VILENKIN-FOURIER SERIES IN VARIABLE LEBESGUE SPACES

Daviti Adamadze and Tengiz Kopaliani*

(Communicated by I. Perić)

Abstract

Let $S_{n} f$ be the nth partial sum of the Vilenkin-Fourier series of $f \in L^{1}(G)$. For $1<p_{-} \leqslant p_{+}<\infty$, we characterize all exponent $p(\cdot)$ such that if $f \in L^{p(\cdot)}(G), S_{n} f$ converges to f in $L^{p(\cdot)}(G)$.

1. Introduction

Let $\left\{p_{i}\right\}_{i \geqslant 0}$ be a sequence of integers, $p_{i} \geqslant 2$. Let $G=\prod_{i=0}^{\infty} \mathbb{Z}_{p_{i}}$ be the direct product of cyclic groups of order p_{i}, and μ the Haar measure on G normalized by $\mu(G)=1$. Each element of G can be considered as a sequence $\left\{x_{i}\right\}$, with $0 \leqslant x_{i}<p_{i}$. Set $m_{0}=1, m_{k}=\Pi_{i=0}^{k-1} p_{i}, k=1,2, \ldots$. There is a well-known and natural measure preserving identification between group G and closed interval $[0,1]$. This identification consists in associating with each $\left\{x_{i}\right\} \in G, 0 \leqslant x_{i}<p_{i}$, the point $\sum_{i=0}^{\infty} x_{i} m_{i+1}^{-1}$. If we disregard the countable set of p_{i}-rationals, this mapping is one-one, onto and measurepreserving.

For each $x=\left\{x_{i}\right\} \in G$, define $\phi_{k}(x)=\exp \left(2 \pi i x_{k} / p_{k}\right), k=0,1, \ldots$ The set $\left\{\psi_{n}\right\}$ of characters of G consists of all finite product of ϕ_{k}, which we enumerate in the following manner. Express each nonnegative integer n as a finite sum $n=\sum_{i=0}^{\infty} \alpha_{k} m_{k}$, with $0 \leqslant \alpha_{k}<p_{k}$, and define $\psi_{n}=\prod_{i=0}^{\infty} \phi_{k}^{\alpha_{k}}$. The functions ψ_{n} form a complete orthonormal system on G. For the case $p_{i}=2, i=0,1, \ldots, G$ is the dyadic group, ϕ_{k} are Rademacher functions and ψ_{n} are Walsh functions. In general, the system $\left\{\psi_{n}\right\}$ is a realization of the multiplicative Vilenkin system. In this paper, there is no restriction on the orders $\left\{p_{i}\right\}$.

For $f \in L^{1}(G)$, let $S_{n} f, n=0,1, \ldots$, be the nth partial sum of the Vilenkin-Fourier series of f. When the orders p_{i} of cyclic groups are bounded Watari [19] showed that for $f \in L^{p}(G), 1<p<\infty$,

$$
\lim _{n \rightarrow \infty} \int_{G}\left|S_{n} f-f\right|^{p} d \mu=0
$$

Young [17], Schipp [14] and Simon [15] showed independently that results concerning mean convergence of partial sums of the Vilenkin-Fourier series are still valid even if the orders p_{i} are unbounded.

[^0]Let $\left\{G_{k}\right\}$ be the sequence of subgroups of G defined by

$$
G_{0}=G, \quad G_{k}=\prod_{i=0}^{k-1}\{0\} \times \prod_{i=k}^{\infty} \mathbb{Z}_{p_{i}}, \quad k=1,2, \ldots
$$

On the closed interval $[0,1]$, cosets of G_{k} are intervals of the form $\left[j m_{k}^{-1},(j+\right.$ 1) $\left.m_{k}^{-1}\right], j=0,1, \ldots, m_{k}-1$. By \mathscr{F} we denote the set of generalized intervals. This set is the collection of all translations of intervals $\left[0, j m_{k+1}^{-1}\right], k=0,1, \ldots j=1, \ldots, p_{k}$. Note that a set I belongs to \mathscr{F} if (1) for some $x \in G$ and $k, I \subset x+G_{k}$, (ii) I is a union of cosets of G_{k+1}, and (iii) if we consider $x+G_{k}$ as a circle, I is an interval. Let $\mathscr{F}_{-1}=\{G\}$. For $k=0,1, \ldots$, let \mathscr{F}_{k} be the collection of all $I \in \mathscr{F}$ such that I is a proper subset of a coset of G_{k}, and is a union of cosets of G_{k+1}. The collections \mathscr{F}_{k} are disjoint, and $\mathscr{F}=\cup_{k=-1}^{\infty} \mathscr{F}_{k}$. For $I \in \mathscr{F}$, we define the set $3 I \in \mathscr{F}$ as follows. If $I=G$, let $3 I=G$. For $I \in \mathscr{F}_{k}, k=0,1, \ldots$, there is $x \in G$ such that $I \subset x+G_{k}$. If $\mu(I) \geqslant \frac{\mu\left(G_{k}\right)}{3}$, let $3 I=x+G_{k}$. If $\mu(I)<\frac{\mu\left(G_{k}\right)}{3}$, consider $x+G_{k}$ as a circle. Then I is an interval in this circle. Define $3 I \in \mathscr{F}_{k}$ to be the interval in this circle which contains I at its center and has measure $\mu(3 I)=3 \mu(I)$. In all cases, for $I \in \mathscr{F}, \mu(3 I) \leqslant 3 \mu(I)$.

