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Abstract. This article studies the boundedness of the inclusion mapping from weighted Bergman
spaces Ap

α into a class of tent type space T p,n
s (μ) . As an application, the boundedness, com-

pactness and essential norm of generalized integral operators Tn,k
g and Sn,0

g from Ap
α to general

function spaces are also investigated.

1. Introduction

We denote by D and ∂D the unit disk and its boundary in the complex plane C ,
respectively. Let H(D) be the class of functions analytic in D . For 0 < p < ∞ and
α > −1, the weighted Bergman space Ap

α is the set of all f ∈ H(D) for which

‖ f‖p
Ap

α
= (α +1)

∫
D

| f (z)|p(1−|z|2)αdA(z) < ∞.

When α = 0, we denote Ap
α by Ap . The Bloch space B is the space of all f ∈ H(D)

such that
‖ f‖B = | f (0)|+ sup

z∈D

(1−|z|2)| f ′(z)| < ∞.

The little Bloch space B0, is the set consisting of all f ∈H(D) such that lim|z|→1−(1−
|z|2)| f ′(z)| = 0. Let H∞ denote the space of all bounded analytic functions with the
supremum norm ‖ f‖H∞ = supz∈D | f (z)|.

Let 0 < p,s < ∞ , −2 < q < ∞ . The general function space F(p,q,s) , which was
introduced by Zhao in [42], consists of all f ∈ H(D) such that

‖ f‖p
F(p,q,s) = | f (0)|p + sup

a∈D

∫
D

| f ′(z)|p(1−|z|2)q(1−|σa(z)|2)sdA(z) < ∞.

Here σa(z) = a−z
1−az . F(p,q,s) is a Banach space under the norm ‖ · ‖F(p,q,s) when

p � 1. It is easy to see that F(p, p,0) is just the Bergman space. When p = 2 and
q = 0, it gives the Qs space. Especially, Q1 is the BMOA space, the space of analytic
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functions in the Hardy space whose boundary functions have bounded mean oscillation.
Also, it is known that F(p,q,s) contains only constant functions if s + q � −1. For
some other results on the space their generalizations and operators on them see also
[15, 26, 28, 38].

Let g ∈ H(D) . The Volterra integral operator Tg and its companion operator Ig
with symbol g are defined by

Tg f (z) =
∫ z

0
g′(w) f (w)dw, Ig f (z) =

∫ z

0
g(w) f ′(w)dw, f ∈ H(D),

respectively. The multiplication operator Mg is defined by Mg f (z) = f (z)g(z) . It is
easy to see that

Mg f (z) = f (0)g(0)+ Ig f (z)+Tg f (z).

Pommerenke [23] introduced the operator Tg and showed that Tg is bounded on
H2 if and only if g belongs to the space BMOA . For some generalizations on Hp

spaces see [1, 2, 6, 8, 14, 29]. For some results on the Bergman-type spaces see [3,
8, 16]. Further results about Volterra integral operators on analytic function spaces on
the unit disk, as well as the unit ball and unit polydisk in Cn can be found [11, 12, 13,
15, 17, 18, 19, 21, 22, 24, 26, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] as well as in their
respective references.

We define the Carleson box, denoted by S(I) , based on the arc I which is a subset
of ∂D , as follows:

S(I) =
{

z ∈ D : 1−|I|� |z| < 1 and
z
|z| ∈ I

}
.

If I equals the unit circle ∂D , we let S(I) be the entire unit disk D . For a positive
Borel measure μ on D and 0 < s < ∞ , we say that μ is an s-Carleson measure if

sup
I⊆∂D

μ(S(I))
|I|s < ∞.

The classical Carleson measure is obtained when s = 1.
Let N and N0 denote the set of positive integers and nonnegative integers, respec-

tively. Let 0 < p,s < ∞ , n ∈ N0 and μ be a positive Borel measure on D . We define
T p,n

s (μ) as the set of functions f ∈ H(D) satisfying the condition (see [25])

sup
I⊂∂D

1
|I|s

∫
S(I)

∣∣∣ f (n)(z)(1−|z|2)n
∣∣∣p

dμ(z) < ∞.

Suppose n ∈ N and k ∈ N0 satisfy 0 � k < n , and g ∈ H(D) . Chalmoukis intro-
duced the operator Tn,k

g in [7], defined by

Tn,k
g f (z) = In( f (k)(z)g(n−k)(z)), f ∈ H(D),

where I f (z) =
∫ z
0 f (w)dw. In particular, T 1,0

g f = Tg f for any f ∈ H(D) .
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Qian and the author of this paper introduced and studied the operator Sn,0
g in [25],

where
Sn,0

g f (z) = In( f (n)(z)g(z)).

