CONTINUOUS SYMMETRIZATION AND CONTINUOUS INCREASING REFINEMENTS OF INEQUALITIES AND MONOTONICITY OF EIGENVALUES

Shoshana Abramovich

(Communicated by J. Jakšetić)

Abstract

Continuous symmetrization process and continuous increasing process are the tools used in this paper to refine Clausing inequality and Slater-Pečarić inequality. Also, we note on the monotonicity of the first eigenvalue of a Sturm-Liouville system.

1. Introduction

Continuous symmetrization process and continuous increasing process are the tools used in this paper to refine Clausing inequality and Slater-Pečarić inequality. Also, we note on the monotonicity of the first eigenvalue of a Sturm-Liouville system.

Clausing inequality says:

THEOREM 1. [5, Section 4.1(b)] Let ϕ be continuous on $[0,1]$ and increasing on $\left[0, \frac{1}{2}\right]$, with $\phi(x)=\phi(1-x)$. Then, for a concave and positive function f on $[0,1]$ we have:

$$
\begin{equation*}
\int_{0}^{1} f(x) d x \int_{0}^{1} \phi(x) d x \leqslant \int_{0}^{1} f(x) \phi(x) d x \leqslant \int_{0}^{1} f(x) d x \int_{0}^{1} k(x) d x \tag{1}
\end{equation*}
$$

where $k(x)=4 \min \{x, 1-x\} \phi(x)$.
Lately this theorem has been proved in details by P. R. Mercer [8].
In Section 2 we refine this inequality.
Continuous symmetrization process, presented by Pólya and Szegö in their book [10, pages 200, 201, formula (1)], is applied in [1] to obtain a set of equimeasurable real functions $f(\alpha, x)$, where $\alpha \in[0,1]$. In [1, Introduction] and [3] the process is applied to functions that include convex functions. In Definition 1 and in Section 2 we make the needed adaptation for functions that include concave functions.

[^0]DEFINITION 1. Let f be a continuous real function on $x \in[-1,1]$, non-decreasing on $[-1, l]$ and non-increasing on $[l, 1]$. For $x \in[-1, l]$ we denote the function inverse to f by x_{1} and for $x \in[l, 1]$ by x_{2}.

In order to be able to use the process named continuous symmetrization (see [10, pages 200,201$]$) to build the set of functions $f(\alpha, x)$, we complete the graph of f as follows:
(A): when $f(-1)>f(1)$, we add the inverse function $x_{1}(y)$ defined on $y \in$ $[f(-1), f(l)]$ an interval of definition $f(1) \leqslant y \leqslant f(-1)$, for which $x_{1}(y)=-1$ is a constant function, and:
(B): when $f(-1)<f(1)$ we add the inverse function $x_{2}(y)$ defined on $[f(1), f(l)]$ an interval of definition $f(-1) \leqslant y \leqslant f(1)$ for which $x_{2}(y)=1$ is a constant function.

We define the class of functions $f(\alpha, x), \alpha \in[0,1], x \in[-1,1]$, for which $f(0, x)$ $=f(x)$ and $f(1, x)$ is the equimeasurable symmetrical rearrangement of f as follows:

For x in the interval $[-1, l(1-\alpha)]$ we denote the function inverse to $f(\alpha, x)$ by $x_{1, \alpha}$, and for $x \in[l(1-\alpha), 1]$ we denote the inverse function by $x_{2 \alpha}$ where:

$$
\begin{equation*}
x_{1, \alpha}(y)=\left(1-\frac{\alpha}{2}\right) x_{1}(y)-\frac{\alpha}{2} x_{2}(y), \quad \min (f(-1), f(1)) \leqslant y \leqslant f(l) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2, \alpha}(y)=\left(1-\frac{\alpha}{2}\right) x_{2}(y)-\frac{\alpha}{2} x_{1}(y), \quad \min (f(-1), f(1)) \leqslant y \leqslant f(l) \tag{3}
\end{equation*}
$$

(By the addition of (A) and (B), the functions $x_{1, \alpha}$ and $x_{2, \alpha}$ are defined on $y \in$ $[(\min (f(-1), f(1))), f(l)])$.

For more details on continuous symmetrization and its special cases, see [1] and [10].

As already mentioned, the functions $f(\alpha, x)$ are equimeasurable. On equimeasurable function see [7, Chapter. X], [10, Chapter VII], and the introduction in [1].

In Section 3 we use of the following Lemma 1 which is the same as [7, Theorem 399]:

Lemma 1. In order that an integrable function H should have the property

$$
\int_{0}^{1} H(x) y(x) d x \leqslant 0
$$

for all positive increasing and bounded $y(x)$, it is necessary and sufficient that

$$
\int_{x}^{1} H(t) d t \leqslant 0
$$

holds for every $x \in[0,1]$.
DEFINITION 2. A function f on $[a, b]$ is called symmetrical decreasing if f is symmetrical on $[a, b]$ and increasing on $\left[a, \frac{a+b}{2}\right]$ (see [4, p. 509]).

In Section 2 we use Corollary 1 and Remark 1:
Corollary 1. [1, Corollary 1] If ϕ is positive symmetrical decreasing and bounded on $[-1,1]$ and if H is an integrable function such that

$$
\int_{-s}^{s} H(x) d x \leqslant 0
$$

holds for every $s, s \in[0,1]$, then

$$
\int_{-1}^{1} H(x) \phi(x) d x \leqslant 0
$$

In Remark 1 we made the needed adaptation of the results of [1, Theorem 1d and Remark 2] for functions that include the concave functions.