We say that w is a weight function on G if w is measurable and $0<w(x)<\infty$ a.e. Gosselin [7] (case $\left.\sup _{i} p_{i}<\infty\right)$ and Young [18] (no restriction on the orders p_{i}) characterized all weight functions w such that if $f \in L_{w}^{p}(G), 1<p<\infty, S_{n} f$ converges to f in $L_{w}^{p}(G)$. Here $L_{w}^{p}(G)$ denotes the space of measurable functions on G such that $\|f\|_{p, w}=\left(\int_{G}|f|^{p} w d \mu\right)^{1 / p}<\infty$.

DEFINITION 1.1. (see [18]) (i) We say that w satisfies $A_{p}(G)$ condition, $1<$ $p<\infty$, if

$$
\begin{equation*}
[w]_{A_{p}}=\sup _{I \in \mathscr{F}}\left(\frac{1}{\mu(I)} \int_{I} w d \mu\right)\left(\frac{1}{\mu(I)} \int_{I} w^{-1 /(p-1)} d \mu\right)^{p-1}<\infty . \tag{1.1}
\end{equation*}
$$

(ii) We say that w satisfies $A_{1}(G)$ condition if

$$
[w]_{A_{1}}=\sup _{I \in \mathscr{F}} \frac{1}{\mu(I)} \int_{I} w d \mu\left(\operatorname{essinf}_{I} w(x)\right)^{-1}<\infty
$$

For the case where the orders of cyclic groups are bounded, Gosselin [7] defined $A_{p}(G)$ condition, as the one where (1.1) condition holds for all I that are cosets of $G_{k}, k=0,1,2, \ldots$. For this case A_{p} conditions, defined by Young and Gosselin, are equivalent (see [18]).

THEOREM 1.2. ([18]) Let w be a weight function on G. For $1<p<\infty$, the following statements are equivalent:
(i) $w \in A_{p}(G)$,
(ii) There is a constant C, depending only on w and p, such that for every $f \in$ $L_{w}^{p}(G)$, we have

$$
\int_{G}\left|S_{n} f\right|^{p} w d \mu \leqslant C \int_{G}|f|^{p} w d \mu
$$

(iii) For every $f \in L_{w}^{p}(G)$, we have

$$
\lim _{n \rightarrow \infty} \int_{G}\left|S_{n} f-f\right|^{p} w d \mu=0
$$

In this paper we characterize all exponents $p(\cdot)$ such that if $f \in L^{p(\cdot)}(G)$, then partial sums $S_{n} f$ of the Vilenkin-Fourier series of $f \in L^{p(\cdot)}(G)$ converge to f with $L^{p(\cdot)}$-norm. Now we give a definition of variable Lebesgue space. Let $p(\cdot): G \rightarrow$ $[1, \infty)$ be a measurable function. The variable Lebesgue space $L^{p(\cdot)}(G)$ is the set of all measurable functions f such that for some $\lambda>0$,

$$
\rho_{p(\cdot)}(f / \lambda)=\int_{G}(|f(x)| / \lambda)^{p(x)} d \mu<\infty .
$$

$L^{p(\cdot)}(G)$ is a Banach function space equipped with the Luxemburg norm

$$
\|f\|_{p(\cdot)}=\inf \left\{\lambda>0: \rho_{p(\cdot)}(f / \lambda) \leqslant 1\right\}
$$

We use the notations $p_{-}(I)=\operatorname{essinf}_{x \in I} p(x)$ and $p_{+}(I)=\operatorname{esssup}_{x \in I} p(x)$ where $I \subset G$. If $I=G$ we simply use the following notation p_{-}, p_{+}. The function $p^{\prime}(\cdot)$ denotes the conjugate exponent function of $p(\cdot)$, i.e., $1 / p(x)+1 / p^{\prime}(x)=1 \quad(x \in G)$. In this paper the constants C, c are absolute constants and may be different in different contexts and χ_{A} denotes the characteristic function of set A.

Very recently the convergence of partial sums of the Walsh-Fourier series in $L^{p(\cdot)}([0,1))$ space was investigated by Jiao et al. [8]. We denote by $C_{d}^{\log }$ the set of all functions $p(\cdot):[0,1) \rightarrow[1 \infty)$, for which there exists a positive constant C such that

$$
|I|^{p_{-}(I)-p_{+}(I)} \leqslant C
$$

for all dyadic intervals $I=\left[k 2^{-n},(k+1) 2^{-n}\right)\left(k, n \in \mathbb{N} 0 \leqslant k<2^{n}\right)$, here $|I|$ denotes the Lebesgue measure of I. Note that this condition may be interpreted as a dyadic version of log-Hölder continuity condition of $p(\cdot)$ (or on dyadic group). The log-Hölder condition is a very common condition for solving various problems of harmonic analysis in $L^{p(\cdot)}\left(\mathbb{R}^{n}\right)$ (see [2], [5]).

THEOREM 1.3. ([8]) Let $p(\cdot) \in C_{d}^{\log }$ with $1<p_{-} \leqslant p_{+}<\infty$. If $f \in L^{p(\cdot)}([0,1))$, then for partial sums $S_{n} f$ of the Walsh-Fourier series of $f \in L^{p(\cdot)}([0,1))$ we have

$$
\sup _{n \in \mathbb{N}}\left\|S_{n} f\right\|_{p(\cdot)} \leqslant C\|f\|_{p(\cdot)}
$$

Since Walsh polynomials are dense in $L^{p(\cdot)}([0,1))$, Theorem 1.3 implies that $S_{n} f$ converges to the original function in $L^{p(\cdot)}([0,1))$-norm (for more details see [8] and the recent book [13], chapter 9).