In particular, S1,0
g f = Ig f .

Chalmoukis investigated the boundedness of the operator Tn,k
g on Hardy spaces

Hp in [7]. Specifically, he demonstrated that Tn,k
g : Hp → Hp is bounded if and only if

g ∈ B when k � 1. Meanwhile, Tn,k
g : Hp → Hq is bounded if and only if

sup
z∈D

(1−|z|2) 1
q− 1

p+n−k|g(n−k)(z)| < ∞

when 0 < p < q < ∞ . In [9], Du, Li, and Qu studied the boundedness, compactness, and
essential norm of the operator Tn,k

g on weighted Bergman spaces induced by doubling
weights. Further details related to the operator Tn,k

g , see [7, 9, 25].
The purpose of this paper is to establish that the inclusion mapping Id : Ap

α →
T p,n

s (μ) is bounded if and only if

sup
I⊂∂D

∫
S(I)(1−|z|2)pndμ(z)

|I|pn+2+α+s < ∞. (1.1)

This result is then applied to characterize the boundedness of Tn,k
g and Sn,0

g , which
act from Ap

α to F(p, p + α,s) . Additionally, we investigate the essential norm and
compactness of Tn,k

g and Sn,0
g when act from Ap

α to F(p, p+ α,s) .
Let (X ,‖ ·‖X) and (Y,‖ ·‖Y ) be Banach spaces, with T : X → Y being a bounded

linear operator. The essential norm of T : X →Y, denoted as ‖T‖e,X→Y , can be defined
as:

‖T‖e,X→Y = inf
K
{‖T −K‖X→Y : K is compact from X to Y}.

It is easy to observe that T : X → Y is compact if and only if ‖T‖e,X→Y = 0.
Throughout this paper, we say that f � g if there exists a constant C such that

f � Cg . The symbol f ≈ g means that f � g � f .

2. Boundedness of Id : Ap
α → T p,n

s (μ)

In this section, our objective is to investigate the boundedness of the inclusion
mapping Id : Ap

α → T p,n
s (μ) . To accomplish this task, we will introduce several lem-

mas that will be utilized throughout this paper.

LEMMA 1. [28, Theorem 3.2] Let −2 < q < ∞ , 0 < s < ∞ , 1 < p < ∞ and
n ∈ N . Then the following statements are equivalent.

(i) f ∈ F(p,q,s);
(ii)

sup
a∈D

∫
D

| f (n)(z)|p(1−|z|2)p(n−1)+q(1−|σa(z)|2)sdA(z) < ∞;
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(iii)

sup
I⊂∂D

1
|I|s

∫
S(I)

| f (n)(z)|p(1−|z|2)p(n−1)+q+sdA(z) < ∞.

REMARK 1. Let

‖ f‖p
F(p,q,s,1) =

n−1

∑
j=0

| f ( j)(0)|p + sup
a∈D

∫
D

| f (n)(z)|p(1−|z|2)p(n−1)+q(1−|σa(z)|2)sdA(z),

‖ f‖p
F(p,q,s,2) =

n−1

∑
j=0

| f ( j)(0)|p + sup
I⊂∂D

1
|I|s

∫
S(I)

| f (n)(z)|p(1−|z|2)p(n−1)+q+sdA(z).

From the proof of Theorem 3.2 of [28], we see that

‖ f‖F(p,q,s) ≈ ‖ f‖F(p,q,s,1) ≈ ‖ f‖F(p,q,s,2).

LEMMA 2. [43, Theorem 4.28] Let −1 < α < ∞ , 1 < p < ∞ and n ∈ N . Then
f ∈ Ap

α if and only if
∫

D

| f (n)(z)|p(1−|z|2)pn+αdA(z) < ∞.

Moreover,

‖ f‖p
Ap

α
≈

n−1

∑
j=0

| f ( j)(0)|p +
∫

D

| f (n)(z)|p(1−|z|2)pn+αdA(z).

LEMMA 3. [43, Theorem 5.4] If f is analytic in D and n � 2 , then f ∈ B if
and only if the function

(
1−|z|2)n

f (n)(z) is bounded in D . Moreover, there exists a
constant C > 0 such that

C−1‖ f‖B � sup
z∈D

(
1−|z|2)n ∣∣ f (n)(z)

∣∣ � C‖ f‖B

for all f with f (0) = f ′(0) = · · · = f (n−1)(0) = 0 .

