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INEQUALITY OF HARDY–TYPE FOR n–CONVEX FUNCTION VIA

INTERPOLATION POLYNOMIAL AND GREEN FUNCTIONS

DORA POKAZ

(Communicated by I. Perić)

Abstract. We obtain new results on the Hardy-type inequality in the general context, in terms of
measure spaces with positive σ -finite measures. The connection is made between the difference
operator derived from the Hardy-type inequality on the one hand and the expression containing
the interpolating polynomial of Abel-Gontscharoff and the four Green functions on the other
hand. We discuss the n-convexity of the function and consider the result depending on the parity
of the indexes n and m . Further results are obtained by using the Hölder inequality for conjugate
exponents p and q . Finally, we derive upper bounds for the remainder, obtained from the
main result, using the Čebyšev functional. The Ostrowski-type bound for the generalized Hardy
inequality is also given.

1. Introduction

Green functions, named after the famous British mathematician and physicist
George Green are very interesting from different aspects. These functions allow us to
solve various types of differential equations, including an ordinary differential equation
with initial conditions and more difficult ones such as an inhomogeneous partial differ-
ential equation with boundary conditions. Green functions are used for solving wide
variety of problems, specifically in quantum field theory, aerodynamics, aeroacoustics,
electrodynamics, seismology and statistical field theory.

Here we deal with specific Green functions, based on the article [9]. Throughout
the paper, with G̃γ , γ = 1,2,3,4, we denote the following Green functions defined on
[α,β ]× [α,β ] with

G̃1(t,s) =

{
α − s , α � s � t;

α − t, t � s � β .
(1)

G̃2(t,s) =

{
t−β , α � s � t;

s−β , t � s � β .
(2)

G̃3(t,s) =

{
t−α , α � s � t;

s−α, t � s � β .
(3)
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G̃4(t,s) =

{
β − s , α � s � t;

β − t, t � s � β .
(4)

Note that all these functions are continuous and convex with respect to both vari-
ables. We proceed with useful result from [15].

LEMMA 1. For φ ∈C2([α,β ]) , the following identities hold

φ(t) = φ(α)+ (t−α)φ ′(β )+
∫ β

α
G̃1(t,s)φ ′′(s)ds, (5)

φ(t) = φ(β )+ (t−β )φ ′(α)+
∫ β

α
G̃2(t,s)φ ′′(s)ds, (6)

φ(t) = φ(β )+ (t−α)φ ′(α)− (β −α)φ ′(β )+
∫ β

α
G̃3(t,s)φ ′′(s)ds, (7)

φ(t) = φ(α)− (β − t)φ ′(β )+ (β −α)φ ′(α)+
∫ β

α
G̃4(t,s)φ ′′(s)ds, (8)

where the functions G̃γ , γ = 1, . . . ,4, are defined by (1)–(4).

The aim of this article is to give a result related to the general Hardy-type inequal-
ity. The classical Hardy inequality from [6] is

∞∫
0

⎛
⎝1

x

x∫
0

f (t)dt

⎞
⎠

p

dx �
(

p
p−1

)p ∞∫
0

f p(x)dx, p > 1, (9)

where f is non-negative function such that f ∈ Lp(R+) and R+ = (0,∞) . The constant(
p

p−1

)p
is sharp. Inequality (9) was generalized in many ways, see [7], [11] and [12].

Here we refer to settings and generalization from [7]. We begin by defining the
settings that we continue to work with. Let (Σ1,Ω1,μ1) and (Σ2,Ω2,μ2) be measure
spaces with positive σ -finite measures and Ak be the integral operator defined by

Ak f (x) :=
1

K(x)

∫
Ω2

k(x,t) f (t)dμ2(t), (10)

where k : Ω1 ×Ω2 → R is a measurable and non-negative kernel, f : Ω2 → R is a
measurable function and

0 < K(x) :=
∫

Ω2

k(x,t)dμ2(t), x ∈ Ω1. (11)

Throughout the article we mark an open interval in R with I . The following result
was given in [7] and also [8].
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THEOREM 1. Let u be a weight function, k(x,y) � 0 . Assume that k(x,y)
K(x) u(x) is

locally integrable on Ω1 for each fixed y ∈ Ω2 . Define v by

v(y) :=
∫

Ω1

k(x,y)
K(x)

u(x)dμ1(x) < ∞. (12)

If Φ is a convex function on the interval I ⊆ R , then the inequality∫
Ω1

Φ(Ak f (x))u(x)dμ1(x) �
∫

Ω2

Φ( f (y))v(y)dμ2(y) (13)

holds for all measurable functions f : Ω2 → R , such that Im f ⊆ I , where Ak is defined
by (10)–(11).