REMARK 1. Let f be continuous real function on $x \in[-1,1]$, non-decreasing on $[-1, l]$ and non-increasing on $[l, 1]$. Let $f(\alpha, x)$ be the function obtained from f by continuous symmetrization as in [10]. Then $\int_{-s}^{s} f(\alpha, x) d x$ is monotone non-decreasing in $\alpha, \alpha \in[0,1]$ for $s \in[0,1]$.

In Section 2 we use Corollary 1 for concave functions.
In Section 3 we use another type of continuous process we name continuous increasing process. There we compare the upper bound obtained in Theorem 2 with the upper bound obtained by Slater-Pečarić in Theorem 3. Also, we note on the monotonicity of the first eigenvalue of Sturm-Liouville system using the same process.

THEOREM 2. [2, Theorem 1.2] Let $f \in C^{1}$ and $f:[0,1] \rightarrow[0,1]$. Let f_{-}be the decreasing rearrangement of f satisfying $f_{-}(0)=1$ and $f_{-}(1)=0$. Let $u_{-}(x)$ be the inverse function of f_{-}.

Iffor every $x \in[0,1]$

$$
\begin{equation*}
\int_{x}^{1} f_{-}(t) d t \leqslant \int_{x}^{1} u_{-}(t) d t \tag{4}
\end{equation*}
$$

holds. Then,

$$
\begin{equation*}
\varphi\left(\int_{0}^{1} f(x) d x\right) \leqslant \int_{0}^{1} \varphi^{\prime}(x) f_{-}(x) d x \leqslant \int_{0}^{1} \varphi(f(x)) d x \leqslant \int_{0}^{1} \varphi^{\prime}(x) f_{+}(x) d x \tag{5}
\end{equation*}
$$

when $\varphi:[0,1] \rightarrow \mathbb{R}$ is a convex function and $\varphi(0)=0$.
Iffor every $x \in[0,1]$

$$
\begin{equation*}
\int_{x}^{1} f_{-}(t) d t \geqslant \int_{x}^{1} u_{-}(t) d t \tag{6}
\end{equation*}
$$

holds, then:

$$
\begin{equation*}
\varphi\left(\int_{0}^{1} f(x) d x\right) \leqslant \int_{0}^{1} \varphi(f(x)) d x \leqslant \int_{0}^{1} \varphi^{\prime}(x) f_{-}(x) d x \leqslant \int_{0}^{1} \varphi^{\prime}(x) f_{+}(x) d x \tag{7}
\end{equation*}
$$

Jensen's inequality and Slater's companion inequality [11] (as generalized by Pečarić [9]) show that:

THEOREM 3. If φ is a real convex function defined on I where I is the range of f, and if $M \in I$, then for all probability measures μ and all non-negative μ-integrable fuctions f :

$$
\begin{equation*}
\varphi(m) \leqslant \int_{\Omega} \varphi(f(s)) d \mu(s) \leqslant \varphi(M) \tag{8}
\end{equation*}
$$

holds, where

$$
\begin{equation*}
m=\int_{\Omega} f(s) d \mu(s) \quad \text { and } \quad M=\frac{\int_{\Omega} f(s) C_{f(s)} d \mu(s)}{\int_{\Omega} C_{f(s)} d \mu(s)} \tag{9}
\end{equation*}
$$

and the function C should satisfy $\varphi_{-}^{\prime}(x) \leqslant C_{x} \leqslant \varphi_{+}^{\prime}(x)$ where φ_{-}^{\prime} and φ_{+}^{\prime} are the left and right derivatives of φ.

We emphasize that in Section 2 we use the continuous symmetrization process as in [10, p. 201] to discuss the behavior of $\int_{-1}^{1} f(\alpha, x) \phi(x) d x, \alpha \in[0,1]$ when ϕ is a non-negative symmetrical decreasing function on $x \in[-1,1]$.

On the other hand, in Section 3, we use another type of continuous process we name continuous increasing process in order to generate a set of equimeasurable functions. Through this process we refine Slater-Pečarić inequality and inequalities related to the first eigenvalue of Sturm-Liouville system. We use the behavior of $\int_{0}^{1} f(\alpha, x) T(x) d x, \alpha \in[0,1]$ when T is an increasing function on $x \in[0,1]$.

In this case $f \in C^{1}, f:[0,1] \rightarrow \mathbb{R}_{+}$is increasing on $[0, l)$ and decreasing on $(l, 1]$, x_{1} is the inverse of $f \in[0, l)$ and x_{2} is the inverse of $f \in(l, 1]$.

In the same way as in Definition 1, in order to be able to use this process to build the set of functions $f(\alpha, x)$ we complete the graph of f as follows:
(C): when $f(0)>f(1)$, we add the inverse function x_{1} an interval of definition $f(1) \leqslant y \leqslant f(0)$, for which $x_{1}(y)=0$ is a constant function, and:
(D): when $f(0)<f(1)$ we add the inverse function x_{2} an interval of definition $f(0) \leqslant y \leqslant f(1)$ for which $x_{2}(y)=1$ is a constant function.

