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Abstract. Continuous symmetrization process and continuous increasing process are the tools
used in this paper to refine Clausing inequality and Slater-Pečarić inequality. Also, we note on
the monotonicity of the first eigenvalue of a Sturm-Liouville system.

1. Introduction

Continuous symmetrization process and continuous increasing process are the
tools used in this paper to refine Clausing inequality and Slater-Pečarić inequality. Also,
we note on the monotonicity of the first eigenvalue of a Sturm-Liouville system.

Clausing inequality says:

THEOREM 1. [5, Section 4.1(b)] Let φ be continuous on [0,1] and increasing
on
[
0, 1

2

]
, with φ (x) = φ (1− x) . Then, for a concave and positive function f on [0,1]

we have: ∫ 1

0
f (x)dx

∫ 1

0
φ (x)dx �

∫ 1

0
f (x)φ (x)dx �

∫ 1

0
f (x)dx

∫ 1

0
k (x)dx, (1)

where k (x) = 4min{x,1− x}φ (x) .

Lately this theorem has been proved in details by P. R. Mercer [8].
In Section 2 we refine this inequality.
Continuous symmetrization process, presented by Pólya and Szegö in their book

[10, pages 200, 201, formula (1)], is applied in [1] to obtain a set of equimeasurable real
functions f (α,x) , where α ∈ [0,1] . In [1, Introduction] and [3] the process is applied
to functions that include convex functions. In Definition 1 and in Section 2 we make
the needed adaptation for functions that include concave functions.
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DEFINITION 1. Let f be a continuous real function on x∈ [−1,1] , non-decreasing
on [−1, l] and non-increasing on [l,1] . For x ∈ [−1, l] we denote the function inverse
to f by x1 and for x ∈ [l,1] by x2 .

In order to be able to use the process named continuous symmetrization (see [10,
pages 200,201]) to build the set of functions f (α,x) , we complete the graph of f as
follows:

(A): when f (−1) > f (1) , we add the inverse function x1 (y) defined on y ∈
[ f (−1) , f (l)] an interval of definition f (1) � y � f (−1) , for which x1 (y) = −1 is a
constant function,
and:

(B): when f (−1)< f (1) we add the inverse function x2 (y) defined on [ f (1) , f (l)]
an interval of definition f (−1) � y � f (1) for which x2 (y) = 1 is a constant function.

We define the class of functions f (α,x) , α ∈ [0,1] , x∈ [−1,1] , for which f (0,x)
= f (x) and f (1,x) is the equimeasurable symmetrical rearrangement of f as follows:

For x in the interval [−1, l (1−α)] we denote the function inverse to f (α,x) by
x1,α , and for x ∈ [l (1−α) ,1] we denote the inverse function by x2α where:

x1,α (y) =
(
1− α

2

)
x1 (y)− α

2
x2 (y) , min( f (−1) , f (1)) � y � f (l) (2)

and

x2,α (y) =
(
1− α

2

)
x2 (y)− α

2
x1 (y) , min( f (−1) , f (1)) � y � f (l) . (3)

(By the addition of (A) and (B), the functions x1,α and x2,α are defined on y ∈
[(min( f (−1) , f (1))) , f (l)] ).

For more details on continuous symmetrization and its special cases, see [1] and
[10].

As already mentioned, the functions f (α,x) are equimeasurable. On equimeasur-
able function see [7, Chapter. X], [10, Chapter VII], and the introduction in [1].

In Section 3 we use of the following Lemma 1 which is the same as [7, Theorem
399]:

LEMMA 1. In order that an integrable function H should have the property∫ 1

0
H (x)y(x)dx � 0

for all positive increasing and bounded y(x) , it is necessary and sufficient that∫ 1

x
H (t)dt � 0

holds for every x ∈ [0,1] .

DEFINITION 2. A function f on [a,b] is called symmetrical decreasing if f is
symmetrical on [a,b] and increasing on

[
a, a+b

2

]
(see [4, p. 509]).
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In Section 2 we use Corollary 1 and Remark 1:

COROLLARY 1. [1, Corollary 1] If φ is positive symmetrical decreasing and
bounded on [−1,1] and if H is an integrable function such that∫ s

−s
H (x)dx � 0

holds for every s, s ∈ [0,1] , then∫ 1

−1
H (x)φ (x)dx � 0.