Now, we start with the generalized Hardy-type inequality (13). In the settings
where Ak is as in (10), a weight function u with v given by (12) and for γ ∈ {1,2,3,4} ,
we consider G̃γ to be as in (1)–(4). In addition, for φ ∈ C2([α,β ]) , identities (5)–(8)
and some simple calculations yield the following statements from [9]∫

Ω2

φ( f (y))v(y)dμ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dμ1(x)

=
∫ β

α

⎡
⎣∫

Ω2

G̃γ( f (y),s)v(y)dμ2(y)−
∫

Ω1

G̃γ (Ak f (x),s)u(x)dμ1(x)

⎤
⎦φ ′′(s)ds. (14)

The techniques that we use in the paper are based on classical real analysis and
the application of the Abel-Gontscharoff interpolation. The Abel-Gontscharoff inter-
polation problem in the real case was introduced in 1935 by Whittaker [14] and sub-
sequently by Gontscharoff [5] and Davis [4]. The next theorem presents the Abel-
Gontscharoff interpolating polynomial for two points with integral remainder (see [1]).

THEOREM 2. Let n,m ∈ N , n � 2 , 0 � m � n−1 and φ ∈Cn([α,β ]). Then

φ(u) = Qn−1 (α,β ,φ ,u)+R(φ ,u) , (15)

where Qn−1 is the Abel-Gontscharoff interpolating polynomial for two-points of degree
n−1 , i.e.

Qn−1 (α,β ,φ ,u) =
m

∑
s=0

(u−α)s

s!
φ (s)(α)

+
n−m−2

∑
r=0

[
r

∑
s=0

(u−α)m+1+s (α −β )r−s

(m+1+ s)!(r− s)!

]
φ (m+1+r)(β )

and the remainder is given by

R(φ ,u) =
∫ β

α
Gmn(u,t)φ (n)(t)dt,
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where Gmn(u, t) is Green’s function defined by

Gmn(u, t) =
1

(n−1)!

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m

∑
s=0

(
n−1

s

)
(u−α)s (α − t)n−s−1 , α � t � u;

−
n−1

∑
s=m+1

(
n−1

s

)
(u−α)s (α − t)n−s−1 , u � t � β .

(16)

REMARK 1. Further, for α � t,u � β the following inequalities hold

(−1)n−m−1 ∂ sGmn(u,t)
∂us � 0, 0 � s � m,

(−1)n−s ∂ sGmn(u,t)
∂us � 0, m+1 � s � n−1.

Further in the article, we state our results for the class of n -convex functions, a
more general class of functions that contains convex functions as a special case. We
recall the basic definition and some properties of n -convex functions.

DEFINITION 1. The n -th order divided difference, n ∈ N0 , of a function φ :
[α,β ] → R at mutually distinct points x0,x1, . . . ,xn ∈ [α,β ] is defined recursively by

[xi;φ ] = φ(xi), i = 0, . . . ,n

[x0, . . . ,xn;φ ] =
[x1, . . . ,xn;φ ]− [x0, . . . ,xn−1;φ ]

xn− x0
.

The value [x0, . . . ,xn;φ ] is independent of the order of the points x0, . . . ,xn. A
function f : [α,β ] → R is n -convex if all its n -th order divided differences are non-
negative, i. e. [x0, . . . ,xn; f ] � 0 for all choices xi ∈ [α,β ] . Thus, 0-convex functions
are non-negative and 1-convex functions are non-decreasing, while 2-convex functions
are convex in the classical sense. An n -times differentiable is n -convex if and only if
its n -derivative is non-negative (see [13]).

