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OLD AND NEW ON THE 3–CONVEX FUNCTIONS

DAN-ŞTEFAN MARINESCU AND CONSTANTIN P. NICULESCU ∗

(Communicated by L. E. Persson)

Abstract. This paper is aimed to review the current knowledge of 3-convex functions and to put
some of the known results into a more general context. Several open questions are also raised.

1. Introduction

Higher order convexity was introduced by Hopf [13] and Popoviciu [26], [28],
who defined it in terms of divided differences of a function. Assuming f a real-valued
function defined on a real interval I, the divided differences of order 0,1, . . . ,n asso-
ciated to a family x0,x1, . . . ,xn of n+1 distinct points are respectively defined by the
formulas

[x0; f ] = f (x0)

[x0,x1; f ] =
f (x1)− f (x0)

x1 − x0

. . .

[x0,x1, . . . ,xn; f ] =
[x1,x2, . . . ,xn; f ]− [x0,x1, . . . ,xn−1; f ]

xn − x0

= ∑n
j=0

f (x j)
∏k �= j (x j − xk)

.

Notice that all these divided differences are invariant under the permutation of
points x0,x1, . . . ,xn. As a consequence, we may always assume that x0 < x1 < · · ·< xn.

A function f is called n -convex (respectively n -concave) if all divided differences
[x0,x1, . . . ,xn; f ] are nonnegative (respectively nonpositive). In particular,

• the convex functions of order 0 are precisely the nonnegative functions;

• the convex functions of order 1 are the nondecreasing functions;
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• the convex functions of order 2 are nothing but the usual convex functions since
in this case for all x0 < x1 < x2 in I,

[x0,x1,x2; f ] =
f (x0)− f (x1)

x0−x1
− f (x1)− f (x2)

x1−x2

x0− x2
� 0,

that is, (x2− x0) f (x1) � (x2− x1) f (x0)+ (x1− x0) f (x2).

While the properties of the above three classes of n -convex functions are well un-
derstood, only few relevant results are known in the case where n � 3. Besides the work
of Popoviciu (see [26], [27], [28], [29] and [30]) we should mention here the contribu-
tion of Bennett [1], Bessenyei and Páles [2], Boas and Widder [4], Bojanić and Roulier
[5], Brady [6], Bullen [7], [8], Kuczma [16], Marinescu and Monea [17], Pečarić and
his collaborators [15], [14], [19], [25], Rajba [31], Szostok [36] and Wasowicz [40].

This paper is aimed to present an overview of the present state of art concerning
the 3-convex functions, to add some new results, and to single out some open problems
which seem of interest. The reason to restrict ourselves to this particular case is two-
fold: it offers a convenient framework to illustrate the richness of the class of 3-convex
functions and also a context that keeps the technical aspects still simple and intuitive.

For the convenience of the reader, some very basic facts are recalled in Section 2.
Section 3 is mostly dedicated to the identity of 3-convex functions with the func-

tions having positive differences up to order 3. See Theorem 2 below. This result,
already known to Popoviciu, was rarely mentioned by the various books dedicated to
convex functions, except that by Kuczma [16], that also includes a full proof. Our ap-
proach here combines results due to Hopf [13], Popoviciu [26], Boas and Widder [4]
and Bennett [1] (to cite them according to their apparition). An important role is played
by the fact that on an open interval the 3-convex functions are precisely the differen-
tiable functions whose derivatives are convex functions. This offers the possibility to
deduce results for the 3-convex functions from known results for the usual convex func-
tions and vice-versa. See Theorem 3 and Theorem 4 and the comments that accompany
them in Section 4.

Section 5 is devoted to an overview of the Hermite-Hadamard inequality in the
context of continuous 3-convex functions. The central result is the remarkable exten-
sion obtained by Bessenyei and Páles [2], [3], that covers the general case of Borel
probability measures on a compact interval [a,b] . The Hermite-Hadamard inequality
for the usual convex functions is centered around the role played by the barycenter p
and the extremal points. As f (p) = δp( f ), in the 3-convexity variant, the role of δp

is taken by a discrete probability measure supported at two points, one of them being
inside the interval. Naturally, this raises the interesting problem how looks the analog
of Choquet’s theory in the framework of 3-convex functions. Several open problems in
this connection are mentioned at the end of Section 5.

Section 6 presents a radiography of a recent result due to Ressel [32], concerning
the connection between the functions which are continuous, nondecreasing, concave
and 3-convex and the Hornich-Hlawka inequality. See Theorem 7. We show that this
result is actually the juxtaposition of two distinct results covering complementary do-
mains of the variables, one involving the properties of continuity and 3-convexity, while
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the other involving only the properties of monotonicity and concavity. See Lemma 4,
and Lemma 5 below.

The paper ends with a section discussing the extension of the entire theory to the
case of functions taking values in an ordered Banach space.

2. Preliminaries

A function f defined on an interval I is 3-convex if for every quadruple x0 < x1 <
x2 < x3 of elements in I,

[x0,x1,x2,x3; f ] =
f (x0)

(x0− x1)(x0 − x2)(x0 − x3)
− f (x1)

(x0− x1)(x1− x2)(x1 − x3)

+
f (x2)

(x0− x2)(x1 − x2)(x2− x3)
− f (x3)

(x0− x3)(x1 − x3)(x2 − x3)
� 0,

equivalently,

(x2− x0)(x3 − x0)(x3 − x2) f (x1)+ (x1− x0)(x2− x0)(x2 − x1) f (x3) (1)

� (x2 − x1)(x3 − x1)(x3 − x2) f (x0)+ (x1− x0)(x3 − x0)(x3− x1) f (x2).

When the points x0,x1,x2,x3 are equidistant, that is, when x1 = x0 + h, x2 = x0 + 2h,
x3 = x0 +3h for some h > 0, the last inequality becomes

f (x0 +3h)−3 f (x0 +2h)+3 f (x0 +h)− f (x0) � 0,

equivalently,

f (x0)+3 f

(
x0 +2x3

3

)
� 3 f

(
2x0 + x3

3

)
+ f (x3). (2)

If f is n -times differentiable, then a repeated application of Lagrange’s mean
value theorem yields the existence of a point ξ ∈ (mink xk,maxk xk) such that

[x0,x1, . . . ,xn; f ] =
f (n)(ξ )

n!
.