In Remark 1 we made the needed adaptation of the results of [1, Theorem 1d and
Remark 2] for functions that include the concave functions.

REMARK 1. Let f be continuous real function on x ∈ [−1,1] , non-decreasing on
[−1, l] and non-increasing on [l,1] . Let f (α,x) be the function obtained from f by
continuous symmetrization as in [10]. Then

∫ s
−s f (α,x)dx is monotone non-decreasing

in α , α ∈ [0,1] for s ∈ [0,1] .

In Section 2 we use Corollary 1 for concave functions.
In Section 3 we use another type of continuous process we name continuous in-

creasing process. There we compare the upper bound obtained in Theorem 2 with the
upper bound obtained by Slater-Pečarić in Theorem 3. Also, we note on the monotonic-
ity of the first eigenvalue of Sturm-Liouville system using the same process.

THEOREM 2. [2, Theorem 1.2] Let f ∈C1 and f : [0,1] → [0,1] . Let f− be the
decreasing rearrangement of f satisfying f−(0) = 1 and f−(1) = 0 . Let u−(x) be the
inverse function of f− .

If for every x ∈ [0,1] ∫ 1

x
f−(t)dt �

∫ 1

x
u−(t)dt, (4)

holds. Then,

ϕ
(∫ 1

0
f (x)dx

)
�
∫ 1

0
ϕ ′(x) f− (x)dx �

∫ 1

0
ϕ( f (x))dx �

∫ 1

0
ϕ ′(x) f+ (x)dx, (5)

when ϕ : [0,1] → R is a convex function and ϕ(0) = 0.
If for every x ∈ [0,1] ∫ 1

x
f−(t)dt �

∫ 1

x
u−(t)dt, (6)

holds, then:

ϕ
(∫ 1

0
f (x)dx

)
�
∫ 1

0
ϕ( f (x))dx �

∫ 1

0
ϕ ′(x) f− (x)dx �

∫ 1

0
ϕ ′(x) f+ (x)dx. (7)
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Jensen’s inequality and Slater’s companion inequality [11] (as generalized by Pečarić
[9]) show that:

THEOREM 3. If ϕ is a real convex function defined on I where I is the range of
f , and if M ∈ I , then for all probability measures μ and all non-negative μ -integrable
fuctions f :

ϕ (m) �
∫

Ω
ϕ ( f (s))dμ (s) � ϕ (M) , (8)

holds, where

m =
∫

Ω
f (s)dμ (s) and M =

∫
Ω f (s)Cf (s)dμ (s)∫

ΩCf (s)dμ (s)
, (9)

and the function C should satisfy ϕ ′− (x) � Cx � ϕ ′
+ (x) where ϕ ′− and ϕ ′

+ are the left
and right derivatives of ϕ .

We emphasize that in Section 2 we use the continuous symmetrization process as
in [10, p. 201] to discuss the behavior of

∫ 1
−1 f (α,x)φ (x)dx , α ∈ [0,1] when φ is a

non-negative symmetrical decreasing function on x ∈ [−1,1] .
On the other hand, in Section 3, we use another type of continuous process

we name continuous increasing process in order to generate a set of equimeasurable
functions. Through this process we refine Slater-Pečarić inequality and inequalities
related to the first eigenvalue of Sturm-Liouville system. We use the behavior of∫ 1
0 f (α,x)T (x)dx , α ∈ [0,1] when T is an increasing function on x ∈ [0,1] .

In this case f ∈C1 , f : [0,1]→R+ is increasing on [0, l) and decreasing on (l,1] ,
x1 is the inverse of f ∈ [0, l) and x2 is the inverse of f ∈ (l,1] .

In the same way as in Definition 1, in order to be able to use this process to build
the set of functions f (α,x) we complete the graph of f as follows:

(C): when f (0) > f (1) , we add the inverse function x1 an interval of definition
f (1) � y � f (0) , for which x1 (y) = 0 is a constant function,
and:

(D): when f (0) < f (1) we add the inverse function x2 an interval of definition
f (0) � y � f (1) for which x2 (y) = 1 is a constant function.