After the Introduction, in Section 2 we state and prove the main result involving
the Hardy difference operator in the general settings and the Abel-Gontscharoff inter-
polating polynomial. We discuss the cases where indexes n and m are numbers with
opposite parity. We conclude the section with the application of the Hölder inequality.
Finally, Section 3 is devoted to results concerning the determination of upper bounds
for remainders.

2. Main result

In the main result we establish the connection between the Hardy difference oper-
ator derived from(13) and the expression that involves Abel-Gontscharoff interpolating
polynomial (15) and Green functions (1)–(4).
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THEOREM 3. Let (Σ1,Ω1,μ1) and (Σ2,Ω2,μ2) be measure spaces with positive
σ -finite measures. Let u : Ω1 → R, be a weight function and v defined by (12). Let
Ak f ,K be defined by (10) and (11) respectively and for γ ∈ {1,2,3,4} , G̃γ is as in
(1)–(4). Finally, let n,m ∈ N, n � 4, 0 � m � n− 3, Gmn be defined by (16) and
φ : I → R be such that φ (n−1) is absolutely continuous and α,β ∈ I, α < β . Then∫

Ω2

φ( f (y))v(y)dμ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dμ1(x)

=
∫ β

α
DG̃γ( f ,z)×

m

∑
s=0

(z−α)s

s!
φ (s+2)(α)dz+

∫ β

α
DG̃γ( f ,z)

×
n−m−4

∑
r=0

[
r

∑
s=0

(z−α)m+s+1(−1)r−s(β −α)r−s

(m+ s+1)!(r− s)!

]
φ (m+r+3)(β )dz

+
∫ β

α
φ (n)(t)

(∫ β

α
DG̃γ( f ,z)×Gm,n−2(z,t)dz

)
dt, (17)

where

DG̃γ ( f ,z) =
∫

Ω2

G̃γ ( f (y),z)v(y)dμ2(y)−
∫

Ω1

G̃γ(Ak f (x),z)u(x)dμ1(x) (18)

Proof. We prove the statement for the case of Green function G̃1 . Applying the
(5) from Lemma 1 to both expressions on the left-hand side in (17), we obtain∫

Ω2

φ( f (y))v(y)dμ2(y) =
∫

Ω2

[
φ(α)+ ( f (y)−α)φ ′(β )

]
v(y)dμ2(y)

+
∫

Ω2

[∫ β

α
G̃1( f (y),z)φ ′′(z)dz

]
v(y)dμ2(y), (19)

∫
Ω1

φ(Ak f (x))u(x)dμ1(x) =
∫

Ω1

[
φ(α)+ (Ak f (x)−α)φ ′(β )

]
u(x)dμ1(x)

+
∫

Ω1

[∫ β

α
G̃1(Ak f (x),z)φ ′′(z)dz

]
u(x)dμ1(x). (20)

Now, if we subtract (20) from (19), we get∫
Ω2

φ( f (y))v(y)dμ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dμ1(x) (21)

=
∫

Ω2

[∫ β

α
G̃1( f (y),z)φ ′′(z)dz

]
v(y)dμ2(y)

−
∫

Ω1

[∫ β

α
G̃1(Ak f (x),z)φ ′′(z)dz

]
u(x)dμ1(x),
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since

∫
Ω2

[
φ(α)+ ( f (y)−α)φ ′(β )

]
v(y)dμ2(y) (22)

−
∫

Ω1

[
φ(α)+ (Ak f (x)−α)φ ′(β )

]
u(x)dμ1(x)

= 0.

The reason for equation (22) lies in the following equations

∫
Ω2

v(y)dμ2(y) =
∫

Ω2

∫
Ω1

k(x,y)
K(x)

u(x)dμ1(x)dμ2(y)

=
∫

Ω1

u(x)
K(x)

∫
Ω2

k(x,y)dμ2(y)dμ1(x) =
∫

Ω1

u(x)dμ1(x)

and

∫
Ω1

Ak f (x)u(x)dμ1(x) =
∫

Ω1

⎡
⎣ 1

K(x)

∫
Ω2

k(x,y) f (y)dμ2(y)

⎤
⎦u(x)dμ1(x)

=
∫

Ω2

f (y)v(y)dμ2(y).

Additionaly, by using Fubini theorem on (21), we get the result for the Green
function G̃1 . Similarly, from (6), (7) and (8), we obtain the combined expression (14)
for all four Green functions.