In order to extend techniques and results of constant exponent case to the setting of variable Lebesgue spaces, a central problem is to determine conditions on an exponent $p(\cdot)$ under which the Hardy-Littlewood maximal operator is bounded on $L^{p(\cdot)}$
(see monographs Cruz-Uribe and Fiorenza [2] and Diening et.al. [5]). We now define the Hardy-Littlewood maximal function that is appropriate for the study of VilenkinFourier series. For $f \in L^{1}(G)$, let

$$
M f(x)=\sup _{x \in I, I \in \mathscr{F}} \frac{1}{\mu(I)} \int_{I}|f| d \mu
$$

This maximal function was introduced first by P. Simon in [16]. He showed that the maximal operator is bounded in $L^{p}(G), 1<p<\infty$ and is of weak type $(1,1)$. Young [18] obtained the following analogue of Muckenhoupt's theorem [11].

THEOREM 1.4. Let w be a weight function on G. For $1<p<\infty$, the following two statements are equivalent:
(i) $w \in A_{p}(G)$,
(ii) There is a constant C, depending only on w and p, such that for every $f \in$ $L_{w}^{p}(G)$, we have

$$
\int_{G}(M f)^{p} w d \mu \leqslant C \int_{G}|f|^{p} w d \mu
$$

In case $p=1$ the following two statements are also equivalent:
(iii) $w \in A_{1}(G)$,
(iv) There is constant C, depending only on w, such that for every $f \in L^{1}(G)$

$$
\int_{\{M f>y\}} w d \mu \leqslant C y^{-1} \int_{G}|f| w d \mu, y>0
$$

DEFINITION 1.5. We say that the exponent $p(\cdot), 1<p_{-} \leqslant p_{+}<\infty$ satisfies the condition $\mathscr{A}(G)$, if there is a constant C such that for every $I \in \mathscr{F}$,

$$
\begin{equation*}
\frac{1}{\mu(I)}\left\|\chi_{I}\right\|_{p(\cdot)}\left\|\chi_{I}\right\|_{p^{\prime}(\cdot)} \leqslant C \tag{1.2}
\end{equation*}
$$

The condition (1.2) plays exactly the same role for averaging operators in variable Lebesgue spaces as the Muckenhoupt A_{p} conditions for weighted Lebesgue spaces (see [9], [10], for Euclidian setting). We show that the $\mathscr{A}(G)$ condition is necessary and sufficient for the $L^{p(\cdot)}(G)$ boundedness of Hardy-Littlewood maximal function. One of the main result of the present paper is the following theorem.

THEOREM 1.6. Assume for the exponent $p(\cdot)$ we have $1<p_{-} \leqslant p_{+}<\infty$. Then the following two statements are equivalent:
(i) $p(\cdot) \in \mathscr{A}(G)$,
(ii) There is a constant C, depending only on $p(\cdot)$ such that for every $f \in L^{p(\cdot)}(G)$, we have

$$
\|M f\|_{p(\cdot)} \leqslant C\|f\|_{p(\cdot)}
$$

By the symmetry of the definition, $p(\cdot) \in \mathscr{A}(G)$ if and only if $p^{\prime}(\cdot) \in \mathscr{A}(G)$ and from Theorem 1.6 we have that, even though, M is not a linear operator, the boundedness of M implies the "dual" inequality.

Corollary 1.7. Let for exponent $p(\cdot)$ we have $1<p_{-} \leqslant p_{+}<\infty$. Then the maximal operator M is bounded on $L^{p(\cdot)}(G)$ if and only if M is bounded on $L^{p^{\prime}(\cdot)}(G)$.

We prove the following theorem (in the Euclidean setting see [2], Theorem 4.37 and [5], Theorem 5.7.2).

THEOREM 1.8. Let for the exponent $p(\cdot)$ we have $1<p_{-} \leqslant p_{+}<\infty$. Then the following statements are equivalent:
(i) Maximal operator M is bounded on $L^{p(\cdot)}(G)$,
(ii) There exists $r_{0}, 0<r_{0}<1$, such that if $r_{0}<r<1$, then maximal operator M is bounded on $L^{r p(\cdot)}(G)$.

Hereafter, we will denote by \mathscr{S} a family of pairs of non-negative, measurable functions. Given $p, 1 \leqslant p<\infty$ if for some $w \in A_{p}(G)$ we write

$$
\int_{G} f(x)^{p} w(x) d \mu \leqslant C \int_{G} g(x)^{p} w(x) d \mu, \quad(f, g) \in \mathscr{S}
$$

then we mean that this inequality holds for all pairs $(f, g) \in \mathscr{S}$ such that the left hand side is finite, and that the constant C may depend on p and $[w]_{A_{p}}$. If we write

$$
\|f\|_{p(\cdot)} \leqslant C_{p(\cdot)}\|g\|_{p(\cdot)}, \quad(f, g) \in \mathscr{S}
$$

then we mean that this inequality holds for all pairs $(f, g) \in \mathscr{S}$ such that the left-hand side is finite and the constant may depend on $p(\cdot)$.

Using this convention we can state the Rubio de Francia extrapolation theorem in the following manner.