We define $f(\alpha, x)$ by its inverses $x_{1, \alpha}$ and $x_{2, \alpha}$ as:

$$
x_{1, \alpha}(y)=x_{1}(y)+\alpha\left(1-x_{2}(y)\right), \quad\left\{\begin{array}{c}
\min (f(0), f(1)) \leqslant y \leqslant f(l) \tag{10}\\
0 \leqslant x_{1, \alpha} \leqslant l+\alpha(1-l)
\end{array}\right.
$$

and

$$
x_{2, \alpha}(y)=x_{2}(y)+\alpha\left(1-x_{2}(y)\right), \quad\left\{\begin{array}{c}
\min (f(0), f(1)) \leqslant y \leqslant f(l) \tag{11}\\
l+\alpha(1-l) \leqslant x_{2, \alpha} \leqslant 1
\end{array}\right.
$$

(By the addition of (C) and (D), $x_{1, \alpha}(y)$ and $x_{2, \alpha}(y)$ are defined on $y \in[(\min (f(0)$, $f(1))), f(l)]$).

We finish the paper with a note on inequalities related to the first eigenvalue of a Sturm-Liouville system through continuous symmertization discussed in [2].

2. Refining Clausing inequality

In this section we show that our results refine Clausing inequality by adding inequalities after the integral $\int f(x) \phi(x) d x$ in (1) by using continuous symmetrization process as in Definition 1.

To prove Theorem 4 we first state Remark 2 which is essential for the proof of Theorem 4.

REMARK 2. Using Corollary 1 and Remark 1 , when f is concave on $x \in[-1,1]$, we get, when ϕ is continuous and symmetrically decreasing on $[-1,1]$, that

$$
\int_{-1}^{1} f(\alpha, x) \phi(x) d x
$$

is increasing in $\alpha, \alpha \in[0,1]$, and $f(1, x)$ is the equimeasurable symmetrical decreasing rearrangement of f.

THEOREM 4. Let f be a non-negative concave function on $[-1,1]$ and let $f(\alpha, x)$, $\alpha \in[0,1]$ be the function obtained by continuous symmetrization process as in Definition 1. Let ϕ be non-negative and symmetrical decreasing on $[-1,1]$.

Then:
a) the functions $f(\alpha, x), \alpha \in[0,1], x \in[-1,1]$ are concave equimeasurable and $f(1, x)$ is symmetrical decreasing rearrangement of f.
b) for $0 \leqslant \alpha_{1} \leqslant \alpha_{2} \leqslant 1$

$$
\begin{align*}
& \frac{1}{2} \int_{-1}^{1} f(x) d x \int_{-1}^{1} \phi(x) d x \leqslant \int_{-1}^{1} f(x) \phi(x) d x \tag{12}\\
\leqslant & \int_{-1}^{1} f\left(\alpha_{1}, x\right) \phi(x) d x \leqslant \int_{-1}^{1} f\left(\alpha_{2}, x\right) \phi(x) d x \\
\leqslant & \int_{-1}^{1} f(1, x) \phi(x) d x \leqslant \int_{-1}^{1} f(x) d x \int_{-1}^{1} g(x) \phi(x) d x
\end{align*}
$$

where g is a the symmetrical decreasing function:

$$
g(x)=\left\{\begin{array}{l}
1+x,-1 \leqslant x \leqslant 0 \\
1-x, 0 \leqslant x \leqslant 1
\end{array}\right.
$$

Proof. We prove first that when the function f is concave so are the functions $f(\alpha, x)$, for all $\alpha \in[0,1]$ obtained by the continuous symmetrization process.

Let the function x_{1} be the inverse of the function f in its increasing segment, and x_{2} be the inverse of the function f in its decreasing segment.

When a continuous concave function f has an interval $[c, d]$ on which $f(x)=K$, where K is constant, then K is necessarily the maximum of f on the interval $[-1,1]$. Therefore using the continuous symmetrization process, $f(\alpha, x)$ gets its maximum K on the interval of length $d-c$, and it moves with α from $x_{1,0}(K)=a, x_{2,0}(K)=b$
toward $x_{1,1}(K)=-\left(\frac{b-a}{2}\right), x_{2,1}(K)=\frac{b-a}{2}$. Hence in order to show that $f(\alpha, x)$ is concave it is enough to show it when f is strictly increasing on $[-1, l]$ and strictly decreasing on $[l, 1]$.

When f is strictly increasing and concave, its inverse function is increasing and from the concavity it follows that $f^{-1}\left(t f\left(u_{1}\right)+(1-t) f\left(u_{2}\right)\right) \leqslant t u_{1}+(1-t) u_{2}$. Replacing $f\left(u_{1}\right)=v_{1}$ and $f\left(u_{2}\right)=v_{2}$ we get that f^{-1} which is denoted as $x_{1}(y)$ convex increasing. Similarly x_{2} the inverse of a strictly decreasing and concave function is decreasing and concave.