The following result comes from [27, Theorem 4.1.2]. When β = 2, it was proved
in [40]. When n = 1, it was proved in [41].

LEMMA 4. Let 1 < p < ∞ , 1 < β < ∞ and n ∈ N . Then g ∈ B if and only if

sup
a∈D

∫
D

|g(n)(z)|p(1−|z|2)pn−2(1−|σa(z)|2)β dA(z) < ∞.

LEMMA 5. Let −1 < α < ∞ , 0 < s < ∞ and 1 < p < ∞ . Then

‖ f‖p
F(p,p+α ,s) � ‖ f‖p

Ap
α
.
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Proof. By Lemma 2, we get

sup
a∈D

∫
D

| f ′(z)|p(1−|z|2)p+α(1−|σa(z)|2)sdA(z)

�
∫

D

| f ′(z)|p(1−|z|2)p+αdA(z)

�
∫

D

| f (z)|p(1−|z|2)αdA(z),

as desired. �

The proof of the following result is standard. See, for example [25, Lemma 2.4].
We omit the proof here.

LEMMA 6. Let −1 < α < ∞ , 0 < s < ∞ , 1 < p < ∞ and n ∈N0 . If f ∈ F(p, p+
α,s), then

| f (n)(z)| � ‖ f‖F(p,p+α ,s)

(1−|z|2) 2+α
p +n

, z ∈ D.

LEMMA 7. [5, Lemma 2.1] Let μ be a positive measure on D and 0 < s < ∞ .
Then μ is a bounded s-Carleson measure if and only if

sup
a∈D

∫
D

(
1−|a|2
|1− az|2

)s

dμ(z) < ∞.

Now we are in a position to state and prove our main result in this section.

THEOREM 1. Let 1 < p < ∞ , −1 < α < ∞ , 0 < s < ∞ and n ∈ N0 . Let μ be
a positive Borel measure on D . Then the inclusion mapping Id : Ap

α → T p,n
s (μ) is

bounded if and only if (1.1) holds.

Proof. Assume first that (1.1) holds. Let dν(z) = (1−|z|2)pndμ(z) . We observe
that

sup
I⊂∂D

ν(S(I))
|I|pn+2+α+s < ∞,

which, in combination with [43, Theorem 7.4], implies that the inclusion mapping Id :
Ap

pn+α+s → Lp(dν) is a bounded operator. For any arc I ⊂ ∂D , let ξ be the center
point of I and w = (1−|I|)ξ . From [10, p. 232], we see that

|1−wz| ≈ 1−|w|2 ≈ |I|, z ∈ S(I). (2.0)

Let f ∈ Ap
α . By Lemma 2, we see that

f (n) ∈ Ap
pn+α ⊂ Ap

pn+s+α .
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Let l > 2s . Using the above results and Lemma 5, we obtain

1
|I|s

∫
S(I)

| f (n)(z)|p(1−|z|2)pndμ(z)

≈(1−|w|2)l−s
∫

S(I)

∣∣∣∣∣
f (n)(z)

(1−wz)l/p

∣∣∣∣∣
p

dν(z) (using (2.0))

�(1−|w|2)l−s
∫

D

| f (n)(z)|p
|1−wz|l (1−|z|2)np+s+αdA(z)

(Id : Ap
pn+α+s → Lp(dν) is bounded)

�
∫

D

| f (n)(z)|p(1−|z|2)pn+α (1−|z|2)s(1−|w|2)s

|1−wz|2s dA(z) (l > 2s)

�‖ f‖p
F(p,p+α ,s) � ‖ f‖p

Ap
α
,

which implies the desired result.
Conversely, assume that the inclusion mapping Id : Ap

α → T p,n
s (μ) is bounded.

Using this assumption and taking f (z) = zn ∈ Ap
α , we obtain

∫
D

(1−|z|2)pndμ(z) < ∞.

For any arc I ⊂ ∂D , let ξ be the center point of I and w = (1−|I|)ξ . Take

fw(z) =
(1−|w|2)

wn(1−wz)1+ 2+α
p

. (2.1)

By Lemma 3.10 of [43], we see that fw ∈ Ap
α . By (2.0),

| f (n)
w (z)|p ≈ 1

|I|pn+2+α , z ∈ S(I).

