,

(
∇ui
)λ2
]

if λ2 is even.

Consequently, we obtain

uλ1
i

(
∇ui
)λ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
ui

λ1
(
∇ui
)λ2 ,ui

λ1
(
∇ui
)λ2
]

if λ1 and λ2 are odd,[
ui

λ1
(
∇ui
)λ2 ,ui

λ1
(
∇ui
)λ2
]

if λ1 and λ2 are even,[
ui

λ1
(
∇ui
)λ2 ,ui

λ1
(
∇ui
)λ2
]

if λ1 is odd and λ2 is even,[
ui

λ1
(
∇ui
)λ2 ,ui

λ1
(
∇ui
)λ2
]

if λ1 is even and λ2 is odd.
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By Lemma 2, it follows that

n

∑
i=1

∥∥∥uλ1
i

(
∇ui
)λ2
∥∥∥

=
n

∑
i=1

∥∥∥[min
{
ui

λ1
(
∇ui
)λ2 ,ui

λ1
(
∇ui
)λ2
}
,max

{
ui

λ1
(
∇ui
)λ2 ,ui

λ1
(
∇ui
)λ2
}]∥∥∥

=
n

∑
i=1

max
{∣∣∣ui

λ1
(
∇ui
)λ2
∣∣∣, ∣∣∣ui

λ1
(
∇ui
)λ2
∣∣∣}

= max

{
n

∑
i=1

∣∣∣ui
λ1
(
∇ui
)λ2
∣∣∣, n

∑
i=1

∣∣∣ui
λ1
(
∇ui
)λ2
∣∣∣
}

� λ2(n+1)λ1

λ1 + λ2
max

{
n

∑
i=1

∣∣∣∇ui
λ1+λ2

∣∣∣, n

∑
i=1

∣∣∣∇ui
λ1+λ2

∣∣∣
}

� λ2(n+1)λ1

λ1 + λ2

n

∑
i=1

max
{∣∣∇ui

∣∣λ1+λ2 ,
∣∣∇ui

∣∣λ1+λ2
}

� λ2(n+1)λ1

λ1 + λ2

n

∑
i=1

‖∇ui‖λ1+λ2 .

This concludes the proof. �

Follows an example of application of our Theorem 3.

EXAMPLE 1. Suppose that {ui}n
i=0 = {[0,0], [1,2], [2,4], . . . , [n,2n]} and λ1, λ2 �

1. By Theorem 3, we have

n

∑
i=1

∥∥∥uλ1
i

(
∇ui
)λ2
∥∥∥=

n

∑
i=1

∥∥∥[iλ1 ,(2i)λ1
] · [1,2]λ2

∥∥∥
= 2λ1+λ2

n

∑
i=1

iλ1

� λ2n(n+1)λ1

λ1 + λ2
2λ1+λ2

=
λ2(n+1)λ1

λ1 + λ2

n

∑
i=1

2λ1+λ2

=
λ2(n+1)λ1

λ1 + λ2

n

∑
i=1

∥∥∇ui
∥∥λ1+λ2 .

LEMMA 3. Let {ui}m
i=1 be a sequence of numbers, um = 0 , and λ1, λ2 � 1 . Then,

m−1

∑
i=n

|ui|λ1
∣∣∇ui

∣∣λ2 � λ2(m−n+1)λ1

λ1 + λ2

m

∑
i=n

∣∣∇ui
∣∣λ1+λ2 . (10)
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Proof. Since |∇ui| = |ui − ui−1| , we have |ui| � ∑m
j=i+1 |∇u j| . The rest of proof

is similar to that of Lemma 1 and is omitted here. �

Similarly to Theorem 3, we obtain an analogous result when ui is monotone but
μ -decreasing instead of μ -increasing.

THEOREM 4. Let {ui}m
i=0 be a sequence of intervals, um = [0,0] , and λ1,λ2 � 1 .