THEOREM 1.9. Suppose for some $p_{0} \geqslant 1$ the family \mathscr{S} is such that for all $w \in$ $A_{1}(G)$

$$
\int_{G} f(x)^{p_{0}} w(x) d \mu \leqslant C \int_{G} g(x)^{p_{0}} w(x) d \mu, \quad(f, g) \in \mathscr{S} .
$$

If for the exponent $p(\cdot)$, we have $p_{0}<p_{-} \leqslant p_{+}<\infty$ and the maximal operator M is bounded on $L^{\left(p(\cdot) / p_{0}\right)^{\prime}}(G)$, then

$$
\|f\|_{p(\cdot)} \leqslant C_{p(\cdot)}\|g\|_{p(\cdot)}, \quad(f, g) \in \mathscr{S}
$$

Firstly, Theorem 1.9 was proved in [4] (Theorem 1.3) for variable exponent Lebesgue spaces on \mathbb{R}^{n} and maximal operator M defined on cubes (balls) in \mathbb{R}^{n}, with sides parallel to the coordinate axes. In [3] the Rubio de Francia extrapolation theorem is proved for general Function spaces, using A_{1} weights and maximal operator M defined by any Muckenhoupt basis (see Definition 3.1 in [3]). By Theorem 1.4 the set of generalized intervals \mathscr{F} is a Muckenhoupt basis. Considering the following equality $\left(L^{p(\cdot)}(G)\right)^{1 / p_{0}}=L^{p(\cdot) / p_{0}}(G)$, Theorem 1.9 is direct consequence of Theorem 4.6 from [3].

Now, we can formulate the main result of the present paper.

THEOREM 1.10. Let for exponent $p(\cdot)$ we have $1<p_{-} \leqslant p_{+}<\infty$. Then the following statements are equivalent:
(i) $p(\cdot) \in \mathscr{A}(G)$,
(ii) There is a constant C, depending only on $p(\cdot)$, such that for partial sums $S_{n} f$ of the Vilenkin-Fourier series of $f \in L^{p(\cdot)}(G)$ we have

$$
\sup _{n \in \mathbb{N}}\left\|S_{n} f\right\|_{p(\cdot)} \leqslant C\|f\|_{p(\cdot)}
$$

(iii) Partial sums $S_{n} f$ of the Vilenkin-Fourier series of $f \in L^{p(\cdot)}(G)$ converge to the original function in $L^{p(\cdot)}$ space.

2. Preliminaries

The fundamental properties of $A_{p}(G)$ weights were investigated by Gosselin [7] and later by Young [18] (in this paper there is no restriction on the orders p_{i}). We formulate some properties of these weights (see [18]).

Note that if $w \in A_{p}(G)$, then $L_{w}^{p}(G) \subset L^{1}(G)$. We also mention that if $w \in A_{p}(G)$, $1 \leqslant p<\infty$, and $p<q<\infty$ then $w \in A_{q}(G)$. A important property of $A_{p}(G)$ weights is the reverse Hölder inequality.

Proposition 2.1. ([18]) Let $w \in A_{p}(G), 1<p<\infty$. Then there exist $s>1$ and a constant C such that for any $I \in \mathscr{F}$,

$$
\left(\frac{1}{\mu(I)} \int_{I} w^{s} d \mu\right)^{1 / s} \leqslant \frac{C}{\mu(I)} \int_{I} w d \mu
$$

The following proposition is a consequence of the reverse Hölder inequality.

Proposition 2.2. ([18]) (i) Suppose $w \in A_{p}(G), 1<p<\infty$. Then there exists $1<s<p$ such that $w \in A_{s}(G)$.
(ii) Suppose $w \in A_{p}(G), 1<p<\infty$, then $w \in A_{\infty}(G)$.

Definition 2.3. ([18]) Let $I_{0} \in \mathscr{F}$. We say that a weight w (i.e. a nonnegative integrable function) satisfies $A_{\infty}\left(I_{0}\right)$ condition if for any $\varepsilon \in(0,1)$ there exists $\delta \in$ $(0,1)$ such that for any generalized interval $I \subset I_{0}$ and for any measurable subset $E \subset I$, $\mu(E) \leqslant \varepsilon \mu(I)$ implies $w(E) \leqslant \delta w(I)$ (for any measurable set $A, w(A)=\int_{A} w d \mu$ and $\left.w_{A}=\frac{1}{\mu(A)} \int_{A} w d \mu\right)$.

It is well known fact that the class A_{∞} in Euclidian case can be defined in many equivalent ways. The most classical definition is due to Muckenhoupt [12]. It is said that a locally integrable function $w: \mathbb{R}^{n} \rightarrow[0, \infty)$ is in A_{∞} class if for each $\varepsilon \in(0,1)$ there exists $\delta \in(0,1)$ such that $|E| \leqslant \varepsilon|Q| \Rightarrow w(E) \leqslant \delta w(Q)$ holds, whenever Q is a d-dimensional cube and E is its arbitrary measurable subset of Q. Note that w satisfies
the above condition if and only if it belongs A_{p} class for some $p \in(1, \infty)$. Coifman and Fefferman [1] proposed another approach based on verifying the following inequality

$$
\frac{w(E)}{w(Q)} \leqslant C\left(\frac{|E|}{|Q|}\right)^{\varepsilon},
$$

where Q, E are as before, while $C, \varepsilon>0$ are constants depending only w. Note that the two conditions lead to same class of weights. For More detailed information we refer the reader to [6].

To prove the main result we need analogous result for Vilenkin group. It should be noted that we give the proof which we had not found in literature.

Proposition 2.4. Let $w \in A_{\infty}\left(I_{0}\right)$, where $I_{0} \in \mathscr{F}$. There exist positive constants $C, \varepsilon>0$ such that for any generalized interval $I \subset I_{0}$ and measurable subset $E \subset I$,

$$
\begin{equation*}
\frac{w(E)}{w(I)} \leqslant C\left(\frac{\mu(E)}{\mu(I)}\right)^{\varepsilon} \tag{2.1}
\end{equation*}
$$

For proving the result we need modified form of the Calderón-Zygmund decomposition lemma (see [17], Lemma 2).