By the assumption that the inclusion mapping Id : Ap
α →T p,n

s (μ) is bounded, we have

1
|I|s

∫
S(I)

| f (n)
w (z)|p(1−|z|2)pndμ(z) � ‖Id fw‖p

T p,n
s (μ)

� ‖Id‖p‖ fw‖p
Ap

α
� ‖ fw‖p

Ap
α

< ∞,

which implies that

sup
I⊂∂D

∫
S(I)(1−|z|2)pndμ(z)

|I|pn+2+α+s < ∞.

So, (1.1) holds. The proof is complete. �
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3. Boundedness

In this section, we provide some characterizations for the boundedness of Tn,k
g and

Sn,0
g from Ap

α to F(p, p+ α,s).

THEOREM 2. Let g∈H(D) , 1 < p < ∞ , −1 < α < ∞ , 0 < s < ∞ , n∈N , k ∈N0

such that 0 � k < n. Then Tn,k
g : Ap

α → F(p, p+α,s) is bounded if and only if g ∈ B .
Moreover,

‖Tn,k
g ‖Ap

α→F(p,p+α ,s) ≈ sup
z∈D

(1−|z|2)|g′(z)|.

Proof. Assume that g ∈ B . We first consider the case k = 0. Since g ∈ B and
s+ α +2 > 1, by Lemma 4 we see that

sup
a∈D

∫
D

|g(n)(z)|p(1−|z|2)pn−2(1−|σa(z)|2)s+α+2dA(z) < ∞,

which implies that

sup
a∈D

∫
D

(
1−|a|2
|1− az|2

)s+2+α

dμg(z) < ∞,

where dμg(z) = |g(n)(z)|p(1−|z|2)pn+s+αdA(z) . Using Lemma 7, we see that μg is an
(s + 2 + α)-Carleson measure. Let f ∈ Ap

α . From Theorem 1, we can easily deduce
that

sup
I⊂∂D

1
|I|s

∫
S(I)

|(Tn,0
g f )(n)(z)|p(1−|z|2)pn+α+sdA(z)

= sup
I⊂∂D

1
|I|s

∫
S(I)

| f (z)|p|g(n)(z)|p(1−|z|2)pn+α+sdA(z)

= sup
I⊂∂D

1
|I|s

∫
S(I)

| f (z)|pdμg(z)

�‖ f‖p
Ap

α
.

(3.1)

Now we consider the case k � 1. From Lemmas 1, 3 and 5 we get

sup
I⊂∂D

1
|I|s

∫
S(I)

|(Tn,k
g f )(n)(z)|p(1−|z|2)pn+α+sdA(z)

= sup
I⊂∂D

1
|I|s

∫
S(I)

| f (k)(z)g(n−k)(z)|p(1−|z|2)pn+α+sdA(z)

�‖g‖p
B sup

I⊂∂D

1
|I|s

∫
S(I)

| f (k)(z)|p(1−|z|2)pk+α+sdA(z)

�‖g‖p
B‖ f‖p

F(p,p+α ,s)

�‖g‖p
B‖ f‖p

Ap
α
.

(3.2)
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From (3.1) and (3.2), we see that Tn,k
g : Ap

α → F(p, p+ α,s) is bounded.

Conversely, assume that Tn,k
g : Ap

α → F(p, p+ α,s) is bounded. For w ∈ D , we
define

Gw(z) =
(1−|w|2)

(1−wz)1+ 2+α
p

.

It is easy to check that Gw ∈ Ap
α using Lemma 3.10 of [43]. Moreover,

G(k)
w (z) =

k

∏
i=1

(
i+

2+ α
p

)
wk(1−|w|2)

(1−wz)1+k+ 2+α
p

,

G(k)
w (w) =

k

∏
i=1

(
i+

2+ α
p

)
wk

(1−|w|2)k+ 2+α
p

.

Using Lemma 6, we obtain that

‖Tn,k
g Gw‖F(p,p+α ,s)

(1−|w|2)n+ 2+α
p

�|(Tn,k
g Gw)(n)(w)| � |w|k|g(n−k)(w)|

(1−|w|2)k+ 2+α
p

.

Thus,
sup

|w|>1/2
|g(n−k)(w)|(1−|w|2)n−k < ∞.

It is obvious that
sup

|w|�1/2
|g(n−k)(w)|(1−|w|2)n−k < ∞.

Therefore,
sup
w∈D

|g(n−k)(w)|(1−|w|2)n−k < ∞,

which implies that g ∈ B by Lemma 3. The proof is complete. �

THEOREM 3. Let 1 < p < ∞ , −1 < α < ∞ , 0 < s < ∞ , n ∈ N and k ∈ N0 such
that 0 � k < n. Then Sn,0

g : Ap
α → F(p, p + α,s) is bounded if and only if g ∈ H∞ .