Hence, when $\alpha \in[0,1]$

$$
x_{1, \alpha}(y)=\left(1-\frac{\alpha}{2}\right) x_{1}(y)-\frac{\alpha}{2} x_{2}(y), \quad\left\{\begin{array}{c}
f(-1) \leqslant y \leqslant f(l) \\
-1 \leqslant x_{1, \alpha} \leqslant(1-\alpha) l
\end{array}\right.
$$

is increasing and convex and similarly

$$
x_{2, \alpha}(y)=\left(1-\frac{\alpha}{2}\right) x_{2}(y)-\frac{\alpha}{2} x_{1}(y), \quad\left\{\begin{array}{l}
f(-1) \leqslant y \leqslant f(l) \\
(1-\alpha) l \leqslant x_{2, \alpha} \leqslant 1
\end{array}\right.
$$

is decreasing and concave. Therefore by the same reasoning, $f(\alpha, x)$ when it is the inverse of $x_{1, \alpha}$ is concave increasing and when $f(\alpha, x)$ is the inverse of $x_{2, \alpha}$, it is concave decreasing, so that the set of functions $f(\alpha, x)$ are concave when $\alpha \in[-1,1]$. Part a) of the theorem is proved.

From Remark 2 we see that $\int_{-1}^{1} f(\alpha, x) \phi(x) d x$ is increasing in $\alpha, \alpha \in[0,1]$, that is:

$$
\begin{align*}
& \int_{-1}^{1} f(x) \phi(x) d x \tag{13}\\
= & \int_{-1}^{1} f(0, x) \phi(x) d x \leqslant \int_{-1}^{1} f\left(\alpha_{1}, x\right) \phi(x) d x \leqslant \int_{-1}^{1} f\left(\alpha_{2}, x\right) \phi(x) d x \\
\leqslant & \int_{-1}^{1} f(1, x) \phi(x) d x
\end{align*}
$$

where $0 \leqslant \alpha_{1} \leqslant \alpha_{2} \leqslant 1$
To complete the proof of the theorem we need to show that

$$
\begin{align*}
\int_{-1}^{1} f(1, x) \phi(x) d x & \leqslant \int_{-1}^{1} f(1, x) d x \int_{-1}^{1} g(x) \phi(x) d x \tag{14}\\
& =\int_{-1}^{1} f(x) d x \int_{-1}^{1} g(x) \phi(x) d x
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \int_{-1}^{1} f(x) d x \int_{-1}^{1} \phi(x) d x \leqslant \int_{-1}^{1} f(x) \phi(x) d x \tag{15}
\end{equation*}
$$

As $f(1, x)$ is concave and f and $f(1, x)$ are equimeasurable, inequalities (14) and (15) are actually the right hand-side and the left hand-side of (1) proved in [8].

The proof of the theorem is complete.
In the following example, we build the symmetrical rearrangement $f(1, x)$, for a given function $f(x)$, see Figure 1 .

Example 1. Let f be:

$$
f(x)=y(x)= \begin{cases}y_{1}=\frac{7}{9} x+1, \quad-1 \leqslant x \leqslant \frac{3}{7}, & \frac{2}{9} \leqslant y_{1} \leqslant \frac{4}{3} \\ y_{2}=-\frac{7}{9} x+\frac{7}{3}, & \frac{3}{7} \leqslant x \leqslant 1, \quad 0 \leqslant y_{2} \leqslant \frac{4}{3}\end{cases}
$$

As $f\left(\frac{3}{7}\right)=\frac{4}{3}, f(1)=0<f(-1)=\frac{2}{9}$ then, according to Definition 1, in order to implement the continuous symmetrization process we add in such cases to the graph of the function the value $x_{1}(y)=-1$ for all $0 \leqslant y \leqslant \frac{2}{9}$.

The original function

The symmetrized function

Figure 1.
The symmetrized function $f(1, x)$ obtained by using (2) and (3) from $f(x)$ is:

$$
f(1, x)=y^{*}(x)=\left\{\begin{array}{lcc}
y_{1}=\frac{14}{3} x+\frac{14}{3}, & -1 \leqslant x \leqslant-\frac{20}{21}, & 0 \leqslant y_{1} \leqslant \frac{2}{9} \\
y_{2}=\frac{7}{6} x+\frac{8}{6}, & -\frac{20}{21} \leqslant x \leqslant 0, & \frac{2}{9} \leqslant y_{2} \leqslant \frac{4}{3} \\
y_{3}=-\frac{7}{6} x+\frac{8}{6}, & 0 \leqslant x \leqslant \frac{20}{21}, & \frac{2}{9} \leqslant y_{3} \leqslant \frac{4}{3} \\
y_{4}=-\frac{14}{3} x+\frac{14}{3}, & \frac{20}{21} \leqslant x \leqslant 1, & 0 \leqslant y_{4} \leqslant \frac{2}{9}
\end{array}\right.
$$

We see that $f(1, x)$ is continuous and that the given function f and the function $f(1, x)$ are equimeasurable concave on the interval $[-1,1]$.

We finish this section with a different extension of Theorem 1.
REMARK 3. If f is such that the positive function \widehat{f} defined on $[0,1]$ as $\widehat{f}(x)=$ $\frac{f(x)+f(1-x)}{2}$ is concave, then \widehat{f} satisfies (1). As ϕ and \widehat{f} are symmetric on $[0,1]$ it is obvious that also the function f satisfies (1) although f is not always concave. For example, such functions appear in [6] where it is shown that for the non-concave function $f(x)=x^{3}+64$ on the interval $[-4,2]$ its symetrized function \widehat{f} is concave on the same interval.

3. Refinement of Slater-Pečarić inequalities and monotonicity of eigenvalues

We start this section with comparing Theorem 2 with Theorem 3. Both theorems produce upper bounds of $\int \varphi(f(s)) d \mu(s)$.