Further, for function φ ′′ in (14) we take the Abel-Gontscharoff interpolating poly-
nomial. We substitute φ with φ ′′ and n with n−2 in the expression

φ(z) =
m

∑
s=0

(z−α)s

s!
φ (s)(α)

+
n−m−2

∑
r=0

[
r

∑
s=0

(z−α)m+1+s(−1)r−s(β −α)r−s

(m+1+ s)!(r− s)!

]
φ (m+1+r)(β )

+

β∫
α

Gmn(z,t)φ (n)(t)dt
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and get

φ ′′(z) =
m

∑
s=0

(z−α)s

(s)!
φ (s+2)(α) (23)

+
n−m−4

∑
r=0

[
r

∑
s=0

(z−α)m+s+1(−1)r−s(β −α)r−s

(m+ s+1)!(r− s)!

]
φ (m+r+3)(β )

+

β∫
α

Gm,n−2(z,t)φ (n)(t)dt.

Finally, our statement (17) follows from (14) and (23). �

THEOREM 4. Suppose that u, v Ak ,G̃γ , DG̃γ for γ ∈ {1,2,3,4} and Gmn , n �
4, 0 � m � n−3, be as in Theorem 3. If φ : I → R is n-convex, and

(i) n−m is odd number, then the inequality

∫
Ω2

φ( f (y))v(y)dμ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dμ1(x)

�
∫ β

α
DG̃γ( f ,z)×

m

∑
s=0

(z−α)s

s!
φ (s+2)(α)dz+

∫ β

α
DG̃γ( f ,z)

×
n−m−4

∑
r=0

[
r

∑
s=0

(z−α)m+s+1(−1)r−s(β −α)r−s

(m+ s+1)!(r− s)!

]
φ (m+r+3)(β )dz (24)

holds.

(ii) n−m is even number, then the inequality∫
Ω2

φ( f (y))v(y)dμ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dμ1(x)

�
∫ β

α
DG̃γ( f ,z)×

m

∑
s=0

(z−α)s

s!
φ (s+2)(α)dz+

∫ β

α
DG̃γ( f ,z)

×
n−m−4

∑
r=0

[
r

∑
s=0

(z−α)m+s+1(−1)r−s(β −α)r−s

(m+ s+1)!(r− s)!

]
φ (m+r+3)(β )dz (25)

holds.

Proof. (i) Since G̃γ(·, ·) is continuous and convex with respect to both variables
for each γ ∈ {1,2,3,4} , according to the (13), inequality

DG̃γ ( f ,z) � 0
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holds for every t ∈ [α,β ] . On the other hand G̃γ given by (1) - (4) are non-negative
and so is φn since φ is n -convex. By definition (16) of the function Gmn , according
to the Remark for s = 0 we can conclude that (−1)n−m−1Gmn � 0. If n−m− 1 is
even, then Gmn is non-negative. On the other hand, if n−m−1 is odd, then Gmn is not
positive. In (17) we have expression containing Gm,n−2 . So, if n−m−3 is even, then
Gm,n−2 � 0. Instead of the condition n−m−3 is even, we can observe the equivalent
condition where n−m is odd and the inequality (24) follows from the Theorem 3.

(ii) Similarly, if n−m−3 is odd, then Gm,n−2 � 0 so the inequality (25) holds. �
In other words, condition (i) of the Theorem 4 is satisfied when n and m are

numbers of opposite parity. One of them is even and the other one is odd. Analogously,
condition (ii) means that numbers n and m are both even or both odd.

In further study, we consider Hölder inequality for conjugate exponents p and q .
As usual we suppose that 1 � p,q � ∞ and 1

p + 1
q = 1. The symbol ‖ · ‖p denotes the

standard Lp([α,β ]) norm of a function, i. e.

‖ g ‖p=
(∫ β

α
|g(s)|pds

) 1
p

for 1 � p < ∞ , while ‖g‖∞ is the essential supremum of g .
To simplify notation, for γ ∈{1,2,3,4} we introduce the abbreviation Bγ : [α,β ]→

R in the form:

Bγ (t) =
∫ β

α
DG̃γ ( f ,z)×Gm,n−2(z,t)dz, (26)

where we assume that all the terms appearing in Bγ satisfy the assumptions of Theorem
3.