Moreover,

‖Sn,0
g ‖Ap

α→F(p,p+α ,s) ≈ ‖g‖H∞ . (3.3)

Proof. We first assume that Sn,0
g : Ap

α → F(p, p+α,s) is bounded. For b ∈ D and
r > 0, let D(b,r) denote the Bergman metric disk centered at b with radius r . From
[43], we see that

(1−|b|2)2

|1−bz|4 ≈ 1
(1−|z|2)2 ≈ 1

(1−|b|2)2 , z ∈ D(b,r). (3.4)
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For any w ∈ D\{0} , let fw be defined in (2.1). We have that fw ∈ Ap
α by Lemma 3.10

of [43]. Using (3.4), we obtain

| f (n)
w (z)|p ≈ 1

(1−|z|)np+2+α , z ∈ D(w,r).

Therefore,

∞ >‖Sn,0
g f‖p

F(p,p+α ,s)

=sup
a∈D

∫
D

|(Sn,0
g fw)(n)(z)|p(1−|z|2)pn+α(1−|σa(z)|2)sdA(z)

=sup
a∈D

∫
D

| f (n)
w (z)g(z)|p(1−|z|2)pn+α(1−|σa(z)|2)sdA(z)

�
∫

D(w,r)
| f (n)

w (z)g(z)|p(1−|z|2)pn+α(1−|σw(z)|2)sdA(z)

�
∫

D(w,r)
|g(z)|p(1−|z|2)−2dA(z)

�|g(w)|p,

which implies that g ∈ H∞ .
Conversely, suppose that g ∈ H∞ . Let f ∈ Ap

α . Then by Lemma 1 we obtain

‖Sn,0
g f‖p

F(p,p+α ,s) ≈ sup
I⊂∂D

1
|I|s

∫
S(I)

|(Sn,0
g f )(n)(z)|p(1−|z|2)pn+α+sdA(z)

= sup
I⊂∂D

1
|I|s

∫
S(I)

| f (n)(z)g(z)|p(1−|z|2)pn+α+sdA(z)

�‖g‖p
H∞ sup

I⊂∂D

1
|I|s

∫
S(I)

| f (n)(z)|p(1−|z|2)pn+α+sdA(z)

�‖g‖p
H∞‖ f‖p

F(p,p+α ,s)

�‖g‖p
H∞‖ f‖p

Ap
α
.

Therefore, Sn,0
g : Ap

α → F(p, p+ α,s) is bounded. From the above proof, we see that
(3.3) holds. The proof is complete. �

4. Essential norm

In this section, we investigate the essential norm of Tn,k
g and Sn,0

g from Ap
α into

F(p, p+α,s) . The proof of the following result can be proved similarly as [25, Lemma
5.1]. We omit the proof here.

LEMMA 8. Let 1 < p < ∞ , −1 < α < ∞ , 0 < s < ∞ , n ∈ N and k ∈ N0 such
that 0 � k < n. If 0 < r < 1 and g ∈ B, then Tn,k

gr : Ap
α → F(p, p+ α,s) is compact.
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For 0 < r < 1, z ∈ D and f ∈ B, set fr(z) = f (rz) . Let distB( f ,B0) denote the
distance from the Bloch function to the little Bloch space, that is,

distB( f ,B0) = inf
g∈B0

‖ f −g‖B.

The following result can be found in [4].

LEMMA 9. If g ∈ B, then

limsup
|z|→1−

(1−|z|2)|g′(z)| ≈ distB(g,B0) ≈ limsup
r→1−

‖g−gr‖B.

THEOREM 4. Let g ∈ H(D) , 1 < p < ∞ , −1 < α < ∞ , 0 < s < ∞ , n ∈ N and
k ∈ N0 such that 0 � k < n. If T n,k

g : Ap
α → F(p, p+ α,s) is bounded, then

‖Tn,k
g ‖e,Ap

α→F(p,p+α ,s) ≈ limsup
|z|→1−

(1−|z|2)|g′(z)| ≈ distB(g,B0).

Proof. Let 0 < r < 1. By Lemma 8, Tn,k
gr : Ap

α → F(p, p+α,s) is compact. Then
by Theorem 2,

‖Tn,k
g ‖e,Ap

α→F(p,p+α ,s) � ‖Tn,k
g −Tn,k

gr
‖ = ‖Tn,k

g−gr
‖ ≈ ‖g−gr‖B.