If ui is monotone and μ -decreasing, then

m−1

∑
i=n

∥∥∥uλ1
i

(
∇ui
)λ2
∥∥∥� λ2(m−n+1)λ1

λ1 + λ2

m

∑
i=n

∥∥∇ui
∥∥λ1+λ2 . (11)

Proof. Suppose that ui is increasing and μ -decreasing. Then,

uλ1
i =

⎧⎨
⎩
[
ui

λ1 ,ui
λ1

]
if λ1 is odd,[

ui
λ1 ,ui

λ1

]
if λ1 is even,

and (
∇ui
)λ2 =

[(
∇ui
)λ2 ,

(
∇ui
)λ2
]
.

Consequently, we obtain

uλ1
i

(
∇ui
)λ2 =

⎧⎪⎨
⎪⎩
[
ui

λ1
(
∇ui
)λ2 ,ui

λ1
(
∇ui
)λ2
]

if λ1 is odd,[
ui

λ1
(
∇ui
)λ2 ,ui

λ1
(
∇ui
)λ2
]

if λ1 is even.
(12)

If ui is decreasing and μ -decreasing, then

uλ1
i =

[
ui

λ1 ,ui
λ1
]
,

(
∇ui
)λ2 =

⎧⎨
⎩
[(

∇ui
)λ2 ,

(
∇ui
)λ2
]

if λ2 is odd,[(
∇ui
)λ2 ,

(
∇ui
)λ2
]

if λ2 is even.

Consequently, we obtain

uλ1
i

(
∇ui
)λ2 =

⎧⎪⎨
⎪⎩
[
ui

λ1
(
∇ui
)λ2 ,ui

λ1
(
∇ui
)λ2
]

if λ2 is odd,[
ui

λ1
(
∇ui
)λ2 ,ui

λ1
(
∇ui
)λ2
]

if λ2 is even.
(13)
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By (12), (13) and Lemma 3, it follows that

m−1

∑
i=n

∥∥∥uλ1
i

(
∇ui
)λ2
∥∥∥

=
m−1

∑
i=n

∥∥∥[min
{
ui

λ1
(
∇ui
)λ2 ,ui

λ1
(
∇ui
)λ2
}
,max

{
ui

λ1
(
∇ui
)λ2 ,ui

λ1
(
∇ui
)λ2
}]∥∥∥

=
m−1

∑
i=n

max
{∣∣∣ui

λ1
(
∇ui
)λ2
∣∣∣, ∣∣∣ui

λ1
(
∇ui
)λ2
∣∣∣}

= max

{
m−1

∑
i=n

∣∣∣ui
λ1
(
∇ui
)λ2
∣∣∣,m−1

∑
i=n

∣∣∣ui
λ1
(
∇ui
)λ2
∣∣∣
}

� λ2(m−n+1)λ1

λ1 + λ2
max

{
m

∑
i=n

∣∣∣∇ui

∣∣∣λ1+λ2
,

m

∑
i=n

∣∣∣∇ui

∣∣∣λ1+λ2

}

� λ2(m−n+1)λ1

λ1 + λ2

m

∑
i=n

max
{∣∣∇ui

∣∣λ1+λ2 ,
∣∣∇ui

∣∣λ1+λ2
}

� λ2(m−n+1)λ1

λ1 + λ2

m

∑
i=n

‖∇ui‖λ1+λ2 .

This concludes the proof. �

EXAMPLE 2. Suppose that

{ui}n
i=1 =

{
[1,2],

[1
2
,1
]
,
[1

i
,
2
i

]
, . . . ,

[ 1
n−1

,
2

n−1

]
, [0,0]

}

and λ1 = 1 and λ2 = 2. By induction on n , we have

n−1

∑
i=2

∥∥∥uλ1
i

(
∇ui
)λ2
∥∥∥=

n−1

∑
i=2

∥∥∥[1
i
,
2
i

]
·
[ −2
i(i−1)

,
−1

i(i−1)

]2∥∥∥
=

n−1

∑
i=2

∥∥∥[1
i
,
2
i

]
·
[ 1
i2(i−1)2 ,

4
i2(i−1)2

]∥∥∥
=

n−1

∑
i=2

8
i3(i−1)2

� 2(n−1)
3

n

∑
i=2

23

i3(i−1)3

=
λ2(n−1)λ1

λ1 + λ2

n

∑
i=2

∥∥∇ui
∥∥λ1+λ2 .