LEMMA 2.5. Given an interval $I \in \mathscr{F}$ and a function $f \in L^{1}(G)$, then for $t \geqslant$ $|f|_{I}$, there exists a collection I_{j} of disjoint generalized intervals $I_{j} \subset I$ such that

$$
t<\frac{1}{\mu\left(I_{j}\right)} \int_{I_{j}}|f| d \mu \leqslant 3 t, \quad \forall I_{j}
$$

and for almost every $x \in I \backslash \cup_{j} I_{j},|f(x)| \leqslant t$.
Proof of Proposition 2.4. Fix a generalized interval $I \subset I_{0}$ and for integer $k \geqslant 0$ define the sequence $t_{k}=10^{k} w_{I}=10^{k} t_{0}$. Using Lemma 2.5 For each k we may find Calderón-Zygmund generalized intervals I_{j}^{k} of w in following manner. First construct Calderón-Zygmund generalized intervals I_{j}^{0} relative to I at height t_{0} (CalderónZygmund generalized intervals of rang 0). Denote $\Omega_{0}=\cup I_{j}^{0}$. For any fixed I_{j}^{0} interval find Calderón-Zygmund generalized intervals (of rang 1) of w and height t_{1}. Denote by I_{j}^{1} the intervals of rang 1 and $\Omega_{1}=\cup I_{j}^{1}$. Note that $\Omega_{1} \subset \Omega_{0} \subset I$. In this manner we may construct collection I_{j}^{k} Calderón-Zygmund generalized intervals and the set Ω_{k} with properties:
a) $\Omega_{k+1} \subset \Omega_{k}, k=0,1,2, \ldots$,
b) $t_{k}<w_{I_{j}^{k}} \leqslant 3 t_{k}, k=0,1,2, \ldots$,
c) $w(x) \leqslant t_{k}, x \in I \backslash \Omega_{k}$.

Note that from the construction for any i there exists j such that $I_{i}^{k+1} \subset I_{j}^{k}$. Then

$$
\begin{aligned}
\mu\left(\Omega_{k+1} \cap I_{j}^{k}\right) & =\sum_{I_{i}^{k+1} \subset I_{j}^{k}} \mu\left(I_{i}^{k+1}\right)<t_{k+1}^{-1} \sum_{I_{i}^{k+1} \subset I_{j}^{k}} w\left(I_{i}^{k+1}\right) \\
& \leqslant t_{k+1}^{-1} w\left(I_{j}^{k}\right) \leqslant \frac{3 t_{k}}{t_{k+1}} \mu\left(I_{j}^{k}\right)=\frac{3}{10} \mu\left(I_{j}^{k}\right)
\end{aligned}
$$

Hence, by $A_{\infty}\left(I_{0}\right)$ condition with $\varepsilon=3 / 10$, there exists $\delta>0$ such that $w\left(\Omega_{k+1} \cap\right.$ $\left.I_{j}^{k}\right) \leqslant \delta w\left(I_{j}^{k}\right)$, and if we sum over all j, we obtain $w\left(\Omega_{k+1}\right) \leqslant \delta w\left(\Omega_{k}\right)$ and consequently we have that $w\left(\Omega_{k}\right) \leqslant \delta^{k+1} w(I)$.

For almost every $x \in I \backslash \Omega_{k}, w(x) \leqslant t_{k}$. For fixed ε

$$
\begin{aligned}
\frac{1}{\mu(I)} \int_{I} w(x)^{1+\varepsilon} d \mu & =\frac{1}{\mu(I)} \int_{I \backslash \Omega_{0}} w(x)^{1+\varepsilon} d \mu+\frac{1}{\mu(I)} \sum_{k=0}^{\infty} \int_{\Omega_{k} \backslash \Omega_{k+1}} w(x)^{1+\varepsilon} d \mu \\
& \leqslant \frac{t_{0}^{\varepsilon}}{\mu(I)} \int_{I \backslash \Omega_{0}} w(x) d \mu+\frac{1}{\mu(I)} \sum_{k=0}^{\infty} t_{k+1}^{\varepsilon} w\left(\Omega_{k}\right) \\
& \leqslant \frac{t_{0}^{\varepsilon}}{\mu(I)} \int_{I \backslash \Omega_{0}} w(x) d \mu+\frac{1}{\mu(I)} \sum_{k=0}^{\infty} 10^{(k+1) \varepsilon} t_{0}^{\varepsilon} \delta^{k+1} w(I)
\end{aligned}
$$

Fix $\varepsilon>0$ so that $10^{\varepsilon} \delta<1$, we obtain that last term is bounded by

$$
t_{0}^{\varepsilon} \frac{1}{\mu(I)} \int_{I} w(x) d \mu+C \mu(I)^{-1} t_{0}^{\varepsilon} w(I) \leqslant C\left(\frac{1}{\mu(I)} \int_{I} w(x) d \mu\right)^{1+\varepsilon}
$$

Hence, given $\varepsilon>0$ the weight satisfies Reverse Hölder inequality.
Finally if we use Hölder's inequality for $w(E)=\int_{E} w(x) d \mu$ and Reverse Hölder's inequality for $1+\varepsilon$ we get (2.1).

For $0<r<\infty$ define $M_{r} f(x)=M\left(|f|^{r}\right)(x)^{1 / r}$. For brevity, hereafter we will write f_{I} instead of $\int_{I} f d \mu / \mu(I)$.

As a consequence of the reverse Hölder inequality we get that if $w \in A_{p}(G)$ for some p, then there exists $s>1$ such that $M_{s} w(x) \leqslant C M w(x)$. We need a sharper version of this inequality.