Using Lemma 9, we have

‖Tn,k
g ‖e,Ap

α→F(p,p+α ,s) � limsup
r→1−

‖g−gr‖B ≈ distB(g,B0).

On the other hand, suppose {z j} is a sequence in D such that lim j→∞ |z j| = 1.
Let Gzj be defined as in the proof of Theorem 2 for each j. Then {Gzj} is a bounded
sequence in Ap

α , and as j → ∞ , it converges uniformly to zero on every compact subset
of D . Let K : Ap

α → F(p, p+α,s) be a compact operator. Since Ap
α is a reflexive space

we have that lim j→∞ ‖KGzj‖F(p,p+α ,s) = 0 (see [20]). From the proof of Theorem 2,
we also have

‖Tn,k
g −K‖ � limsup

j→∞
‖(Tn,k

g −K)Gzj‖F(p,p+α ,s)

� limsup
j→∞

(
‖Tn,k

g Gzj‖F(p,p+α ,s)−‖KGzj‖F(p,p+α ,s)

)

≈ limsup
j→∞

‖Tn,k
g Gzj‖F(p,p+α ,s)

� limsup
j→∞

(1−|z j|2)n−k|g(n−k)(z j)|.

Hence,

‖Tn,k
g ‖e,Ap

α→F(p,p+α ,s) � limsup
j→∞

(1−|z j|2)n−k|g(n−k)(z j)|.
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It follows from the arbitrariness of {z j} and Lemmas 3 and 9 that

‖Tn,k
g ‖e,Ap

α→F(p,p+α ,s) � limsup
|z|→1−

(1−|z|2)n−k|g(n−k)(z)|

≈ limsup
|z|→1−

(1−|z|2)|g′(z)| ≈ distB(g,B0).

The proof is complete. �
The following result can be deduced by Theorem 4 directly.

COROLLARY 1. Let g ∈H(D) , 1 < p < ∞ , −1 < α < ∞ , 0 < s < ∞ , n ∈ N and
k ∈ N0 such that 0 � k < n. Then Tn,k

g : Ap
α → F(p, p+ α,s) is compact if and only if

g ∈ B0.

THEOREM 5. Let g ∈ H(D) , 1 < p < ∞ , −1 < α < ∞ , 0 < s < ∞ and n ∈ N . If
Sn,0

g : Ap
α → F(p, p+ α,s) is bounded, then

‖Sn,0
g ‖e,Ap

α→F(p,p+α ,s) ≈ limsup
|z|→1−

|g(z)|.

Proof. By Theorem 3 we have

‖Sn,0
g ‖e,Ap

α→F(p,p+α ,s) = inf
K
‖Sn,0

g −K‖ � limsup
|z|→1−

|g(z)|.

On the other hand, suppose {z j} is a sequence in D such that lim j→∞ |z j|= 1. Let
fz j be defined as in (2.1). Let K : Ap

α → F(p, p+ α,s) be a compact operator. Then,
we similarly have lim j→∞ ‖K fz j‖F(p,p+α ,s) = 0. Hence,

‖Sn,0
g −K‖ � limsup

j→∞
‖(Sn,0

g −K) fz j‖F(p,p+α ,s)

� limsup
j→∞

‖Sn,0
g fz j‖F(p,p+α ,s)− limsup

j→∞
‖K fz j‖F(p,p+α ,s)

= limsup
j→∞

‖Sn,0
g fz j‖F(p,p+α ,s).

Therefore, from the proof of Theorem 3,

‖Sn,0
g ‖e,Ap

α→F(p,p+α ,s) � limsup
j→∞

‖Sn,0
g fz j‖F(p,p+α ,s) � limsup

j→∞
|g(z j)|,

which implies that
‖Sn,0

g ‖e,Ap
α→F(p,p+α ,s) � limsup

|z|→1−
|g(z)|.

The proof is complete. �
From Theorem 5 we get the following result.
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COROLLARY 2. Let 1 < p < ∞ , −1 < α < ∞ , 0 < s < ∞ and n ∈ N . Then
Sn,0

g : Ap
α → F(p, p+ α,s) is compact if and only if g = 0 .
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[14] S. LI AND S. STEVIĆ, Riemann-Stieltjes operators on Hardy spaces in the unit ball of C

n , Bull. Belg.
Math. Soc. Simon Stevin 14 (4) (2007), 621–628.
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