In Theorem 5, sufficient condition for refining Slater-Pačarić inequality are proved by using the continuous increasing process defined by (10) and (11) when $f(0, x)=$ $f_{-}(x)$ and $f_{-}(1, x)=f_{+}(x)$:

THEOREM 5. Let $f \in C^{1}$, and $f:[0,1] \rightarrow[0,1]$. Let f_{-}be strictly decreasing rearrangement of f, satisfying $f_{-}(0)=1$ and $f_{-}(1)=0$. Let $f_{-}\left(\alpha_{0}, x\right)$ be an intermediate stage between $f_{-}(x)=f_{-}(0, x)$ and $f_{+}(x)=f_{-}(1, x)$ when using the continuous increasing process (10) and (11). Let u_{-}be the inverse function of $f_{-}, \varphi \in C^{1}$ and $\varphi:[0,1] \rightarrow \mathbb{R}$ be a convex function satisfying $\varphi(0)=0$.

If

$$
\begin{equation*}
\int_{x}^{1} f_{-}(t) d t \leqslant \int_{x}^{1} u_{-}(t) d t \tag{16}
\end{equation*}
$$

for every $x \in[0,1]$, then $f_{-}(\alpha, x)$ is continuous strictly increasing in $\alpha \in(0,1)$, and there always exists an $\alpha_{0} \in[0,1]$ such that when $0 \leqslant M \leqslant 1$:

$$
\begin{equation*}
\int_{0}^{1} \varphi(f(x)) d x \leqslant \int_{0}^{1} \varphi^{\prime}(x) f_{-}\left(\alpha_{0}, x\right) d x \leqslant \varphi(M) \tag{17}
\end{equation*}
$$

where $M=\frac{\int_{0}^{1} f(x) \varphi^{\prime}(f(x)) d x}{\int_{0}^{1} \varphi^{\prime}(f(x)) d x}$.
Proof. The function $f_{-}(\alpha, x)$ is an intermediate stage between the decreasing rearrangement $f_{-}(x)=f_{-}(0, x)$ of f and the increasing rearrangement $f_{+}(x)=$ $f_{-}(1, x)$ of f. The proof of the continuity of $f(\alpha, x)$ follows step by step the proof of Theorem 1(c) in [A]. By using (10) and (11), in this case:

$$
\begin{gather*}
x_{1, \alpha}(y)=\alpha\left(1-x_{2}(y)\right) \quad x \in[0, \alpha], \quad y \in[0,1], \tag{18}\\
x_{2, \alpha}(y)=x_{2}(y)+\alpha\left(1-x_{2}(y)\right), \quad x \in[\alpha, 1], \quad y \in[0,1] \tag{19}
\end{gather*}
$$

because $x_{1}(y)=0$ and $x_{2}(y)=u_{-}(y)$, where u_{-}is the inverse function of $f_{-}(0, x)=$ $f_{-}(x)$.

From (18) and (19) when $0<\alpha<\beta<1, \quad x_{1, \alpha}(y)<x_{1, \beta}(y)$ and $x_{2, \alpha}(y)<$ $x_{2, \beta}(y)$. Hence when $x \in[0, \alpha]$ both $f(\alpha, x)$ and $f(\beta, x)$ are strictly increasing and $f(\alpha, x)>f(\beta, x)$, and when $x \in[\beta, 1]$ both $f(\alpha, x)$ and $f(\beta, x)$ are strictly decreasing and $f(\alpha, x)<f(\beta, x)$. Therefore, $f(\alpha, x)$ cuts $f(\beta, x)$ exactly once when $x \in(\alpha, \beta)$, because in this interval $f(\alpha, x)$ is strictly decreasing in x and $f(\beta, x)$ is strictly increasing. Hence $\int_{s}^{1} f(\alpha, x) d x$ is strictly increasing in $\alpha \in[0,1]$, and according to Lemma 1 we can see that also $\int_{0}^{1} \varphi^{\prime}(x) f(\alpha, x) d x$ is strictly increasing in $\alpha, \alpha \in[0,1]$ when $\varphi \in C^{1}$ is convex. From Inequality (5) in Theorem 2 and because f and f_{-}are equimeasurable, $\int_{0}^{1} \varphi(f(x)) d x=\int_{0}^{1} \varphi\left(f_{-}(x)\right) d x$ we obtain that

$$
\begin{equation*}
\int_{0}^{1} \varphi^{\prime}(x) f_{-}(x) d x \leqslant \int_{0}^{1} \varphi(f(x)) d x \leqslant \int_{0}^{1} \varphi^{\prime}(x) f_{+}(x) d x \tag{20}
\end{equation*}
$$

Therefore, because of the strictly monotonicity in α of $\int_{0}^{1} \varphi^{\prime}(x) f(\alpha, x) d x$ on the values in $\left[\int_{0}^{1} \varphi^{\prime}(x) f_{-}(x) d x, \int_{0}^{1} \varphi^{\prime}(x) f_{+}(x) d x\right]$ there is $\alpha_{0} \in(0,1]$ such that $\int_{0}^{1} \varphi(f(x)) d x$ $\leqslant \int_{0}^{1} \varphi^{\prime}(x) f\left(\alpha_{0}, x\right) d x \leqslant \varphi(M) \leqslant \int_{0}^{1} \varphi^{\prime}(x) f_{+}(x) d x$ and Inequality (17) is proved.