Theorem 3 is a special case of our next Theorem 5.
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THEOREM 5. Let {ui}n
i=1 be a sequence of intervals, u0 = [0,0] , and λ1,λ2 � 1 .

If {ui}n
i=1 is piecewise alternate monotone, piecewise alternate μ -monotone, and there

is no other point i such that ui = [0,0] , then

n

∑
i=1

∥∥∥uλ1
i

(
∇ui
)λ2
∥∥∥� λ2(n+1)λ1

λ1 + λ2

n

∑
i=1

∥∥∇ui
∥∥λ1+λ2 . (14)

Proof. First, suppose that there exists a finite number of points such that

1 = i0 � i1 < i2 < · · · < ik−1 < ik = n

and ui is piecewise alternate monotone and piecewise alternate μ -monotone. By
Lemma 1, we have

n

∑
i=1

∥∥∥uλ1
i

(
∇ui
)λ2
∥∥∥

=
i1

∑
i=i0

∥∥∥uλ1
i

(
∇ui
)λ2
∥∥∥+

i2

∑
i=i1+1

∥∥∥uλ1
i

(
∇ui
)λ2
∥∥∥+ · · ·+

ik

∑
i=ik−1+1

∥∥∥uλ1
i

(
∇ui
)λ2
∥∥∥

=
k−1

∑
j=0

i j+1

∑
i=i j

max
{∣∣∣ui

λ1
(
∇ui
)λ2
∣∣∣, ∣∣∣ui

λ1
(
∇ui
)λ2
∣∣∣}

=
n

∑
i=1

max
{∣∣∣ui

λ1
(
∇ui
)λ2
∣∣∣, ∣∣∣ui

λ1
(
∇ui
)λ2
∣∣∣}

� λ2(n+1)λ1

λ1 + λ2

n

∑
i=1

∥∥∇ui
∥∥λ1+λ2 .

The proof is complete. �
Similarly, we can also generalize Theorem 4 as follows.

THEOREM 6. Let {ui}m
i=n be a sequence of intervals, um = [0,0] , and λ1,λ2 � 1 .

If {ui}m
i=0 is piecewise alternate monotone, piecewise alternate μ -monotone, and there

is no other point i such that ui = [0,0] , then

m−1

∑
i=n

∥∥∥uλ1
i

(
∇ui
)λ2
∥∥∥� λ2(m−n+1)λ1

λ1 + λ2

m

∑
i=n

∥∥∇ui
∥∥λ1+λ2 . (15)

Proof. The proof is analogous to the one of Theorem 5. �
As an application of Theorems 5 and 6, we now obtain the following result.

THEOREM 7. Let {ui}m
i=0 be a sequence of intervals, u0 = um = [0,0] , and λ1,λ2 �

1 . If {ui}m
i=0 is piecewise alternate monotone, piecewise alternate μ -monotone, and

there is no other point i such that ui = [0,0] , then

m−1

∑
i=1

∥∥∥uλ1
i

(
∇ui
)λ2
∥∥∥�

λ2

([
m
2

]
+1
)λ1

λ1 + λ2

m

∑
i=1

∥∥∇ui
∥∥λ1+λ2 . (16)
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Proof. Let us take n =
[

m
2

]
. By Theorem 5, we have

[ m
2 ]

∑
i=1

∥∥∥uλ1
i

(
∇ui
)λ2
∥∥∥�

λ2

([
m
2

]
+1
)λ1

λ1 + λ2

[ m
2 ]

∑
i=1

∥∥∇ui
∥∥λ1+λ2 . (17)

Similarly, by Theorem 6, we have

m−1

∑
i=[ m

2 ]+1

∥∥∥uλ1
i

(
∇ui
)λ2
∥∥∥�

λ2

(
m− [m

2

])λ1

λ1 + λ2

m

∑
i=[ m

2 ]+1

∥∥∇ui
∥∥λ1+λ2

�
λ2

([
m
2

]
+1
)λ1

λ1 + λ2

m

∑
i=[ m

2 ]+1

∥∥∇ui
∥∥λ1+λ2 .