We define f (α,x) by its inverses x1,α and x2,α as:

x1,α (y) = x1 (y)+ α (1− x2 (y)) ,

{
min( f (0) , f (1)) � y � f (l)

0 � x1,α � l + α (1− l)
, (10)

and

x2,α (y) = x2 (y)+ α (1− x2 (y)) ,

{
min( f (0) , f (1)) � y � f (l)

l + α (1− l) � x2,α � 1
. (11)

(By the addition of (C) and (D), x1,α (y) and x2,α (y) are defined on y ∈ [(min( f (0) ,
f (1))), f (l)]).

We finish the paper with a note on inequalities related to the first eigenvalue of a
Sturm-Liouville system through continuous symmertization discussed in [2].
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2. Refining Clausing inequality

In this section we show that our results refine Clausing inequality by adding in-
equalities after the integral

∫
f (x)φ (x)dx in (1) by using continuous symmetrization

process as in Definition 1.
To prove Theorem 4 we first state Remark 2 which is essential for the proof of

Theorem 4.

REMARK 2. Using Corollary 1 and Remark 1, when f is concave on x ∈ [−1,1] ,
we get, when φ is continuous and symmetrically decreasing on [−1,1] , that∫ 1

−1
f (α,x)φ (x)dx

is increasing in α , α ∈ [0,1] , and f (1,x) is the equimeasurable symmetrical decreas-
ing rearrangement of f .

THEOREM 4. Let f be a non-negative concave function on [−1,1] and let f (α,x) ,
α ∈ [0,1] be the function obtained by continuous symmetrization process as in Defini-
tion 1. Let φ be non-negative and symmetrical decreasing on [−1,1] .

Then:
a) the functions f (α,x) , α ∈ [0,1] , x ∈ [−1,1] are concave equimeasurable and

f (1,x) is symmetrical decreasing rearrangement of f .
b) for 0 � α1 � α2 � 1

1
2

∫ 1

−1
f (x)dx

∫ 1

−1
φ (x)dx �

∫ 1

−1
f (x)φ (x)dx (12)

�
∫ 1

−1
f (α1,x)φ (x)dx �

∫ 1

−1
f (α2,x)φ (x)dx

�
∫ 1

−1
f (1,x)φ (x)dx �

∫ 1

−1
f (x)dx

∫ 1

−1
g(x)φ (x)dx,

where g is a the symmetrical decreasing function:

g(x) =

{
1+ x, −1 � x � 0

1− x, 0 � x � 1.

Proof. We prove first that when the function f is concave so are the functions
f (α,x) , for all α ∈ [0,1] obtained by the continuous symmetrization process.

Let the function x1 be the inverse of the function f in its increasing segment, and
x2 be the inverse of the function f in its decreasing segment.

When a continuous concave function f has an interval [c,d] on which f (x) = K ,
where K is constant, then K is necessarily the maximum of f on the interval [−1,1] .
Therefore using the continuous symmetrization process, f (α,x) gets its maximum K
on the interval of length d − c , and it moves with α from x1,0 (K) = a , x2,0 (K) = b
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toward x1,1 (K) = −( b−a
2

)
, x2,1 (K) = b−a

2 . Hence in order to show that f (α,x) is
concave it is enough to show it when f is strictly increasing on [−1, l] and strictly
decreasing on [l,1] .

When f is strictly increasing and concave, its inverse function is increasing and
from the concavity it follows that f−1 (t f (u1)+ (1− t) f (u2)) � tu1 +(1− t)u2 . Re-
placing f (u1) = v1 and f (u2) = v2 we get that f−1 which is denoted as x1 (y) convex
increasing. Similarly x2 the inverse of a strictly decreasing and concave function is
decreasing and concave.

Hence, when α ∈ [0,1]

x1,α (y) =
(
1− α

2

)
x1 (y)− α

2
x2 (y) ,

{
f (−1) � y � f (l) ,

−1 � x1,α � (1−α) l

is increasing and convex and similarly

x2,α (y) =
(
1− α

2

)
x2 (y)− α

2
x1 (y) ,

{
f (−1) � y � f (l) ,

(1−α) l � x2,α � 1

is decreasing and concave. Therefore by the same reasoning, f (α,x) when it is the
inverse of x1,α is concave increasing and when f (α,x) is the inverse of x2,α , it is
concave decreasing, so that the set of functions f (α,x) are concave when α ∈ [−1,1] .
Part a) of the theorem is proved.