As a consequence, one obtains the sufficiency part of the following practical crite-
rion of 3-convexity.

LEMMA 1. Suppose that f is a continuous function defined on an interval I
which is 3 -times differentiable on the interior of I. Then f is 3 -convex if and only
if its third derivative is nonnegative.

The necessity part is also immediate by using the standard formulas for derivatives
via iterated differences,

f ′′′(x0) = lim
h→0+

f (x0 +3h)−3 f (x0 +2h)+3 f (x0 +h)− f (x0)
h3 .
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In connection with Lemma 1, it is worth mentioning a result due to Hopf [13], p.
24, and Popoviciu [26], p. 48, which asserts that every 3-convex function f defined
on an open interval is differentiable and f ′ is convex. This can be easily turned into a
characterization of 3-convexity in the framework of continuous functions. See Theorem
2 below.

Lemma 1 allows us to notice the existence of a large variety of 3-convex functions
such as

x/(x+1), 1− e−αx (for α > 0),
log(1+ x), − x logx , (x−1)/ logx, xα (for α ∈ (0,1]∪ [2,∞)),

−x2 +
√

x, sinh, cosh, − log(Γ(x)) .

Also, the primitive of any continuous convex function is a 3-convex function.

The function 1− (x−3)+ (x−3)3

6 is continuous and 3-convex on R+ but not n -
convex for any n ∈ {0,1,2} .

The polynomials with positive coefficients and the exponential are n -convex (on
the positive axis) for every n � 0.

REMARK 1. All polynomials of degree less than or equal to 2 are both 3-convex
and 3-concave. These functions together with the finite sums ∑m

i=1 ci
(
(x−ai)+

)2
with positive coefficients represent the building blocks of any 3-convex function. See
Popoviciu [28], pp. 29–30 (and also [5] and [38]).

The continuous 3-convex functions on interval I constitute a convex cone in the
vector space C(I), of all continuous functions on I. This cone is closed under convo-
lution, but not under usual product.

The extremal properties of 3-convex functions differ from those of convex func-
tions.

The maximum (or minimum) of two 3-convex function is not necessarily a 3-
convex function; consider the case of the functions −x and x. Also, an interior critical
point of a 3-convex function is not necessarily a point of minimum. It can be a point
of inflection (the case of the cubic function x3) or a point of maximum (the case of the
function −x2 +

√
x).

The following approximation theorem due to Popoviciu [27] (see also [12], Theo-
rem 1.3.1 (i) , p. 20) allows us to reduce the reasoning with n -convex functions to the
case where they are also differentiable.

THEOREM 1. (Popoviciu’s approximation theorem) If a continuous function f :
[0,1]→ R is k -convex, then so are the Bernstein polynomials associated to it,

Bn( f )(x) =
n

∑
i=0

(
n
i

)
xi(1− x)n−i f

(
i
n

)
.

Moreover, by the well-known property of simultaneous uniform approximation of a
function and its derivatives by the Bernstein polynomials and their derivatives, it fol-
lows that Bn( f ) and any derivative (of any order) of it, converge uniformly to f and to
its derivatives, correspondingly.
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Using a change of variable, one can easily see that the approximation theorem
extends to functions defined on compact intervals [a,b] with a < b.

COROLLARY 1. If f : R+ → R+ is a continuous 3 -convex function which is also
nondecreasing and concave, then the same properties hold for f α if α ∈ (0,1].

Proof. According to Theorem 1, we may reduce the proof to the case where the
involved function is of class C3 , in which case the conclusion follows from Lemma
1. �

REMARK 2. An important class of functions f : R+ →R+ which are continuous,
nondecreasing concave and 3-convex is that of Bernstein functions. Recall that a func-
tion R+ → R+ is called a Bernstein function if it is continuous on R+, indefinitely
differentiable on (0,∞) and

(−1)n+1 f (n) � 0 for all n � 1.

Their theory is exposed in the monograph of Schilling, Song, and Vondraček [34].
According to Corollary 3.8, p. 28, in this monograph, the composition of two Bernstein
functions is also a Bernstein function (which is not the case for the class of 3-convex
functions).

3. Some characterizations of 3-convexity

The difference operator Δh (of step size h � 0) associates to each function f
defined on an interval I the function Δh f defined by

(Δh f ) (x) = f (x+h)− f (x),

for all x such that the right-hand side formula makes sense. Notice that no restrictions
are necessary if I = R

+ or I = R.
The difference operators are linear and commute to each other,

Δh1Δh2 = Δh2Δh1 .

They also verify the following property of invariance under translation:

Δh ( f ◦Ta) = (Δh f )◦Ta,

where Ta is the translation defined by the formula Ta(x) = x+a.

LEMMA 2. If n is a positive integer, then the following formula holds:

Δh1Δh2 · · ·Δhn f (x) = ∑
ε1,...,εn∈{0,1}

(−1)n−(ε1+···+εn) f (x+ ε1h1 + · · ·+ εnhn) .
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The proof is immediate, by mathematical induction.
A function f has positive differences of order n � 1 if

Δh1Δh2 · · ·Δhn f (x) � 0,

whenever the left-hand side is well defined. To outline a parallel to n -convexity, we say
that a function f has positive differences of order 0 if f � 0.

Notice that a function has positive differences of first order if it is nondecreasing
and it has positive differences of second order if it is convex (a simple exercise left to
the reader). As was noticed by Popoviciu [28] (at the beginning of Section 24, p. 49),
this remark works in the general case of n -convex continuous functions. A detailed
proof can be found in the book of Kuczma [16]; see Theorem 15.6.1, p. 440. More
comments are available in [24]. The next result concerns the case 3-convex functions.