COROLLARY 1. Let n,m ∈ N , n � 4 , 0 � m � n−3 and φ : I → R be such that
φ (n−1) is absolutely continuous and φ (n) ∈ Lp[α,β ] for α , β ∈ I , α < β . Further, let
Ak be as in (10), γ ∈ {1,2,3,4} , G̃γ as in (1)–(4), DG̃γ as in (18), Gmn as in (16), Bγ
as in (26) and u a weight function with v given by (12). If (p,q) is a pair of conjugate
exponents, then

|R(φ)| � ‖φ (n)‖p×‖Bγ(t)‖q, (27)

holds, where

R(φ) =
∫

Ω2

φ( f (y))v(y)dμ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dμ1(x)−
∫ β

α
DG̃γ( f ,z)

×
[

m

∑
s=0

(z−α)s

(s)!
φ (s+2)(α)+

n−m−4

∑
r=0

[
r

∑
s=0

(z−α)m+s+1(−1)r−s(β −α)r−s

(m+ s+1)!(r− s)!

]

×φ (m+r+3)(β )
]
dt. (28)
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Proof. Applying the Hölder inequality on (17) considering the notation (28) and
abbreviation (26) we get

|R(φ)| =
∣∣∣∣
∫ β

α
φ (n)(t)

[∫ β

α
DG̃γ ( f ,z)×Gm,n−2 (z,t)dz

]
dt

∣∣∣∣
� ‖φ (n)‖p×

(∫ β

α

∣∣∣∣
∫ β

α
DG̃γ ( f ,z)×Gm,n−2(z,t)dz

∣∣∣∣
q

dt

) 1
q

= ‖φ (n)‖p×
(∫ β

α

∣∣Bγ(t)
∣∣q dt

) 1
q

= ‖φ (n)‖p×‖Bγ(t)‖q

and obtain the required inequality. �

REMARK 2. As special cases for boundary values p and q , from the inequality
(27) we get the following inequalities

|R(φ)| � max |φ (n)(t)|×
∣∣∣∣
∫ β

α
Bγ(t)dt

∣∣∣∣
and

|R(φ)| � max

∣∣∣∣
∫ β

α
Bγ(t)dt

∣∣∣∣×
∣∣∣∣
∫ β

α
φ (n)(t)dt

∣∣∣∣ .
3. Upper bounds for remainders

Consider the Čebyšev functional,

T (h,g) =
1

β −α

∫ β

α
h(t)g(t)dt−

(
1

β −α

∫ β

α
h(t)dt

)
·
(

1
β −α

∫ β

α
g(t)dt

)

for Lebesgue integrable functions h,g : [α,β ] → R . It plays a crucial role in the con-
struction of the upper bounds. The next two theorems from [3] provide Grüss and
Ostrowski type inequalities involving the above functional.

THEOREM 5. Let h,g : [α,β ] → R be two absolutely continuous functions with
(·−α)(β −·)(h′)2,(·−α)(β −·)(g′)2 ∈ L([α,β ]). Then

|T (h,g)| � 1√
2
|T (h,h)| 1

2
1√

β −α

(∫ β

α
(s−α)(β − s)[g′(s)]2ds

) 1
2

. (29)

The constant 1√
2

is the best possible in (29).

THEOREM 6. Assume that g : [α,β ] → R is monotonic non-decreasing and h :
[α,β ] → R is absolutely continuous with h′ ∈ L∞([α,β ]). Then

|T (h,g)| � 1
2(β −α)

∥∥h′
∥∥

∞

∫ β

α
(s−α)(β − s)dg(s). (30)

The constant 1
2 is the best possible in (30) .
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We apply the Theorem 5 to get upper bound for the remainder obtained according
to the main result (17).