Theorem 5 shows that under the conditions stated there, there is an $\alpha_{0} \in[0,1]$ such that the integral $\int_{0}^{1} \varphi^{\prime}(x) f\left(\alpha_{0}, x\right) d x$ is a better upper bound of $\int_{0}^{1} \varphi(f(x)) d x$ than the bound obtained by Slater-Pečarić inequality.

From Theorem 2 and Theorem 5 we obtain Corollary 2 which emphasizes that under our conditions and through the continuous increasing process (10) and (11), Jensen and Slater-Pečarić inequalities are refined:

COROLLARY 2. Under the conditions of Theorem 5 on φ, f and M we can always refine Jensen and Slater-Pečarić inequalities and find $\alpha_{0} \in[0,1]$ such that

$$
\begin{aligned}
\varphi\left(\int_{0}^{1} f(x) d x\right) & \leqslant \int_{0}^{1} \varphi^{\prime}(x) f_{-}(x) d x \leqslant \int_{0}^{1} \varphi(f(x)) d x \\
& \leqslant \int_{0}^{1} \varphi^{\prime}(x) f_{-}\left(\alpha_{0}, x\right) d x \leqslant \varphi(M)
\end{aligned}
$$

when $M=\frac{\int_{0}^{1} f(x) \varphi^{\prime}(f(x)) d x}{\int_{0}^{1} \varphi^{\prime}(f(x)) d x}$, and $f_{-}\left(\alpha_{0}, x\right), \alpha_{0} \in(0,1]$ is an intermediate stage between $f_{-}(x)=f_{-}(0, x)$ the decreasing rearrangement of f and $f_{+}(x)=f_{-}(1, x)$ the increasing rearrangement of f obtained by the continuous increasing process (10) and (11).

Given the decreasing function $f(x)=1-x^{2}, x \in[0,1]$, we show in Example 2 cases that demonstrate refinements of Jensen and Slater Pečarić inequalities:

Example 2. Let $f(x)=1-x^{2}, x \in[0,1]$. It is easy to compute that for every $x \in[0,1]$

$$
\int_{x}^{1} f_{-}(t) d t=\int_{x}^{1}\left(1-t^{2}\right) d t \leqslant \int_{x}^{1} \sqrt{1-t} d t=\int_{x}^{1} u_{-}(t) d t
$$

Using (10) and (11) we see that for $\alpha \in[0,1]$

$$
f(\alpha, x)=\left\{\begin{array}{cc}
\frac{x(2 \alpha-x)}{\alpha^{2}}, & 0 \leqslant x \leqslant \alpha \tag{21}\\
1-\frac{(x-\alpha)^{2}}{(1-\alpha)^{2}}, & \alpha \leqslant x \leqslant 1
\end{array} .\right.
$$

In the special cases where $\alpha=\frac{1}{2}, \alpha=\frac{1}{3}$ and $\alpha=\frac{2}{3}$:

$$
f\left(\frac{1}{2}, x\right)=4 x(1-x), \quad 0 \leqslant x \leqslant 1
$$

$$
\begin{gathered}
f\left(\frac{1}{3}, x\right)=\left\{\begin{array}{cc}
3 x(2-3 x), & 0 \leqslant x \leqslant \frac{1}{3} \\
\frac{3}{4}(1-x)(3 x+1), & \frac{1}{3} \leqslant x \leqslant 1
\end{array}\right. \\
f\left(\frac{2}{3}, x\right)=\left\{\begin{array}{cc}
\frac{3}{4} x(4-3 x), & 0 \leqslant x \leqslant \frac{2}{3} \\
(1-x)(9 x-3), & \frac{2}{3} \leqslant x \leqslant 1
\end{array}\right.
\end{gathered}
$$

and

$$
f_{+}(x)=f(1, x)=x(2-x)
$$

Computing $\int_{0}^{1} \varphi^{\prime}(x) f\left(\frac{1}{3}, x\right) d x$ when $\varphi(x)=x^{2}$, in this case as well as in the case of $\int_{0}^{1} \varphi^{\prime}(x) f\left(\frac{1}{2}, x\right) d x$ when $\varphi(x)=x^{2}$ we get that

$$
\begin{aligned}
\frac{1}{2} & =\varphi\left(\int_{0}^{1} f(x) d x\right) \leqslant \int_{0}^{1} \varphi(f(x)) d x=\frac{8}{15} \\
& \leqslant \int_{0}^{1} \varphi^{\prime}(x) f\left(\frac{1}{3}, x\right) d x \leqslant \int_{0}^{1} \varphi^{\prime}(x) f\left(\frac{1}{2}, x\right) d x=\frac{2}{3} \\
& \leqslant \varphi\left(\frac{\int_{0}^{1} f(x) \varphi^{\prime}(f(x)) d x}{\int_{0}^{1} \varphi^{\prime}(f(x)) d x}\right)=\frac{4}{5}
\end{aligned}
$$

which are examples of refinement of Jensen and Slater-Pečarić inequalities.
REMARK 4. The inequality in Theorem 2 says that under the conditions stated there, in particular when $\varphi(0)=0$ and

$$
\begin{equation*}
\int_{x}^{1} f_{-}(x) d x \geqslant \int_{x}^{1} u_{-}(x) d x \tag{22}
\end{equation*}
$$

then

$$
\begin{equation*}
\varphi\left(\int_{0}^{1} f(x) d x\right) \leqslant \int_{0}^{1} \varphi(f(x)) d x \leqslant \int_{0}^{1} \varphi\left(u_{-}(x)\right) d x \tag{23}
\end{equation*}
$$