Proposition 2.6. Given $w \in A_{1}(G)$, if $s_{0}=1+\frac{1}{8[w] A_{1}}$, then for $1<s \leqslant s_{0}$ and for almost every x,

$$
\begin{equation*}
M_{s} w(x) \leqslant 4 M w(x) \leqslant 4[w]_{A_{1}} w(x) \tag{2.2}
\end{equation*}
$$

This type of estimates is well known in Euclidian setting. For the sake of completeness we will give a proof for the Vilenkin group.

We need an inequality that is the reverse of the weak $(1,1)$ inequality for maximal operator M.

LEmmA 2.7. Given a function $f \in L^{1}(G)$, for every interval $I \in \mathscr{F}$ and $t \geqslant|f|_{I}$,

$$
\mu(\{x \in I: M f(x)>t\}) \geqslant \frac{1}{3 t} \int_{\{x \in I:|f(x)|>t\}}|f(x)| d \mu .
$$

Proof. $t \geqslant|f|_{I}$; if $t \geqslant\|f\|_{L^{\infty}}$, then this result is true. Otherwise, by Lemma 2.5, let I_{i} be the Calderón-Zygmund intervals of f relative to I and t. For every $x \in I_{i}$

$$
M f(x) \geqslant \frac{1}{\mu\left(I_{i}\right)} \int_{I_{i}}|f| d \mu>t
$$

Since $|f(x)| \leqslant t$ for almost every $x \in I \backslash \cup_{i} I_{i}$, we have

$$
\begin{aligned}
\mu(\{x \in I: M f(x)>t\}) & \geqslant \sum_{j} \mu\left(I_{j}\right) \geqslant \frac{1}{3 t} \sum_{j} \int_{I_{j}}|f| d \mu \\
& \geqslant \frac{1}{3 t} \int_{\{x \in I:|f(x)|>t\}}|f(x)| d \mu .
\end{aligned}
$$

Proof of Proposition 2.6. Let $\varepsilon=\left(8[w]_{A_{1}}\right)^{-1}, s_{0}=1+\varepsilon$, and fix an interval I and $x_{0} \in I$. To prove the first inequality of (2.2) it is sufficient to show that

$$
\frac{1}{\mu(I)} \int_{I} w(x)^{s_{0}} d \mu \leqslant 4 M w\left(x_{0}\right)^{s_{0}} .
$$

We have that

$$
\begin{aligned}
\frac{1}{\mu(I)} \int_{I} w(x)^{s_{0}} d \mu= & \frac{1}{\mu(I)} \int_{I} w(x)^{\varepsilon} w(x) d \mu \\
= & \varepsilon(\mu(I))^{-1} \int_{0}^{\infty} t^{\varepsilon-1} w(\{x \in I: w(x)>t\}) d t \\
= & \varepsilon(\mu(I))^{-1} \int_{0}^{M w\left(x_{0}\right)} t^{\varepsilon-1} w(\{x \in I: w(x)>t\}) d t \\
& +\varepsilon(\mu(I))^{-1} \int_{M w\left(x_{0}\right)}^{\infty} t^{\varepsilon-1} w(\{x \in I: w(x)>t\}) d t
\end{aligned}
$$

For the first term we have

$$
\begin{aligned}
& \varepsilon(\mu(I))^{-1} \int_{0}^{M w\left(x_{0}\right)} t^{\varepsilon-1} w(\{x \in I: w(x)>t\}) d t \\
\leqslant & \varepsilon(\mu(I))^{-1} w(I) \int_{0}^{M w\left(x_{0}\right)} t^{\varepsilon-1} d t=\frac{1}{\mu(I)} \int_{I} w(y) d \mu \cdot M w\left(x_{0}\right)^{\varepsilon} \leqslant M w\left(x_{0}\right)^{1+\varepsilon}
\end{aligned}
$$

Using Lemma 2.7 we obtain

$$
\begin{aligned}
& \varepsilon(\mu(I))^{-1} \int_{M w\left(x_{0}\right)}^{\infty} t^{\varepsilon-1} w(\{x \in I: w(x)>t\}) d t \\
= & \varepsilon(\mu(I))^{-1} \int_{M w\left(x_{0}\right)}^{\infty} t^{\varepsilon-1} \int_{\{x \in I: w(x)>t\}} d \mu d t \\
\leqslant & 3 \varepsilon(\mu(I))^{-1} \int_{0}^{\infty} t^{\varepsilon} \mu(\{x \in I ; M w(x)>t\}) d t \\
= & \frac{3 \varepsilon}{1+\varepsilon} \frac{1}{\mu(I)} \int_{I} M w(x)^{1+\varepsilon} d \mu \\
\leqslant & \frac{3 \varepsilon[w]_{A_{1}}^{1+\varepsilon}}{1+\varepsilon} \frac{1}{\mu(I)} \int_{I} w(x)^{1+\varepsilon} d \mu .
\end{aligned}
$$

From above estimates we get

$$
\frac{1}{\mu(I)} \int_{I} w(x)^{1+\varepsilon} d \mu \leqslant M w\left(x_{0}\right)^{1+\varepsilon}+\frac{3 \varepsilon[w]_{A_{1}}^{1+\varepsilon}}{1+\varepsilon} \frac{1}{\mu(I)} \int_{I} w(x)^{1+\varepsilon} d \mu
$$

Since for all $x \geqslant 1, x^{1 / 8 x} \leqslant 2$, we have

$$
\frac{3 \varepsilon[w]_{A_{1}}^{1+\varepsilon}}{1+\varepsilon} \leqslant \frac{3}{8}[w]_{A_{1}}^{-1}[w]_{A_{1}}^{1+\left(8[w]_{A_{1}}\right)^{-1}} \leqslant \frac{3}{4}
$$

and consequently the first inequality in (2.2) is valid. The second inequality in (2.2) is clear.