THEOREM 2. If f : [0,A]→ R is a continuous function, then the following asser-
tions are equivalent:

(i) f is 3 -convex ;
(ii) ΔhΔhΔh f (x) = f (x+3h)−3 f (x+2h)+3 f (x+h)− f (x)� 0 for all x∈ [0,A)

and h > 0 such that x+3h � A.
(iii) f has positive differences of order 3 , that is, it verifies the inequality

ΔxΔyΔz f (t) = f (x+ t)+ f (y+ t)+ f (z+ t)+ f (x+ y+ z+ t)
− f (x+ y+ t)− f (y+ z+ t)− f (z+ x+ t)− f (t) � 0

whenever x,y,z, t ∈ [0,A] and x+ y+ z+ t � A;
(iv) f is differentiable on (0,A) and its derivative f ′ is a convex function.

Proof. The implication (i) =⇒ (ii) is straightforward. The fact that (i) ⇐⇒ (ii)
under the presence of continuity is stated by Popoviciu in his book [28] (at the beginning
of Section 24, p. 49).

The implication (i) =⇒ (iv) was noticed both by Hopf [13] and Popoviciu [26]
(in the general case of n -convex functions).

The implications (ii) =⇒ (iii) =⇒ (iv) are covered by the paper of Boas and Wid-
der [4] (see Lemma 1 and the Theorem, p. 497).

The implication (iv) =⇒ (i) was noticed by Bennett ([1], Proposition 1), who used
the identity

[a,b,c,d; f ] =
1

(b−a)(c−a)(d−a)

∫ b

a
f ′(t)dt

− c+d−a−b
(c−a)(c−b)(d−a)(d−b)

∫ c

b
f ′(t)dt

+
1

(d−a)(d−b)(d− c)

∫ d

c
f ′(t)dt,

for all a < b < c < d. �
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It is worth mentioning that the property of 3-convex functions of having positive
differences of order 3 can be also deduced by adapting the argument used by Popoviciu
[29] for a weaker variant of it.

We shall need the following special case of the Hardy-Littlewood-Pólya inequality
of majorization (see [23], Theorem 4.1.3, p. 186):

LEMMA 3. If g : [a,b] → R is a convex function and c and d are two points in
[a,b] such that a+b = c+d , then

g(c)+g(d) � g(a)+g(b).

Popoviciu’s alternative argument for the implication (i) =⇒ (iii) in Theorem 2
works as follows: According to Popoviciu’s approximation theorem, we may restrict to
the case where f is a 3-convex function of class C∞. Then fix arbitrarily y,z, t in [0,A]
such that y+ z+ t < A and consider the function

F(x) = f (x+ t)+ f (y+ t)+ f (z+ t)+ f (x+ y+ z+ t)
− f (x+ y+ t)− f (y+ z+ t)− f (z+ x+ t)− f (t)

defined on the interval [0,A− y− z− t]. This function is also of class C∞ and

F
′
(x) = f

′
(x+ t)+ f

′
(x+ y+ z+ t)− f

′
(x+ y+ t)− f

′
(z+ x+ t).

From Lemma 1 we infer that F ′ is a convex function, so that F ′ � 0 according to
Lemma 3. Therefore

F(x) � F(0) = 0

for all x, a fact which is equivalent to the assertion (iii). The proof is done.
The connection of Theorem 2 (iii) with the Hornich-Hlawka inequality will be

discussed in Section 6. The next section is devoted to the applications of Theorem
2 (iv).

4. Applications of Theorem 2 (iv)

Theorem 2 (iv) easily allows us to deduce results for the usual convex functions
from those for the 3-convex functions (and vice-versa). Two examples are exhibited
below. The first one is a refinement of the Jensen inequality.

THEOREM 3. A continuous function f defined on an interval I is convex if and
only if

1
|J|
∫

J
f (x)dx � 1

|K|
∫

K
f (x)dx,

whenever K ⊂ J are two compact subintervals of I with the same midpoint.
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Proof. Suppose that f is convex and that the two intervals under attention are
J = [a,b] and K = [a+ ε,b− ε] (where ε ∈ (0,(b−a)/2)) . Every primitive F of f is
a 3-convex function of class C1 so, according to the formula (1) (applied to the points
a < a+ ε < b− ε < b), it verifies the inequality

F(b)−F(a) � b−a
b−a−2ε

[F(b− ε)−F(a+ ε)] .

Thus

1
b−a

∫ b

a
f (x)dx =

1
b−a

∫ b

a
F ′(x)dx =

F(b)−F(a)
b−a

� 1
b−a−2ε

[F(b− ε)−F(a+ ε)]

=
1

b−a−2ε

∫ b−ε

a+ε
f (x)dx

and the proof of the necessity part is done.
For the sufficiency part, notice that f verifies the condition

1
|In|

∫
In

f (x)dx ↘ f

(
a+b

2

)
,

whenever I0 = [a,b] ⊃ I1 ⊃ I2 ⊃ ·· · is a sequence of nested compact subintervals of
I that shrink to (a + b)/2, supposed to be their common midpoint. Therefore f is a
continuous function such that

1
b−a

∫ b

a
f (x)dx � f

(
a+b

2

)

whenever a < b in I. As it is well known, this property implies that f is a convex
function. See [23], Exercise 1, p. 63. �

REMARK 3. In the same manner one can prove that a continuous function f de-
fined on an interval I is convex if and only if

1
2ε

∫ a+ε

a
f (x)dx+

1
2ε

∫ b

b−ε
f (x)dx � 1

b−a

∫ b

a
f (x)dx,

whenever a < b in I and ε ∈ (0,(b−a)/2). This represents a refinement of the right-
hand side of the Hermite-Hadamard inequality (see [23], Section 1.10, pp. 59–64).

Combining Theorem 3 and Remark 3 one obtains double inequalities such as

4
b−a

∫ (3a+b)/4

a
f (x)dx+

4
b−a

∫ b

(a+3b)/4
f (x)dx

� 1
b−a

∫ b

a
f (x)dx � 3

b−a

∫ (a+2b)/3

(2a+b)/3
f (x)dx,
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for every convex function f : [a,b] → R. Continuity of f is not necessary. See [23],
Proposition 1.1.3, p. 3.

Similarly, one can use the theory of convex functions to characterize the 3-convex
functions.