This follows because

$$
\int_{0}^{1} \varphi\left(u_{-}(x)\right) d x=\int_{0}^{1} \varphi^{\prime}(x) f_{-}(x) d x
$$

and

$$
\int_{0}^{1} \varphi(f(x)) d x=\int_{0}^{1} \varphi\left(f_{-}(x)\right) d x
$$

Hence when (22) is satisfied it is reasonable to compare also $\varphi(M)$ with the upper bounds of $\int_{0}^{1} \varphi(f(x)) d x$ obtained in Theorem 2, where

$$
\begin{equation*}
M=\frac{\int_{0}^{1} f(x) \varphi^{\prime}(f(x)) d x}{\int_{0}^{1} \varphi^{\prime}(f(x)) d x} \tag{24}
\end{equation*}
$$

with

$$
\begin{equation*}
\varphi(\widetilde{M})=\int_{0}^{1} \varphi\left(u_{-}(x)\right) d x \tag{25}
\end{equation*}
$$

We see that if a family of convex functions φ_{p} is such that:
a) (22) and therefore (23) are satisfied and
b) $\lim _{p \rightarrow \infty} \varphi_{p}\left(\frac{\int_{0}^{1} f(x) \varphi_{p}^{\prime}(f(x)) d x}{\int_{0}^{1} \varphi_{p}^{\prime}(f(x)) d x}\right)>\lim _{p \rightarrow \infty} \int_{0}^{1} \varphi_{p}\left(u_{-}(x)\right) d x,\left(u_{-}(x)\right.$ is the inverse of $\left.f_{-}(x), x \in[0,1]\right)$.

Then, there is always p_{0} such that

$$
\int_{0}^{1} \varphi_{p}\left(u_{-}(x)\right) d x<\varphi_{p}\left(\frac{\int_{0}^{1} f(x) \varphi_{p}^{\prime}(f(x)) d x}{\int_{0}^{1} \varphi_{p}^{\prime}(f(x)) d x}\right), \quad p \geqslant p_{0}
$$

This means that

$$
\int_{0}^{1} \varphi_{p}(f(x)) d x \leqslant \int_{0}^{1} \varphi_{p}\left(u_{-}(x)\right) d x<\varphi_{p}\left(\frac{\int_{0}^{1} f(x) \varphi_{p}^{\prime}(f(x)) d x}{\int_{0}^{1} \varphi_{p}^{\prime}(f(x)) d x}\right), \quad p \geqslant p_{0}
$$

In other words, in addition to the proof in Theorem 5, there is a better bound of $\int_{0}^{1} \varphi_{p}(f(x)) d x$ than the bound obtained by Slater-Pečarić theorem also in other cases.

In the following example we demonstrate the results of Remark 4 for a specific f and a family of convex functions φ that although $\int_{x}^{1} f_{-}(t) d t \geqslant \int_{x}^{1} u_{-}(t) d t$, the upper bound $\varphi(\widetilde{M})$ of $\int_{0}^{1} \varphi(f(x)) d x$ is better than that obtained from the Slater-Pečarić inequality.

Example 3. Let $f(x)=\sqrt{1-x}, u_{-}(x)=1-x^{2}$ and $\varphi(x)=x^{p}, x \in[0,1]$, $p \geqslant 1$. Then, as explained in Remark 4, from (22), (23), (24), (25) and $p \geqslant 5$ the inequalities

$$
\begin{aligned}
\varphi(\widetilde{M}(p)) & =\int_{0}^{1}\left(u_{-}(x)\right)^{p} d x=\int_{0}^{1}\left(1-x^{2}\right)^{p} d x \leqslant \int_{0}^{1}\left(1-x^{2}\right)^{5} d x \\
& =\varphi(\widetilde{M}(5))=0.369408 \leqslant \frac{1}{e}=\lim _{p \rightarrow \infty}\left(\frac{p+1}{p+2}\right)^{p} \\
& \leqslant \varphi(M(p))=\left(\frac{\int_{0}^{1} f(x) \varphi^{\prime}(f(x)) d x}{\int_{0}^{1} \varphi^{\prime}(f(x)) d x}\right)^{p} \\
& =\left(\frac{\int_{0}^{1}(1-x)^{\frac{p}{2}} d x}{\int_{0}^{1}(1-x)^{\frac{p}{2}-1} d x}\right)^{p}=\left(\frac{p+1}{p+2}\right)^{p}
\end{aligned}
$$

hold. The reason for this inequality is that $\left(\frac{p+1}{p+2}\right)^{p}$ is decreasing continuously in p towards $\frac{1}{e}$, and $\int_{0}^{1}\left(1-x^{2}\right)^{p} d x$ is decreasing continuously in p for $p \geqslant 1$ and $\int_{0}^{1}\left(1-x^{2}\right)^{5} d x<\frac{1}{e}$.

We finish the paper by demonstrating how continuous symmetrization process defined by (10) and (11), bring about the monotonicity of the first eigenvalue of

$$
\begin{equation*}
y^{\prime \prime}(x)+\lambda(\alpha) f(\alpha, x) y(x)=0, \quad y(0)=y^{\prime}(1)=0, \quad \alpha \in[0,1] \tag{26}
\end{equation*}
$$

as a function of α.
In $\left[2\right.$, Theorem 1.5] there is a condition that the function $f:[0,1] \rightarrow \mathbb{R}_{+}$should be left balanced, that is $f(x) \geqslant f(1-x), 0 \leqslant x \leqslant \frac{1}{2}$. In the following theorem this type of condition is redundant. For the convenience of the reader, a proof of the following theorem is presented.