3. Proof of Theorem 1.6

Given a generalized interval $I \in \mathscr{F}$ define the averaging operator A_{I} by

$$
A_{I} f(x)=\frac{1}{\mu(I)} \int_{I} f d \mu \chi_{I}(x)
$$

Proposition 3.1. Given a exponent $p(\cdot), 1<p_{-} \leqslant p_{+}<\infty$, there exists a constant $C>0$ such that for any interval $I \in \mathscr{F}$

$$
\left\|A_{I} f\right\|_{p(\cdot)} \leqslant C\|f\|_{p(\cdot)}
$$

if and only if $p(\cdot) \in \mathscr{A}(G)$.
The proof of Proposition 3.1 is essentially the same as for averaging operator defined by cubes for Euclidean setting (see for example [2], Proposition 4.47).

Lemma 3.2 shows that the condition $p(\cdot) \in \mathscr{A}(G)$ is actually sufficient for modular inequality. Analogous estimate for the case $L^{p(\cdot)}\left(\mathbb{R}^{n}\right)$ was obtained by Kopaliani [9]. The proof in [9] is based on some concepts from convex analysis. Lerner in [10] gave a different and simple proof. In this paper our approach is based on the adaptation of Lerner's proof [10].

LEMMA 3.2. Given exponent $p(\cdot)$ such that $1<p_{-} \leqslant p_{+}<\infty$, suppose $p(\cdot) \in$ $\mathscr{A}(G)$. Let $f \in L^{p(\cdot)}(G)$. If there exists an interval $I \in \mathscr{F}$ and constants $c_{1}, c_{2}>0$ such that $|f|_{I} \geqslant c_{1}$ and $\|f\|_{p(\cdot)} \leqslant c_{2}$, where $c_{1}, c_{2}>0$, then there exists a constant c depending only on $p(\cdot), c_{1}, c_{2}$ such that

$$
\int_{I}\left(|f|_{I}\right)^{p(x)} d \mu \leqslant c \int_{I}|f(x)|^{p(x)} d \mu .
$$

Proof. Using the condition $p_{+}<\infty$ we may consider only the case $c_{1}=c_{2}=1$. Since $p_{+}^{\prime}<\infty$, there exists $\alpha>0$ such that

$$
\begin{equation*}
\int_{I} \alpha^{p^{\prime}(y)-1} d \mu=\int_{Q}|f(x)| d \mu . \tag{3.1}
\end{equation*}
$$

Since $|f|_{I} \geqslant 1$, we have $\alpha \geqslant 1$. By generalized Hölder inequality

$$
\int_{I} f(x) d \mu \leqslant 2\|f\|_{p(\cdot)}\left\|\chi_{I}\right\|_{p^{\prime}(\cdot)}
$$

we get $\int_{I} \alpha^{p^{\prime}(y)-1} d \mu \leqslant 2\left\|\chi_{I}\right\|_{p^{\prime}(\cdot)}$ and consequently,

$$
\begin{equation*}
\alpha \leqslant c /\left\|\chi_{I}\right\|_{p^{\prime}(\cdot)} \tag{3.2}
\end{equation*}
$$

Given this value α, we have that

$$
\begin{align*}
\int_{I}\left(|f|_{I}\right)^{p(x)} d \mu & =\int_{I}\left(\frac{1}{\mu(I)} \int_{I} \alpha^{p^{\prime}(y)-1} d \mu\right)^{p(x)} d \mu \tag{3.3}\\
& =\left(\frac{1}{\mu(I)} \int_{I}\left(\frac{1}{\mu(I)} \int_{I} \alpha^{p^{\prime}(y)-p^{\prime}(x)} d \mu\right)^{p(x)-1} d \mu\right)_{I} \alpha^{p^{\prime}(y)} d \mu
\end{align*}
$$

For each $x \in I$ partition I into $E_{1}(x)=\left\{y \in I: p^{\prime}(y)>p^{\prime}(x)\right\}$ and $E_{2}(x)=$ $I \backslash E_{1}(x)$. Using (3.2) and the estimate $\alpha \geqslant 1$, we obtain

$$
\begin{aligned}
\int_{I} \alpha^{p^{\prime}(y)-p^{\prime}(x)} d \mu & =\int_{E_{1}(x)} \alpha^{p^{\prime}(y)-p^{\prime}(x)} d \mu+\int_{E_{2}(x)} \alpha^{p^{\prime}(y)-p^{\prime}(x)} d \mu \\
& \leqslant c\left(\left\|\chi_{I}\right\|_{p^{\prime}(\cdot)}\right)^{p^{\prime}(x)}+\mu(I)
\end{aligned}
$$

In view of $p(\cdot) \in A(G)$, we have

$$
\begin{align*}
& \frac{1}{\mu(I)} \int_{I}\left(\frac{1}{\mu(I)} \int_{I} \alpha^{p^{\prime}(y)-p^{\prime}(x)} d \mu\right)^{p(x)-1} d \mu \tag{3.4}\\
\leqslant & c \frac{1}{\mu(I)} \int_{I}\left(\frac{1}{\mu(I)}\left(\left\|\chi_{I}\right\|_{p^{\prime}(\cdot)}\right)^{p^{\prime}(x)}+1\right)^{p(x)-1} d \mu \\
\leqslant & c+c \frac{1}{\mu(I)} \int_{I}\left(\frac{1}{\mu(I)}\left(\left\|\chi_{I}\right\|_{p^{\prime}(\cdot)}\right)^{p^{\prime}(x)}\right)^{p(x)-1} d \mu \\
\leqslant & c+c \int_{I}\left(\frac{\left\|\chi_{I}\right\|_{p^{\prime}(\cdot)}}{\mu(I)}\right)^{p(x)} d \mu \\
\leqslant & c+c \int_{I}\left(\frac{1}{\left\|\chi_{I}\right\|_{p(\cdot)}}\right)^{p(x)} d \mu \leqslant c .
\end{align*}
$$