(18)

The intended relation (16) follows by adding the above two inequalities (17) and (18). �

EXAMPLE 3. Suppose that

{ui}5
i=0 =

{
[0,0], [1,2], [2,4], [3,6], [1,2], [0,0]

}
,λ1 = 2,λ2 = 3.

Then, we have

4

∑
i=1

∥∥∥u2
i

(
∇ui
)3∥∥∥= 704 < 6048 =

3 ·32

5

4

∑
i=1

∥∥∇ui
∥∥5

.

Let λ1 = 1,λ2 = 2. Then, we have

4

∑
i=1

∥∥∥ui
(
∇ui
)2∥∥∥= 80 < 184 =

2 ·3
3

4

∑
i=1

∥∥∇ui
∥∥3

.

Now, we give new discrete Opial inequalities involving two interval sequences.

THEOREM 8. Let {ui}n
i=0 and {vi}n

i=0 be two sequences of intervals, u0 = v0 =
[0,0] . If ui and vi are synchronous monotone and μ -increasing, then

n

∑
i=1

∥∥ui−1∇vi + vi∇ui
∥∥� n

2

n

∑
i=1

∥∥(∇ui)2 +(∇vi)2
∥∥. (19)

Proof. Suppose that ui and vi are increasing and μ -increasing. Then, uivi is also
increasing and μ -increasing. Consequently, we obtain that

ui−1∇vi + vi∇ui =
[
ui−1,ui−1

]
·
[
vi− vi−1,vi − vi−1

]
+
[
vi,vi

]
·
[
ui −ui−1,ui−ui−1

]
=
[
ui−1(vi − vi−1)+ vi(ui−ui−1), ui−1(vi − vi−1)+ vi(ui−ui−1)

]
=
[
ui · vi−ui−1 · vi−1, ui · vi−ui−1 · vi−1

]
= ∇(uivi).
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If ui and vi are decreasing and μ -increasing, then uivi is increasing and μ -increasing.
Consequently, we obtain that

ui−1∇vi + vi∇ui =
[
ui−1,ui−1

]
·
[
vi− vi−1,vi − vi−1

]
+
[
vi,vi

]
·
[
ui −ui−1,ui−ui−1

]
=
[
ui−1(vi − vi−1)+ vi(ui −ui−1), ui−1(vi − vi−1)+ vi(ui−ui−1)

]
=
[
ui · vi−ui−1 · vi−1, ui · vi−ui−1 · vi−1

]
= ∇(uivi).

Then, by the Cauchy–Schwarz inequality, we have
n

∑
i=1

∥∥ui−1∇vi + vi∇ui
∥∥=

n

∑
i=1

max
{
ui · vi−ui−1 · vi−1, ui · vi−ui−1 · vi−1

}

� max

{
n

∑
i=1

(
ui · vi−ui−1 · vi−1

)
,

n

∑
i=1

(
ui · vi−ui−1 · vi−1

)}

� max
{
un · vn, un · vn

}
= ‖unvn‖

=

∥∥∥∥∥
n

∑
i=1

∇ui

∥∥∥∥∥ ·
∥∥∥∥∥

n

∑
i=1

∇vi

∥∥∥∥∥
� n

2

n

∑
i=1

(∥∥∇ui
∥∥2 +

∥∥∇vi
∥∥2
)
.

This concludes the proof. �
The following results are proved similarly to Theorem 8.

THEOREM 9. Let {ui}m
i=0 and {vi}m

i=0 be two sequences of intervals, um = vm =
[0,0] . If ui and vi are synchronous monotone and μ -decreasing, then

m

∑
i=n+1

∥∥ui−1∇vi + vi∇ui
∥∥� m−n

2

m

∑
i=n+1

∥∥(∇ui)2 +(∇vi)2
∥∥.