THEOREM 4. Suppose that f : I → R is a function continuous on I and of class
C1 on the interior of I. Then the following assertions are equivalent:

(i) f is 3 -convex;
(ii) f verifies the inequality

f ′
(

a+b
2

)
� f (b)− f (a)

b−a
, (3)

for all points a < b in int I;
(ii) f verifies the inequality

f (b)− f (a)
b−a

� 1
2

(
f ′(a)+ f ′(b)

2
+ f ′

(
a+b

2

))
, (4)

for all points a < b in int I .

Proof. (i) =⇒ (ii) According to Theorem 2, f is differentiable on (a,b) and f ′
is a convex function on this interval. Taking into account the Jensen inequality (see
[23], Corollary 1.7.4, p. 43), for every ε ∈ (0,(b−a)/2), we have

f ′
(

a+b
2

)
� 1

b−a

∫ b−ε

a+ε
f ′(x)dx =

f (b− ε)− f (a+ ε)
b−a

and the inequality (3) follows by passing to the limit as ε → 0+ .

(ii) =⇒ (i) Indeed, the inequality (3) assures the fulfillment of the Jensen inequal-
ity by the function f ′′ on every compact interval included in int I, which is known to
imply the convexity of f ′. See [23], Exercise 1, p. 63.

(i) =⇒ (iii) The proof of inequality (4) can be done in the same manner by using
Remark 1.10.5, p. 61, in [23]. The implication (iii) =⇒ (i) follows from Exercise 2, p.
63 in [23]. �

EXAMPLE 1. Applying Theorem 4 in the case of the function f (x) = log(1+ x),
x � 0, we are led to the double inequality

b−a

1+ a+b
2

� log
1+b
1+a

�
(

b−a
4

)(
1

1+a
+

1
1+b

+
2

1+ a+b
2

)
,

valid for all 0 � a � b. This provides a rational estimate of log(1+ x), better than the
estimate offered by Maclaurin’s expansion.
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EXAMPLE 2. If f : [a,b] → R is a 3-times differentiable function with M =
supx∈[a,b] f ′′′(x) < ∞, then Mx3/6− f is a continuous 3-convex function. For example,
in the case of the sine function, this works for M = 1, which implies that

(a+b)2

2
− cos

a+b
2

� a2 +ab+b2

6
− sinb− sina

b−a

� 1
4

(
a2 +ab+b2

2
− cosa− cosb−2cos

(
a+b

2

))
.

Similarly, when m = infx∈[a,b] f ′′′(x) > −∞, then the function f −mx3/6 is 3-convex
and the conclusion of Theorem 4 applies to it.

Another application of Theorem 2 refers to the “support” of a 3-convex functions.
If f is a continuous 3-convex function defined on an interval I , then f ′ is a

convex function on int I and we can apply to it the theory of subdifferentiability of
convex functions. According to [23], Theorem 1.6.2, p. 36, the subdifferential ∂ f ′(a)
(of f ′ at a point a interior to I ) equals the interval [ f ′′−(a), f ′′+(a)] and

f ′(x) � f ′(a)+ y(x−a) for all x ∈ int I and y ∈ ∂ f ′(a).

Notice that ∂ f ′(a) = { f ′′(a)} when f is twice differentiable at a .
Therefore

f (x) � f (a)+ (x−a) f ′(a)+
(x−a)2

2
f ′′+(a) if x ∈ I and x � a (5)

and

f (x) � f (a)+ (x−a) f ′(a)+
(x−a)2

2
f ′′−(a) if x ∈ I and x � a. (6)

As a consequence,

f (x) = sup

{
f (a)+ (x−a) f ′(a)+

(x−a)2

2
y : a ∈ int I, a < x, y ∈ ∂ f ′(a)

}

for all x ∈ I different from the left endpoint of I.

Geometrically, g = f (a) + (x− a) f ′(a) + (x−a)2

2 f ′′+(a) (respectively y = f (a) +

(x− a) f ′(a)+ (x−a)2

2 f ′′−(a)) represents the unique parabola tangent to the graph of f
at a and which has the same right-hand (left-hand) derivative of second order at a.
These “tight tangent parabolas” represent analogs of the line supports from the theory
of convex functions. Notice that a tight tangent parabola at a point a is above the graph
of f on I∩ (−∞,a] and under the graph on I∩ [a,∞).

PROBLEM 1. Suppose that f is a function continuous on I and differentiable on
int I, which admit at every point a ∈ int I a tight tangent parabola. Is f necessarily
3-convex?
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The answer to this problem seems to be positive as suggests Bullen’s analogue for
3-convex functions, of the familiar fact that the graph of a convex function lies always
beneath its chords:

THEOREM 5. A continuous function f is 3 -convex on [a,b] if and only if for every
quadratic function Q that coincides with f at α , β and γ (where a < α < β < γ < b)
we have

Q(t) � f (t) if x ∈ [a,α]∪ [β ,γ]

and
f (t) � Q(t) if x ∈ [α,β ]∪ [γ,b].

See [7], Theorem 5, p. 85 and also Theorem 10, p. 88.
The existence of tight tangent parabolas raises naturally the problem of an ana-

logue of Fenchel duality in the case of continuous 3-convex functions.

PROBLEM 2. Does there exist an analogue of Fenchel conjugate in the case of
continuous 3-convex functions?

In connection with the last problem, notice that a function which is both convex
and 3-convex, may have a Fenchel conjugate which is not 3-convex. See the case of
the exponential function, whose Fenchel conjugate is the function f ∗(x) = x logx− x
for x > 0 and f ∗(0) = 0.

REMARK 4. The support-type properties of 3-convex functions were investigated
also by Wasowicz who proved the following result: If f : [a,b] → R is a 3-convex
function, then for every point c ∈ (a,b) there exist quadratic functions p and q such
that

p(a) = f (a), p(c) = f (c) and p � f on [a,b]

and
q(c) = f (c), p(b) = f (b) and q � f on [a,b].

See [40], Corollaries 10 and 11.

Another application of Theorem 2 (iv) is provided by the inequality (10), proved
in the next section.