THEOREM 7. Let n ∈ N , n � 4 , γ ∈ {1,2,3,4} , DG̃γ , Bγ , R are as in (18),
(26), (28), respectively and φ : [α,β ] → R be such that φ (n) is absolutely continuous
with (·−α)(β − ·)(φ (n+1))2 ∈ L([α,β ]) . If (·−α)(β − ·)(B′

γ)
2 ∈ L([α,β ]) , then the

remainder

ρ(φ ;α,β ) = R(φ)− φ (n−1)(β )−φ (n−1)(α)
β −α

∫ β

α
Bγ(t)dt (31)

is bounded by

|ρ(φ ;α,β )| �
√

β −α√
2

∣∣T (Bγ ,Bγ )
∣∣ 1

2

(∫ β

α
(t−α)(β − t)[φ (n+1)(t)]2dt

) 1
2

. (32)

Proof. From (17) and (31) we conclude

ρ(φ ;α,β ) =
∫ β

α
Bγ (t)φ (n)(t)dt− φ (n−1)(β )−φ (n−1)(α)

β −α

∫ β

α
Bγ (t)dt. (33)

Assumptions of Theorem 5 are satisfied for h = Bγ and g = φ (n) , so together with (33)
we calculate

1
β −α

|ρ(φ ;α,β )|

=
∣∣∣∣ 1
β −α

∫ β

α
Bγ(t)φ (n)(t)dt − 1

β −α

∫ β

α
Bγ(t)dt · 1

β −α

∫ β

α
φ (n)(t)dt

∣∣∣∣
� 1√

2

∣∣T (Bγ ,Bγ )
∣∣ 1

2
1√

β −α

(∫ β

α
(t−α)(β − t)[φ (n+1)(t)]2dt

) 1
2

. (34)

Therefore from (34) we get (32). �

Application of the Theorem 6 yields the following result, again concerning the
upper bound for the remainder ρ defined by (31).

THEOREM 8. Let n ∈ N , n � 4 , Bγ be as in (26) and φ : [α,β ]→ R be such that
φ (n) is monotonic non-decreasing. If Bγ is absolutely continuous with B′

γ ∈ L∞([α,β ]) ,
then the remainder ρ(φ ;α,β ) given by (31) is bounded by

|ρ(φ ;α,β )|

� ‖B′
γ‖∞

⎡
⎣ (β −α)

(
φ (n−1)(β )+ φ (n−1)(α)

)
2

−
{

φ (n−2)(β )−φ (n−2)(α)
}⎤⎦ . (35)
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Proof. Assumptions of Theorem 6 are satisfied for h = Bγ and g = φ (n) , so, taking
into account (33), we have∣∣∣∣ 1

β −α

∫ β

α
Bγ(t)φ (n)(t)dt − 1

β −α

∫ β

α
Bγ(t)dt · 1

β −α

∫ β

α
φ (n)(t)dt

∣∣∣∣
� 1

2(β −α)

∥∥B′
γ
∥∥

∞

∫ β

α
(t−α)(β − t)φ (n+1)(t)dt. (36)

Simple calculation yields

∫ β

α
(t−α)(β − t)φ (n+1)(t)dt

=
∫ β

α
[2t− (α + β )]φ (n)(t)dt

= (β −α)
[
φ (n−1)(β )+ φ (n−1)(α)

]
−2

[
φ (n−2)(β )−φ (n−2)(α)

]
.

Finally, inserting the last expression in (36) and taking into account (33) we get (35). �
The last theorem gives Ostrowski-type bound for the generalized Hardy’s inequal-

ity. About Ostrowski-type inequalities can be found i.e. in [2] and [10].

THEOREM 9. Let n∈ N , n � 4 , DG̃γ and Bγ be as in (18) and (26), respectively.
Let 1 � p,q � ∞ , 1

p + 1
q = 1 and φ : [α,β ] → R be such that ‖φ (n)‖p < ∞ . Then∣∣∣∣∣

∫
Ω2

φ( f (y))v(y)dμ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dμ1(x)−
∫ β

α
DG̃γ( f ,z)

×
[

m

∑
s=0

(z−α)s

(s)!
φ (s+2)(α)+

n−m−4

∑
r=0

[
r

∑
s=0

(z−α)m+s+1(−1)r−s(β −α)r−s

(m+ s+1)!(r− s)!

]

×φ (m+r+3)(β )
]
dt

∣∣∣∣∣ �
∥∥∥φ (n)

∥∥∥
p

∥∥Bγ
∥∥

q .

The constant on the right hand side is sharp when 1 < p � ∞ and the best possible
when p = 1 .
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