From Remark 2 we see that
∫ 1
−1 f (α,x)φ (x)dx is increasing in α , α ∈ [0,1] , that

is: ∫ 1

−1
f (x)φ (x)dx (13)

=
∫ 1

−1
f (0,x)φ (x)dx �

∫ 1

−1
f (α1,x)φ (x)dx �

∫ 1

−1
f (α2,x)φ (x)dx

�
∫ 1

−1
f (1,x)φ (x)dx,

where 0 � α1 � α2 � 1
To complete the proof of the theorem we need to show that∫ 1

−1
f (1,x)φ (x)dx �

∫ 1

−1
f (1,x)dx

∫ 1

−1
g(x)φ (x)dx (14)

=
∫ 1

−1
f (x)dx

∫ 1

−1
g(x)φ (x)dx,

and
1
2

∫ 1

−1
f (x)dx

∫ 1

−1
φ (x)dx �

∫ 1

−1
f (x)φ (x)dx. (15)

As f (1,x) is concave and f and f (1,x) are equimeasurable, inequalities (14) and (15)
are actually the right hand-side and the left hand-side of (1) proved in [8].
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The proof of the theorem is complete. �
In the following example, we build the symmetrical rearrangement f (1,x) , for a

given function f (x) , see Figure 1.

EXAMPLE 1. Let f be:

f (x) = y(x) =

{
y1 = 7

9x+1, −1 � x � 3
7 , 2

9 � y1 � 4
3 ,

y2 = − 7
9x+ 7

3 , 3
7 � x � 1, 0 � y2 � 4

3 .

As f
( 3

7

)
= 4

3 , f (1) = 0 < f (−1) = 2
9 then, according to Definition 1, in order to

implement the continuous symmetrization process we add in such cases to the graph of
the function the value x1 (y) = −1 for all 0 � y � 2

9 .

Figure 1.

The symmetrized function f (1,x) obtained by using (2) and (3) from f (x) is:

f (1,x) = y∗ (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y1 = 14
3 x+ 14

3 , −1 � x � − 20
21 , 0 � y1 � 2

9 ,

y2 = 7
6x+ 8

6 , − 20
21 � x � 0, 2

9 � y2 � 4
3 ,

y3 = − 7
6x+ 8

6 , 0 � x � 20
21 , 2

9 � y3 � 4
3 ,

y4 = − 14
3 x+ 14

3 , 20
21 � x � 1, 0 � y4 � 2

9 .

We see that f (1,x) is continuous and that the given function f and the function
f (1,x) are equimeasurable concave on the interval [−1,1] .

We finish this section with a different extension of Theorem 1.

REMARK 3. If f is such that the positive function f̂ defined on [0,1] as f̂ (x) =
f (x)+ f (1−x)

2 is concave, then f̂ satisfies (1). As φ and f̂ are symmetric on [0,1] it is
obvious that also the function f satisfies (1) although f is not always concave. For ex-
ample, such functions appear in [6] where it is shown that for the non-concave function
f (x) = x3 +64 on the interval [−4,2] its symetrized function f̂ is concave on the same
interval.
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3. Refinement of Slater-Pečarić inequalities and monotonicity of eigenvalues

We start this section with comparing Theorem 2 with Theorem 3. Both theorems
produce upper bounds of

∫
ϕ ( f (s))dμ (s) .

In Theorem 5, sufficient condition for refining Slater-Pačarić inequality are proved
by using the continuous increasing process defined by (10) and (11) when f (0,x) =
f− (x) and f− (1,x) = f+ (x) :

THEOREM 5. Let f ∈ C1 , and f : [0,1] → [0,1] . Let f− be strictly decreasing
rearrangement of f , satisfying f−(0) = 1 and f−(1) = 0 . Let f− (α0,x) be an interme-
diate stage between f− (x) = f− (0,x) and f+ (x) = f− (1,x) when using the continuous
increasing process (10) and (11). Let u− be the inverse function of f− , ϕ ∈ C1 and
ϕ : [0,1]→ R be a convex function satisfying ϕ(0) = 0 .

If ∫ 1

x
f−(t)dt �

∫ 1

x
u−(t)dt, (16)

for every x ∈ [0,1] , then f− (α,x) is continuous strictly increasing in α ∈ (0,1) , and
there always exists an α0 ∈ [0,1] such that when 0 � M � 1 :∫ 1

0
ϕ( f (x))dx �

∫ 1

0
ϕ ′(x) f− (α0,x)dx � ϕ (M) , (17)

where M =
∫ 1
0 f (x)ϕ ′

( f (x))dx∫ 1
0 ϕ ′ ( f (x))dx

.