5. The Hermite-Hadamard inequality in the context of 3-convex functions

According to Choquet’s theory, the meaning of the Hermite-Hadamard inequality
for convex functions on intervals is that of a double estimate for the integral mean of
every convex function f : [a,b] → R with respect to a Borel probability measure μ on
[a,b] , precisely,

f (bar(μ)) �
∫ b

a
f (x)dμ � b−bar(μ)

b−a
· f (a)+

bar(μ)−a
b−a

· f (b) . (7)
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Here bar(μ) represents the barycenter of μ , that is, the unique point p in [a,b]
such that

f (p) =
∫ b

a
f (x)dμ(x) (8)

for every continuous affine function f : [a,b]→ R . One can easily check that bar(μ) =∫ b
a xdμ(x) , the moment of the first order of μ .

See [23] (and also [20] and [22]).
When μ is an absolutely continuous probability measure of the form wdx, where

the weight w � 0 is continuous and symmetric about the vertical line x = (a+ b)/2,
that is,

w(x) = w(a+b− x) for all x ∈ [a,b],

then bar(μ) = (a+b)/2 and the inequality (7) becomes

f

(
a+b

2

)
�
∫ b

a
f (x)w(x)dx � f (a)+ f (b)

2
, (9)

This is Fejér’s variant of the classical Hermite-Hadamard inequality, also known as the
Hermite-Hadamard-Fejér inequality. See [23], the remark after Exercise 6, p. 64.

REMARK 5. The inequality (7) also works outside the framework of probability
measure, for examples for the so called Hermite-Hadamardmeasures, an example being
3(x2−1/6)dx on [−1,1]. For details, see [11] and [23], Section 7.5, pp. 322–324.

Theorem 2 (iv) allows us to derive from the Hermite-Hadamard-Fejér inequality
some consequences for the 3-convex functions.

For this, consider the case of a differentiable 3-convex function f : [a,b]→R and
of a continuous real weight w which admits a primitive W � 0, symmetric about the
vertical line x = (a+ b)/2. Three such examples are: 1) w(x) = a+ b− 2x on [a,b]
(with the primitive W (x) = (x−a)(b− x)) ; 2) 2nx2n−1 on [−a,a] (with the primitive
x2n); 3) cosx on [0,π ] (with the primitive sinx).

Then ∫ b

a
f (x)w(x)dx = fW |ba −

∫ b

a
f ′(x)W (x)dx

= f (b)W (b)− f (a)W(a)−
∫ b

a
f ′(x)W (x)dx,

and the Hermite-Hadamard-Fejér inequality leads to

− f ′(a)+ f ′(b)
2

∫ b

a
W (x)dx (10)

�
∫ b

a
f (x)w(x)dx− ( f (b)W (b)− f (a)W(a)) � − f ′

(
a+b

2

)∫ b

a
W (x)dx.

In the particular case where w(x) = a+b−2x and W (x) = (x−a)(b−x) we have∫ b

a
W (x)dx =

1
6

(b−a)3
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and the inequality (10) becomes

(b−a)3

6
f ′
(

a+b
2

)
�
∫ b

a
f (x)(2x−a−b)dx � (b−a)3

12

(
f ′(a)+ f ′(b)

)
.

We pass now to the existence of an analogue of the Hermite-Hadamard inequality
for the 3-convex functions.

As in the case of usual convex function it is useful to consider the following 3-
convex ordering on the set Prob([a,b], of all Borel probability measures on [a,b] :

ν ≺3cvx μ if and only if
∫ b

a
f (x)dν(x) �

∫ b

a
f (x)dμ(x)

for all continuous and 3-convex functions f : [a,b] → R.

Some important necessary and sufficient conditions for higher order convex or-
dering are available in the papers of Denuit, Lefevre and Shaked [9], Rajba [31] and
Szostok [36].

The relation ≺3cvx is indeed a partial order relation. Clearly, it is transitive and
reflexive; the fact that ν ≺3cvx μ and μ ≺3cvx ν imply μ = ν comes from the fact that
the linear space generated by the continuous 3-convex functions is dense in C([a,b]) .

REMARK 6. For every μ ∈ Prob([a,b] one can choose a minimal Borel probabil-
ity measure λ such that λ ≺3cvx μ (and the same is true for the maximal measures).
Indeed, Prob([a,b] can be identified with a weak star convex and compact subset of
the dual space of C ([a,b]) , precisely with {x∗ ∈C ([a,b]) : x∗ � 0 and x∗(1) = 1} , so
that every net of measures minorizing μ admit a convergent subnet in the weak star
topology. Thus the existence of minimal Borel probability measures majorized by μ
follows from Zorn’s lemma.

REMARK 7. Given a Borel probability measure μ on [a,b] whose support in-
cludes more than two points, no Dirac measure δp can be found such that

δp( f ) = f (p) �
∫ b

a
f (x)dμ(x)

for all continuous 3-convex functions. Indeed, checking this for the functions ±x and
±x2 we should have

p =
∫ b

a
xdμ(x) and p2 =

∫ b

a
x2dμ(x),

which is not possible because the equality occurs in the Cauchy-Schwarz inequality if
and only if one the two functions involved is a scalar multiple of the other.

The last two remarks lead naturally to the problem of characterizing the minimal
Borel probability measures with respect to the ordering ≺3cvx .
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PROBLEM 3. Given a Borel probabilitymeasure m on [a,b], find numbers λ ,μ ,ν ∈
[0,1] such that for every continuous 3-convex function f : [a,b]→ R we have

λ f ((1− μ)a+ μb)+ (1−λ ) f ((1−ν)a+νb)� 1
b−a

∫ b

a
f (x)dm(x). (3J)

A result due to Bessenyei and Páles [3], Theorem 3.4, combined with a careful
inspection of the argument of Lemma 3.2 in [36], shows that this problem has a unique
solution, provided that the support of m contains at least 3 points. In the particular case
when m equals (1/(b−a))dx, this solution corresponds to

λ = 1/4, μ = 0 and ν = 2/3,

and their result reads as follows:

THEOREM 6. For a continuous function f : I → R , the following statements are
equivalent:

(i) f is 3 -convex ;
(ii) for all a,b ∈ I with a < b,

1
4

f (a)+
3
4

f

(
a+2b

3

)
� 1

b−a

∫ b

a
f (x)dx;

(iii) for all a,b ∈ I with a < b,

1
b−a

∫ b

a
f (x)dx � 3

4
f

(
2a+b

3

)
+

1
4

f (b).