THEOREM 10. Let {ui}m
i=0 and {vi}m

i=0 be two sequences of intervals, u0 = v0 =
[0,0] . If {ui}m

i=0 is piecewise alternate monotone, piecewise alternate μ -monotone,
and there is no other point i such that ui = [0,0] and vi = [0,0] , then

n

∑
i=1

∥∥ui−1∇vi + vi∇ui
∥∥� n

2

n

∑
i=1

∥∥(∇ui)2 +(∇vi)2
∥∥.

THEOREM 11. Let {ui}m
i=0 and {vi}m

i=0 be two sequences of intervals, um = vm =
[0,0] . If {ui}m

i=0 is piecewise alternate monotone, piecewise alternate μ -monotone,
and there is no other point i such that ui = [0,0] and vi = [0,0] , then

m

∑
i=n+1

∥∥ui−1∇vi + vi∇ui
∥∥� m−n

2

m

∑
i=n+1

∥∥(∇ui)2 +(∇vi)2
∥∥.
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THEOREM 12. Let {ui}m
i=0 and {vi}m

i=0 be two sequences of intervals, u1 = v1 =
[0,0] , and um = vm = [0,0] . If {ui}m

i=0 is piecewise alternate monotone, piecewise
alternate μ -monotone, and there is no other point i such that ui = [0,0] and vi = [0,0] ,
then

m

∑
i=1

∥∥ui−1∇vi + vi∇ui
∥∥�

[m+1
2 ]
2

m

∑
i=1

∥∥(∇ui)2 +(∇vi)2
∥∥.

4. Opial type inequalities involving the forward/delta gH-difference operator

In Section 3, we obtained several Opial type inequalities involving the backward
gH-difference operator. Similar arguments can be used to establish discrete Opial type
inequalities concerning the forward gH-difference operator. The proofs of the results
formulated here are left to the interested reader.

THEOREM 13. (delta version of Theorem 3) Let {ui}n
i=1 be a sequence of inter-

vals, u0 = [0,0] , and λ1,λ2 � 1 . If ui is monotone and μ -increasing, then

n−1

∑
i=0

∥∥∥uλ1
i

(
Δui
)λ2
∥∥∥� λ2(n+1)λ1

λ1 + λ2

n−1

∑
i=0

∥∥Δui
∥∥λ1+λ2 .

THEOREM 14. (delta version of Theorem 4) Let {ui}m
i=0 be a sequence of inter-

vals, um = [0,0] , and λ1,λ2 � 1 . If ui is monotone and μ -decreasing, then

m−1

∑
i=n

∥∥∥uλ1
i

(
Δui
)λ2
∥∥∥� λ2(m−n+1)λ1

λ1 + λ2

m

∑
i=n

∥∥Δui
∥∥λ1+λ2 .

THEOREM 15. (delta version of Theorem 7) Let {ui}m
i=0 be a sequence of inter-

vals, u0 = um = [0,0] , and λ1, λ2 � 1 . If {ui}m
i=0 is piecewise alternate monotone,

piecewise alternate μ -monotone, and there is no other point i such that ui = [0,0] ,
then

m−1

∑
i=1

∥∥∥uλ1
i

(
Δui
)λ2
∥∥∥�

λ2

([
m
2

]
+1
)λ1

λ1 + λ2

m

∑
i=1

∥∥Δui
∥∥λ1+λ2 .

5. Conclusions

We investigated discrete Opial type inequalities for interval-valued functions, and
obtained several new interval discrete Opial type inequalities. Our results generalize
many known discrete Opial type inequalities, and will be useful in developing the theory
of interval difference inequalities and interval difference equations. As future research
directions, we intend to investigate interval discrete Opial type inequalities on time
scales, and give some applications to interval difference equations.
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of weights satisfy reverse Hölder’s inequality, Math. Inequal. Appl., 24 (2021), 521–541.
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