Proof. The function f− (α,x) is an intermediate stage between the decreasing
rearrangement f−(x) = f− (0,x) of f and the increasing rearrangement f+ (x) =
f− (1,x) of f . The proof of the continuity of f (α,x) follows step by step the proof of
Theorem 1(c) in [A]. By using (10) and (11), in this case:

x1,α (y) = α (1− x2 (y)) x ∈ [0,α] , y ∈ [0,1] , (18)

x2,α (y) = x2 (y)+ α (1− x2 (y)) , x ∈ [α,1] , y ∈ [0,1] , (19)

because x1 (y) = 0 and x2 (y) = u− (y) , where u− is the inverse function of f−(0,x) =
f− (x) .

From (18) and (19) when 0 < α < β < 1, x1,α (y) < x1,β (y) and x2,α (y) <
x2,β (y) . Hence when x ∈ [0,α] both f (α,x) and f (β ,x) are strictly increasing and
f (α,x) > f (β ,x) , and when x∈ [β ,1] both f (α,x) and f (β ,x) are strictly decreasing
and f (α,x) < f (β ,x) . Therefore, f (α,x) cuts f (β ,x) exactly once when x∈ (α,β ) ,
because in this interval f (α,x) is strictly decreasing in x and f (β ,x) is strictly in-
creasing. Hence

∫ 1
s f (α,x)dx is strictly increasing in α ∈ [0,1] , and according to

Lemma 1 we can see that also
∫ 1
0 ϕ ′

(x) f (α,x)dx is strictly increasing in α , α ∈ [0,1]
when ϕ ∈C1 is convex. From Inequality (5) in Theorem 2 and because f and f− are
equimeasurable,

∫ 1
0 ϕ( f (x))dx =

∫ 1
0 ϕ( f− (x))dx we obtain that∫ 1

0
ϕ ′(x) f− (x)dx �

∫ 1

0
ϕ( f (x))dx �

∫ 1

0
ϕ ′(x) f+ (x)dx. (20)
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Therefore, because of the strictly monotonicity in α of
∫ 1
0 ϕ ′(x) f (α,x)dx on the val-

ues in
[∫ 1

0 ϕ ′(x) f− (x)dx,
∫ 1
0 ϕ ′(x) f+ (x)dx

]
there is α0 ∈ (0,1] such that

∫ 1
0 ϕ( f (x))dx

�
∫ 1
0 ϕ ′(x) f (α0,x)dx � ϕ(M) �

∫ 1
0 ϕ ′(x) f+ (x)dx and Inequality (17) is proved. �

Theorem 5 shows that under the conditions stated there, there is an α0 ∈ [0,1] such
that the integral

∫ 1
0 ϕ ′(x) f (α0,x)dx is a better upper bound of

∫ 1
0 ϕ( f (x))dx than the

bound obtained by Slater-Pečarić inequality.
From Theorem 2 and Theorem 5 we obtain Corollary 2 which emphasizes that un-

der our conditions and through the continuous increasing process (10) and (11), Jensen
and Slater-Pečarić inequalities are refined:

COROLLARY 2. Under the conditions of Theorem 5 on ϕ , f and M we can al-
ways refine Jensen and Slater-Pečarić inequalities and find α0 ∈ [0,1] such that

ϕ
(∫ 1

0
f (x)dx

)
�
∫ 1

0
ϕ ′(x) f− (x)dx �

∫ 1

0
ϕ( f (x))dx

�
∫ 1

0
ϕ ′(x) f− (α0,x)dx � ϕ (M) ,

when M =
∫ 1
0 f (x)ϕ

′
( f (x))dx∫ 1

0 ϕ ′ ( f (x))dx
, and f− (α0,x) , α0 ∈ (0,1] is an intermediate stage be-

tween f− (x) = f− (0,x) the decreasing rearrangement of f and f+ (x) = f− (1,x) the
increasing rearrangement of f obtained by the continuous increasing process (10) and
(11).