In what follows we will refer to the extremal probabilitymeasures 1
4 δa+ 3

4 δ(a+3b)/3

and 3
4δ(2a+b)/3 + 1

4δb as the 3-condensation of (1/(b−a))dx and respectively the 3-
dispersion of (1/(b− a))dx . The non symmetric form of these probability measures
seems to be a consequence of Bullen’s Theorem 5.

Notice that

f

(
a+b

2

)
� 1

4
f (a)+

3
4

f

(
a+2b

3

)
� 1

b−a

∫ b

a
f (x)dx

� 3
4

f

(
2a+b

3

)
+

1
4

f (b) � f (a)+ f (b)
2

for all functions f which are both convex and 3-convex.
Theorem 6 outlines the following property of rigidity of the continuous 3-convex

functions:

REMARK 8. If f : [a,b]→ R is a continuous 3-convex function such that f (a) �
0 and f

(
a+2b

3

)
� 0, then its integral mean value is also greater than or equal to 0. This

imposes that the values of f in the interval [(a+2b)/3,b] cannot be “too” negative
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(though it can be negative as shows the case of the function −x2 +
√

x defined on
[0,3/2]).

Similarly, if f
( 2a+b

3

)
� 0 and f (b) � 0, then the integral mean value of f is also

less than or equal to 0 (and the values of f in the interval [a,(2a+b)/3] cannot be
“too” positive).

REMARK 9. According to Theorem 2.1 in [31], one can extend Theorem 6 to
the context of signed measures (as is the case of the Hermite-Hadamard measures for
convex functions). Unfortunately, very few examples illustrating the theory are known
so far.

We end this section by mentioning few open problems related to Theorem 6.

PROBLEM 4. What is the statistical meaning of the 3-condensation of (1/(b−
a))dx? The same in the case of the 3-dispersion of (1/(b−a))dx.

PROBLEM 5. (The Fejér analog of Theorem 6) Characterize the continuous map-
pings w : [a,b] → [0,∞) such that at least one of the following two inequalities

[
1
4

f (a)+
3
4

f

(
a+2b

3

)]∫ b

a
w(x)dx �

∫ b

a
f (x)w(x)dx

and ∫ b

a
f (x)w(x)dx �

[
3
4

f

(
2a+b

3

)
+

1
4

f (b)
]∫ b

a
w(x)dx

holds for all continuous 3-convex functions f : [a,b] → R.

After this paper was accepted for publication, we were informed by Professor
Tomasz Szostok that Problem 5 can be answered even in a more general setting. See
[37] for details.

6. 3-convexity and the Hornich-Hlawka functional inequality

A straightforward consequence of Theorem 2 is the fact that every nonnegative
and continuous 3-convex function verifies the Hornich-Hlawka functional inequality:

PROPOSITION 1. If f : [0,A] → R is a continuous 3-convex function, then

f (x)+ f (y)+ f (z)+ f (x+ y+ z) � f (x+ y)+ f (y+ z)+ f (z+ x)+ f (0) (11)

for all points x,y,z ∈ [0,A] such that x+ y+ z � A; if in addition f (0) � 0, then

f (x)+ f (y)+ f (z)+ f (x+ y+ z) � f (x+ y)+ f (y+ z)+ f (z+ x) . (12)
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The Hornich-Hlawka functional inequality is not characteristic to the 3-convex
functions. Indeed, as was noticed by Sendov and Zitikis [35], Theorem 4.2 (see also
[24], Theorem 7), the Hornich-Hlawka functional inequality (12) also works in the
framework of completely monotone functions. Recall that a function f : [0,∞) → R+
is completely monotone if it is continuous on [0,∞) , indefinitely differentiable on (0,∞)
and

(−1)n f (n)(x) � 0 for all x > 0 and n � 0.

Some simple examples are e−x, 1/(1+x), and (1/x) log(1+x). Notice that every
completely monotone function is nonincreasing, convex and 3-concave.

The result of Proposition 1 can be considerably improved by adding additional
hypothesis.

THEOREM 7. Suppose that f : [0,A]→R is a continuous 3 -convex function which
is also nondecreasing and concave. Then

f (|x|)+ f (|y|)+ f (|z|)+ f (|x+ y+ z|) � f (|x+ y|)+ f (|y+ z|)+ f (|z+ x|)+ f (0)

for all x,y,z ∈ [−A,A] with |x|+ |y|+ |z| � A.

Theorem 7 is implicit in a paper due to Ressel, who formulated his result in terms
of differences of higher order. See [32], Theorem 1 and formula (5). For the conve-
nience of the reader we will include here a full argument.

Notice first that the inequality stated in Theorem 7 is invariant under the permu-
tations of the elements x,y,z and also to the symmetry (x,y,z) → (−x,−y,−z). As a
consequence, the proof of Theorem 7 can be reduced to the following two cases:

Case 1: the elements x,y and z have the same sign, in which case we may reduce
ourselves to the situation where

x � y � z � 0;

Case 2: two of the elements x,y,z are nonnegative, while the third is nonpositive,
in which case the proof reduces to the situation where

x � y � 0 � z.

Case 1 is covered by the assertion (iii) of Theorem 2. Case 2 can be split into
four subcases:

Case 2a : x � y � 0 � z and |z| � x+ y;
Case 2b : x � y � 0 � z and x+ y � |z| � x,y;
Case 2c : x � y � 0 � z and x � |z| � y;
Case 2d : z � 0 � y � x and x � y � |z| .
The assertion of Theorem 7 in Case 2a makes the objective of Lemma 4, while

the other cases (Case 2b , Case 2c and Case 2d ) are settled by Lemma 5.
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LEMMA 4. Suppose that f : [0,A] → R is a continuous function such that

f (x)+ f (y)+ f (z)+ f (x+ y+ z) � f (x+ y)+ f (y+ z)+ f (z+ x)+ f (0)

for all x,y,z � 0 with x+ y+ z � A. Then f also verifies the functional inequality

f (|x|)+ f (|y|)+ f (|z|)+ f (|x+ y+ z|) � f (|x+ y|)+ f (|y+ z|)+ f (|z+ x|)+ f (0)

for all triplets x,y,z ∈ [−A,A] of which two elements are nonnegative and their sum
does not exceed the absolute value of the third element.