THEOREM 6. Let f be non-negative, continuous on $[0,1]$ increasing on $[0, l]$ and decreasing, on the interval $[l, 1]$. Then, for $\alpha \in[0,1], \lambda(\alpha)$, the first eigenvalue of (26) is decreasing in $\alpha \in[0,1]$, where $\lambda(0)$ is the first eigenvalue of (26) for $\alpha=0$, and $\lambda(1)$ is the first eigenvalue of (26) for $\alpha=1$, the increasing rearrangement of $f(x)$.

Proof. Similarly to the proof of Theorem 5, it is easy to verify that
(a) $f(\alpha, x)$ is continuous on $[0,1]$, increasing in x on $[0, l(\alpha)]$ and decreasing in x on $[l(\alpha), 1]$, where

$$
l(\alpha)=l+\alpha(1-l), \quad l \in[0,1], \quad \alpha \in[0,1]
$$

(b) $f(\alpha, x)$ is continuous in $\alpha, \alpha \in[0,1]$,
(c) For $x \in(0, l(\alpha)), f(\alpha, x) \geqslant f(\beta, x)$, and for $x \in(l(\beta), 1), f(\alpha, x) \leqslant$ $f(\beta, x)$, when $\alpha \leqslant \beta$.

Because $f(\alpha, x)$ are equimeasurable for $\alpha \in[0,1]$, and $f(\alpha, x)$ cuts $f(\beta, x)$ exactly once, and this occurs on $x \in(l(\alpha), l(\beta))$, where $f(\alpha, x)$ is decreasing in x and $f(\beta, x)$ is increasing in x, therefore $\int_{x}^{1} f(\alpha, x) d x$ is increasing in $\alpha, \alpha \in[0,1]$. As $y_{1, \alpha}(x), \alpha \in[0,1]$, the first eigenfunctions of (26), are non-negative incresing in $x \in[0,1]$, hence $\int_{0}^{1} f(\alpha, x) y_{1, \alpha}^{2}(x) d x$, are also increasing in $\alpha, \alpha \in[0,1]$ and

$$
\begin{aligned}
\lambda(\alpha) & =\frac{\int_{0}^{1} y_{1, \alpha}^{\prime 2}(x) d x}{\int_{0}^{1} f(x, \alpha) y_{1, \alpha}^{2}(x) d x} \geqslant \frac{\int_{0}^{1} y_{1, \alpha}^{\prime 2}(x) d x}{\int_{0}^{1} f(x, \beta) y_{1, \alpha}^{2}(x) d x} \\
& \geqslant \min \frac{\int_{0}^{1} v^{\prime 2}(x) d x}{\int_{0}^{1} f(x, \beta) v^{2}(x) d x}=\lambda(\beta), \quad 0 \leqslant \alpha \leqslant \beta \leqslant 1
\end{aligned}
$$

that is, $\lambda(\alpha)$ the first eigenvalue of (26) is non-increasing in α.

Acknowledgement. The author thanks the referees for their valuable comments which improved the paper substantially.

REFERENCES

[1] S. Abramovich, Monotonicity of eigenvalues under symmetrization, SIAM J. Appl. Math., 28 (2), (1975), 350-361.
[2] S. Abramovich, Bounds of Jensen's type inequality and eigenvalues of Sturm-Liuville system, Springer Optim. Appl. 68, Springer New-York (2012), 1-11.
[3] S. Abramovich, On the solutions eigenfunctions and eigenvalues of the second order linear differential equations, J. Math. Anal. Appl., 55 (1976), 531-536.
[4] P. R. Beesack and B. Scwarz, On the zeros of solutions of second-order linear differential equations, Canad. J. Math., 8 (1956), 504-515.
[5] A. Clausing, Disconjugacy and Integral Inequalities, Trans. Amer. Math. Soc. 260 (1980), 293-307.
[6] S. S. Dragomir, Symmetrized convexity and Hermite-Hadamard type inequalities, J. Math. Inequal., 10 (2016), 901-918.
[7] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, London/New York, 1952.
[8] P. R. MERCER, A note on inequalities due to Clausing and Levine-Stečkin, J. Math. Inequal., 11, (2017), 163-166.
[9] J. E. PeČARIĆ, A Companion Inequality to Jensen-Steffensen's Inequality, J. Approx. Theory, 44, (1985), 289-291.
[10] G. PóLYA AND G. SZEGÖ, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, N.J., 1951.
[11] M. L. Slater, A Companion Inequality to Jensen's Inequality, J. Approx. Theory, 32, (1981), 160166.
(Received June 11, 2022)
Shoshana Abramovich Department of Mathematics

University of Haifa
199 Aba Khushi Ave. Haifa, 3498838, Israel
e-mail: abramos@math.haifa.ac.il

[^1]
[^0]: Mathematics subject classification (2020): 26D15, 34L15, 39B62.
 Keywords and phrases: Concave functions, continuous symmetrization, equimeasurable functions, Clausing inequality, Slater-Pečarić inequalities, Sturm-Liouville system's eigenvalues.

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