Given the decreasing function f (x) = 1− x2 , x ∈ [0,1] , we show in Example 2
cases that demonstrate refinements of Jensen and Slater Pečarić inequalities:

EXAMPLE 2. Let f (x) = 1− x2 , x ∈ [0,1] . It is easy to compute that for every
x ∈ [0,1] ∫ 1

x
f− (t)dt =

∫ 1

x

(
1− t2

)
dt �

∫ 1

x

√
1− tdt =

∫ 1

x
u− (t)dt.

Using (10) and (11) we see that for α ∈ [0,1]

f (α,x) =

⎧⎨⎩
x(2α−x)

α2 , 0 � x � α

1− (x−α)2

(1−α)2
, α � x � 1

. (21)

In the special cases where α = 1
2 , α = 1

3 and α = 2
3 :

f

(
1
2
,x

)
= 4x(1− x), 0 � x � 1,
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f

(
1
3
,x

)
=

{
3x(2−3x), 0 � x � 1

3

3
4 (1− x)(3x+1), 1

3 � x � 1
,

f

(
2
3
,x

)
=

{
3
4x(4−3x), 0 � x � 2

3

(1− x)(9x−3), 2
3 � x � 1

.

and
f+ (x) = f (1,x) = x(2− x) .

Computing
∫ 1
0 ϕ ′

(x) f
( 1

3 ,x
)
dx when ϕ (x) = x2 , in this case as well as in the case of∫ 1

0 ϕ ′
(x) f

(
1
2 ,x
)
dx when ϕ (x) = x2 we get that

1
2

= ϕ
(∫ 1

0
f (x)dx

)
�
∫ 1

0
ϕ( f (x))dx =

8
15

�
∫ 1

0
ϕ ′(x) f

(
1
3
,x

)
dx �

∫ 1

0
ϕ ′(x) f

(
1
2
,x

)
dx =

2
3

� ϕ

(∫ 1
0 f (x)ϕ ′

( f (x))dx∫ 1
0 ϕ ′( f (x))dx

)
=

4
5
,

which are examples of refinement of Jensen and Slater-Pečarić inequalities.

REMARK 4. The inequality in Theorem 2 says that under the conditions stated
there, in particular when ϕ (0) = 0 and∫ 1

x
f−(x)dx �

∫ 1

x
u−(x)dx, (22)

then

ϕ
(∫ 1

0
f (x)dx

)
�
∫ 1

0
ϕ( f (x))dx �

∫ 1

0
ϕ(u− (x))dx. (23)

This follows because

∫ 1

0
ϕ(u− (x))dx =

∫ 1

0
ϕ

′
(x) f− (x)dx

and ∫ 1

0
ϕ( f (x))dx =

∫ 1

0
ϕ( f− (x))dx.

Hence when (22) is satisfied it is reasonable to compare also ϕ (M) with the upper
bounds of

∫ 1
0 ϕ( f (x))dx obtained in Theorem 2, where

M =
∫ 1
0 f (x)ϕ ′

( f (x))dx∫ 1
0 ϕ ′( f (x))dx

(24)
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with

ϕ
(
M̃
)

=
∫ 1

0
ϕ(u− (x))dx. (25)

We see that if a family of convex functions ϕp is such that:
a) (22) and therefore (23) are satisfied and

b) lim
p→∞

ϕp

(∫ 1
0 f (x)ϕ ′

p( f (x))dx∫ 1
0 ϕ ′

p( f (x))dx

)
> lim

p→∞

∫ 1
0 ϕp(u− (x))dx , (u− (x) is the inverse of

f− (x) , x ∈ [0,1]).
Then, there is always p0 such that

∫ 1

0
ϕp(u− (x))dx < ϕp

(∫ 1
0 f (x)ϕ ′

p( f (x))dx∫ 1
0 ϕ ′

p( f (x))dx

)
, p � p0.

This means that∫ 1

0
ϕp( f (x))dx �

∫ 1

0
ϕp(u− (x))dx < ϕp

(∫ 1
0 f (x)ϕ ′

p( f (x))dx∫ 1
0 ϕ ′

p( f (x))dx

)
, p � p0.

In other words, in addition to the proof in Theorem 5, there is a better bound of∫ 1
0 ϕp( f (x))dx than the bound obtained by Slater-Pečarić theorem also in other cases.

In the following example we demonstrate the results of Remark 4 for a specific f
and a family of convex functions ϕ that although

∫ 1
x f−(t)dt �

∫ 1
x u−(t)dt , the upper

bound ϕ
(
M̃
)

of
∫ 1
0 ϕ( f (x))dx is better than that obtained from the Slater-Pečarić

inequality.