Proof. It suffices to consider the case where x,y � 0 � z and x+ y � |z| . Then,
|z|−x = |x+ z| , |z|−y = |y+ z| and |z|−x−y = |x+ y+ z|. According to our hypoth-
esis, applied to x, y and |z|− x− y, we have

f (x)+ f (y)+ f (|z|− x− y)+ f (|z|) � f (x+ y)+ f (|z|− y)+ f (|z|− x)+ f (0),

equivalently,

f (|x|)+ f (|y|)+ f (|z|)+ f (|x+ y+ z|)
� f (|y+ z|)+ f (|x+ z|)+ f (|x+ y|)+ f (0). �

LEMMA 5. If f : [0,A] → R is a nondecreasing and concave function, then

f (|x|)+ f (|y|)+ f (|z|)+ f (|x+ y+ z|) � f (|x+ y|)+ f (|y+ z|)+ f (|z+ x|)+ f (0) ,

for all x,y,z ∈ [−A,A] such that z � 0 � y � x.

When the domain of f is R+ and f is nonnegative, then the property of concavity
implies the property of being nondecreasing. See [23], Exercise 4, p. 31.

Proof. The range z � 0 � y � x can be split into the following cases:
Case 2b : z � 0 � y � x and x,y � |z| � x+ y. Then 0 � x+ y+ z � |z| � x+ y,

so by Lemma 3 it follows that

f (x+ y)+ f (0) � f (|z|)+ f (x+ y+ z).

On the other hand, |x+ z| = |z|− x, |y+ z| = |z|− y and |x+ y+ z|= x+ y+ z. Since
f is nondecreasing, we have f (|z|− x) � f (y) and f (|z|− y) � f (|x|) . Therefore

f (|x+ y|)+ f (|y+ z|)+ f (|z+ x|)+ f (0)
= f (x+ y)+ f (0)+ f (|z|− y)+ f (|z|− x)
� f (x+ y+ z)+ f (|z|)+ f (x)+ f (y)
= f (|z|)+ f (|x+ y+ z|)+ f (|x|)+ f (|y|).
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Case 2c : z � 0 � y � x and y � |z|� x. Applying Lemma 3 for 0 � y � x � x+y
and taking into account that f is nondecreasing we obtain

f (|x+ y|)+ f (|y+ z|)+ f (|z+ x|)+ f (0)
= f (x+ y)+ f (0)+ f (|z|− y)+ f (x−|z|)
� f (x)+ f (y)+ f (|z|)+ f (x+ y+ z)
= f (|x|)+ f (|y|)+ f (|z|)+ f (|x+ y+ z|).

Case 2d : z � 0 � y � x and |z| � y � x. Similar to Case 2c . Applying Lemma 3
for 0 � |z| � x+ y−|z| � x+ y and using the fact that f is nondecreasing we obtain

f (|x+ y|)+ f (|y+ z|)+ f (|z+ x|)+ f (0)
= f (x+ y)+ f (0)+ f (y−|z|)+ f (x−|z|)
� f (x+ y−|z|)+ f (|z|)+ f (y−|z|)+ f (x−|z|)
� f (x+ y+ z)+ f (|z|)+ f (y)+ f (x)
= f (|x|)+ f (|y|)+ f (|z|)+ f (|x+ y+ z|).

The proof of Lemma 5 is now complete. �
Lemma 5, fails in the case of nondecreasing and 3-convex functions which are not

concave. To check this, consider the restriction of the cubic function x3 to [0,∞) and
the triplet x = y = 1 and z = −1.

Some example illustrating Theorem 7 and Corollary 1 in the case of the Bernstein
functions x/(1+ x) , log(1+ x) and the identity of [0,∞)) are indicated below:

(RHH) the rational form of the Hornich-Hlawka inequality,

|x|α
1+ |x|α +

|y|α
1+ |y|α +

|z|α
1+ |z|α +

|x+ y+ z|α
1+ |x+ y+ z|a

� |x+ y|a
1+ |x+ y|a +

|y+ z|a
1+ |y+ z|a +

|z+ x|a
1+ |z+ x|a ;

(MHH) the multiplicative form of the Hornich-Hlawka inequality,

(1+ |x|)(1+ |y|)(1+ |z|)(1+ |x+ y+ z|)
� (1+ |x+ y|)(1+ |y+ z|)(1+ |z+ x|);

(HHα) the fractional power form of the Hornich-Hlawka inequality:

|x|α + |y|α + |z|α + |x+ y+ z|α � |x+ y|α + |y+ z|α + |z+ x|α .

Here α ∈ (0,1] is a parameter.
The natural analogue of Theorem 7, for more that 3 numbers does not hold. In-

deed, the function

∑4
i=1 |xi|− ∑

1�i< j�4

∣∣xi + x j
∣∣+ ∑

1�i< j<k�4

∣∣xi + x j + xk
∣∣−|x1 + x2 + x3 + x4|
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takes both positive and negative values as the variables x1, . . . ,x4 run over R.
However, an extension of Theorem 7 to the case of n > 3 variables is still possible

by using an inductive scheme due to Vasić and Adamović [39]. We state here a slightly
modified version of their result as appeared in [19], Theorem 2, p. 528:

THEOREM 8. Suppose that ϕ is a real-valued function defined on a commutative
additive semigroup S such that

3

∑
k=1

ϕ (xk)+ ϕ

(
3

∑
k=1

xk

)
≷ ∑

1�i< j�3

ϕ
(
xi + x j

)

for all x1,x2,x3 ∈ S . Then for each pair {k,n} of integers with 2 � k < n we also
have (

n−2
k−1

) n

∑
k=1

ϕ (xk)+
(

n−2
k−2

)
ϕ

(
n

∑
k=1

xk

)
≷ ∑

1�i1<...<ik�n

ϕ

(
k

∑
j=1

xi j

)
,

whenever x1, . . . ,xn ∈ S .