EXAMPLE 3. Let f (x) =
√

1− x, u− (x) = 1− x2 and ϕ (x) = xp , x ∈ [0,1] ,
p � 1. Then, as explained in Remark 4, from (22), (23), (24), (25) and p � 5 the
inequalities

ϕ
(
M̃ (p)

)
=
∫ 1

0
(u− (x))p dx =

∫ 1

0

(
1− x2)p

dx �
∫ 1

0

(
1− x2)5 dx

= ϕ
(
M̃ (5)

)
= 0.369408 � 1

e
= lim

p→∞

(
p+1
p+2

)p

� ϕ (M (p)) =

(∫ 1
0 f (x)ϕ ′

( f (x))dx∫ 1
0 ϕ ′( f (x))dx

)p

=

( ∫ 1
0 (1− x)

p
2 dx∫ 1

0 (1− x)
p
2−1 dx

)p

=
(

p+1
p+2

)p

hold. The reason for this inequality is that
(

p+1
p+2

)p
is decreasing continuously in

p towards 1
e , and

∫ 1
0

(
1− x2

)p
dx is decreasing continuously in p for p � 1 and∫ 1

0

(
1− x2

)5
dx < 1

e .
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We finish the paper by demonstrating how continuous symmetrization process de-
fined by (10) and (11), bring about the monotonicity of the first eigenvalue of

y”(x)+ λ (α) f (α,x)y(x) = 0, y(0) = y′ (1) = 0, α ∈ [0,1] , (26)

as a function of α.

In [2, Theorem 1.5] there is a condition that the function f : [0,1]→R+ should be
left balanced, that is f (x) � f (1− x) , 0 � x � 1

2 . In the following theorem this type
of condition is redundant. For the convenience of the reader, a proof of the following
theorem is presented.

THEOREM 6. Let f be non-negative, continuous on [0,1] increasing on [0, l] and
decreasing, on the interval [l,1] . Then, for α ∈ [0,1] , λ (α) , the first eigenvalue of
(26) is decreasing in α ∈ [0,1] , where λ (0) is the first eigenvalue of (26) for α = 0 ,
and λ (1) is the first eigenvalue of (26) for α = 1 , the increasing rearrangement of
f (x) .

Proof. Similarly to the proof of Theorem 5, it is easy to verify that
(a) f (α,x) is continuous on [0,1] , increasing in x on [0, l (α)] and decreasing in

x on [l (α) ,1] , where

l (α) = l + α (1− l) , l ∈ [0,1] , α ∈ [0,1] .

(b) f (α,x) is continuous in α , α ∈ [0,1] ,
(c) For x ∈ (0, l (α)) , f (α,x) � f (β ,x) , and for x ∈ (l (β ) ,1) , f (α,x) �

f (β ,x) , when α � β .
Because f (α,x) are equimeasurable for α ∈ [0,1] , and f (α,x) cuts f (β ,x)

exactly once, and this occurs on x ∈ (l (α) , l (β )) , where f (α,x) is decreasing in x
and f (β ,x) is increasing in x , therefore

∫ 1
x f (α,x)dx is increasing in α , α ∈ [0,1] .

As y1,α (x) , α ∈ [0,1] , the first eigenfunctions of (26), are non-negative incresing in
x ∈ [0,1] , hence

∫ 1
0 f (α,x)y2

1,α (x)dx , are also increasing in α , α ∈ [0,1] and

λ (α) =

∫ 1
0 y

′2
1,α (x)dx∫ 1

0 f (x,α)y2
1,α (x)dx

�
∫ 1
0 y

′2
1,α (x)dx∫ 1

0 f (x,β )y2
1,α (x)dx

� min

∫ 1
0 v

′2 (x)dx∫ 1
0 f (x,β )v2 (x)dx

= λ (β ) , 0 � α � β � 1

that is, λ (α) the first eigenvalue of (26) is non-increasing in α . �
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[7] G. H. HARDY, J. E. LITTLEWOOD AND G. PÓLYA, Inequalities, Cambridge University Press, Lon-

don/New York, 1952.
[8] P. R. MERCER, A note on inequalities due to Clausing and Levine-Stečkin, J. Math. Inequal., 11,
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