This result yields the following generalization of Theorem 7:

THEOREM 9. If f : R+ → E is a continuous 3 -convex function which is also
nondecreasing and concave, then

(
n−2
k−1

) n

∑
k=1

f (|xk|)+
(

n−2
k−2

)
f

(∣∣∣∣∣
n

∑
k=1

xk

∣∣∣∣∣
)

� ∑
1�i1<...<ik�n

f

(∣∣∣∣∣
k

∑
j=1

xi j

∣∣∣∣∣
)

+(k−1)
(

n−1
k

)
f (0),

for all pairs {k,n} of integers with 2 � k < n and all strings x1, . . . ,xn of real numbers.

Proof. Apply Theorem 8 to f (|·|)− f (0), taking into account Theorem 7 and the
formula (

n−2
k−1

)
+
(

n−2
k−2

)
=
(

n−1
k−1

)
. �

7. The case of vector-valued functions

The concept of n -convexity can be extended in a straightforward way to the case
of functions with values in an ordered Banach space by using the same definition based
on divided differences.

Recall that an ordered Banach space is any Banach space E endowed with the
ordering � associated to a closed convex cone E+ via the formula

x � y if and only if y− x ∈ E+,
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such that
E = E+−E+, (−E+)∩E+ = {0} ,

and
0 � x � y in E implies ‖x‖ � ‖y‖ .

The basic facts concerning the theory of ordered Banach spaces are made available
by the book of Schaefer and Wolff [33]. See [21] for a short overview centered on
two important particular cases: R

n, the n -dimensional Euclidean space endowed with
the coordinate-wise ordering, and Sym(n,R) the ordered Banach space of all n× n -
dimensional symmetric matrices with real coefficients endowed with the operator norm

‖A‖ = sup
‖x‖�1

|〈Ax,x〉|

and the Löwner ordering,

A � B if and only if 〈Ax,x〉 � 〈Bx,x〉 for all x ∈ R
n.

Here the operator norm can be replaced by any Schatten norm, in particular with
the Frobenius norm,

‖A‖F =

(
n

∑
i=1

n

∑
j=1

a2
i j

)1/2

,

provided that A = (ai j)
n
i, j=1 . The Frobenius norm is associated to the trace inner prod-

uct
〈A,B〉 = trace(AB).

The positive cone of R
n is the first orthant R

n
+, while the positive cone of Sym(n,R)

is the set Sym+(n,R) consisting of all positive semi-definite matrices.

REMARK 10. The study of vector-valued functions can be reduced to that of
real-valued functions. Indeed, in any ordered Banach space E, any inequality of the
form u � v is equivalent to x∗(u) � x∗(v) for all x∗ ∈ E∗

+ . See [21].
As a consequence, a function f : I → E is respectively nondecreasing, convex

or n -convex if and only if x∗ ◦ f has this property whenever x∗ ∈ E∗ is a positive
functional. For E = R

n, this remark concerns the components of f .

Remark 10 easily yields that most of the results in the preceding sections extends
verbatim to the vector-valued framework. In particular, so are Theorem 2, Proposition
1, Theorem 7, Theorem 4 and Theorem 9.

Combining Remark 10 with Lemma 1 one obtains the following practical test of
3-convexity for the vector-valued differentiable functions:

THEOREM 10. Suppose that f is a continuous function defined on an interval I
and taking values in an ordered Banach space E . If f is three times differentiable on
the interior of I, then f is a 3 -convex function if and only if f ′′′ � 0.
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An example illustrating Theorem 10 is provided by the function

f : R+ → Sym(n,R), f (t) = −e−tA,

associated to a positive semi-definite matrix A ∈ Sym(n,R). This function is of class
C∞ and its first three derivatives are given by the formulas

f ′(t) = Ae−tA, f ′′(t) = −A2e−tA, f ′′′(t) = A3e−tA.

This shows that f is nondecreasing, concave and 3-convex (according to the ordering
of Sym(n,R)). The fact that A3e−tA is positive semidefinite follows from the fact that
the product of positive semi-definite matrices that commute with each other is a matrix
of the same type.

According to Theorem 7,

e−|r|A + e−|s|A + e−|t|A + e−|r+s+t|A � I + e−|r+s|A + e−|s+t|A + e−|t+r|A

for all r,s, t ∈ R. Here I is the identity matrix. In the 1-dimensional case, this reduces
to the inequality

e−α |x| + e−α |y| + e−α |z| + e−α |x+y+z| � 1+ e−α |x+y| + e−α |y+z| + e−α |x+z|,

which works for all x,y,z ∈ R and α > 0. This last inequality can be extended to the
framework of real symmetric matrices:

THEOREM 11. Suppose that f : [0,∞) → R is a continuous 3 -convex function
which is also nondecreasing and concave. Then

f (|A|)+ f (|B|)+ f (|C|)+ f (|A+B+C|)
� f (|A+B|)+ f (|B+C|)+ f (|C+A|)+ f (0)In,

whenever A,B,C are three real symmetric matrices of order n that commute with each
other.

Here |A|= (A2
)1/2

denotes the modulus of A and In is the unit matrix of order n .

Proof. Notice first that every finite family of self-adjoint matrices that commute
with each other admits an orthonormal basis consisting of vectors that are eigenvectors
of each these matrices. See Mirsky [18], Theorem 10.6.8, p. 322. This reduces the
proof of the theorem to the case where all the matrices A, B and C are diagonal. Or, if

A =

⎛
⎜⎝

λ1(A) 0
. . .

0 λn(A)

⎞
⎟⎠ ,

then

f (A) =

⎛
⎜⎝

f (λ1(A)) 0
. . .

0 f (λn(A))

⎞
⎟⎠ ,

so that the conclusion of the theorem follows from Theorem 7. �
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REMARK 11. Theorem 11 also works in the context of commuting self-adjoint
compact operators defined on an infinite dimensional Hilbert space provided that f :
[0,∞) → R is continuous, nondecreasing, concave 3-convex and f (0) = 0. We do not
know whether the commutativity condition is necessary or not.

Acknowledgement. The authors would like to thank the reviewer for a number of
valuable suggestions and for pointing out some minor typos in an earlier version of this
paper.
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