Further,

$$
\begin{align*}
\int_{I} \alpha^{p^{\prime}(y)} d \mu & =2 \alpha \int_{I}|f(x)| d \mu-\int_{I} \alpha^{p^{\prime}(y)} d \mu \tag{3.5}\\
& \leqslant 2 \alpha \int_{\left\{y \in I: 2 \alpha|f(y)|>\alpha p^{\prime}(y)\right\}}|f(y)| d \mu \\
& \leqslant c \int_{I}|f(y)|^{p(y)} d \mu .
\end{align*}
$$

From (3.3), (3.4) and (3.5) we obtain desired estimate.

Corollary 3.3. Let $1<p_{-} \leqslant p_{+}<\infty$ and $p(\cdot) \in \mathscr{A}(G)$. Suppose that $\xi_{1} \leqslant$ $t \leqslant \xi_{2} /\left\|\chi_{I}\right\|_{p(\cdot)}$, where $\xi_{1}, \xi_{2}>0$ and $I \in \mathscr{F}$. Then $t^{p(x)} \in A_{\infty}(I)$ with A_{∞} constant depending only on $p(\cdot), \xi_{1}, \xi_{2}$.

Proof. Let $I^{\prime} \subset I$, where $I^{\prime}, I \in \mathscr{F}$ and $E \subset I^{\prime}$ be any measurable subset with $\mu(E)>\mu\left(I^{\prime}\right) / 2$. Define $f=t \chi_{E}$. Then

$$
\begin{gathered}
|f|_{I^{\prime}}=\frac{1}{\mu\left(I^{\prime}\right)} \int_{I^{\prime}} t \chi_{E}(x) d \mu=t \frac{\mu(E)}{\mu\left(I^{\prime}\right)} \geqslant \frac{\xi_{1}}{2} \\
\|f\|_{p(\cdot)}=t\left\|\chi_{E}\right\|_{p(\cdot)} \leqslant \xi_{2} \frac{\left\|\chi_{E}\right\|_{p(\cdot)}}{\left\|\chi_{I}\right\|_{p(\cdot)}} \leqslant \xi_{2}
\end{gathered}
$$

Therefore, f satisfies the hypotheses of Lemma 3.2 with $c_{1}=\xi_{1} / 2, c_{2}=\xi_{2}$ and there exists a constant c depending only on $p(\cdot), \xi_{1}, \xi_{2}$ such that

$$
\frac{1}{2^{p_{+}}} \int_{I_{0}} t^{p(\cdot)} d \mu \leqslant c \int_{E} t^{p(\cdot)} d \mu
$$

which proves that $t^{p(x)} \in A_{\infty}(I)$.
Proof of Theorem 1.6. The part $(i i) \Rightarrow(i)$ of Theorem 1.6 follows immediately from Proposition 3.1 and from the fact that $|f|_{I} \chi_{I}(x) \leqslant M f(x)$ for any interval $I \in \mathscr{F}$.

Implication $(i) \Rightarrow(i i)$. Suppose $f \in L^{p(\cdot)}(G)$ and $\|f\|_{p(\cdot)} \leqslant 1$. It is sufficient to proof that there exists a positive constant C (independent of f) such that for any nonnegative function $g \in L^{p^{\prime}(\cdot)}(G)$, with $\|g\|_{p^{\prime}(\cdot)} \leqslant 1$

$$
\begin{equation*}
\int_{G} M f(x) g(x) d \mu \leqslant C \tag{3.6}
\end{equation*}
$$

For each positive integer k set

$$
\Omega_{k}=\left\{x \in G: M f(x)>3^{k}\right\}
$$

Note that

$$
\begin{equation*}
\int_{G \backslash \Omega_{1}} M f(x) g(x) d \mu \leqslant C . \tag{3.7}
\end{equation*}
$$

Define $D_{k}=\Omega_{k} \backslash \Omega_{k+1}$. Let F_{k} be an arbitrary compact subset of D_{k}. We will prove that

$$
\begin{equation*}
\int_{\cup F_{k}} M f(x) g(x) d \mu \leqslant C \tag{3.8}
\end{equation*}
$$

By simple limiting argument from (3.8) and from (3.7) we obtain (3.6).
Let $\mu\left(F_{k}\right)>0$. There exists a finite collection of generalized intervals $I_{\alpha}, \alpha \in A_{k}$, $F_{k} \subset \cup_{\alpha \in A_{k}} I_{\alpha}$, such that $|f|_{I_{\alpha}}>3^{k}, \alpha \in A_{k}$ and for all fixed α, there exists $x_{\alpha} \in I_{\alpha}$ such that $M f\left(x_{\alpha}\right) \leqslant 3^{k+1}$. Note that if $I_{\alpha_{1}}$ and $I_{\alpha_{2}}$ belong to distinct \mathscr{F}_{l} 's and are not disjoint ($\mu\left(I_{\alpha_{1}} \cap I_{\alpha_{2}}\right)>0$) then one is a subset of the other. Consequently without loss of generality we may assume that in collection $I_{\alpha}, \alpha \in A_{k}$ if $\mu\left(I_{\alpha_{1}} \cap I_{\alpha_{2}}\right)>0$
for some α_{1} and α_{2}, then $I_{\alpha_{1}}$ and $I_{\alpha_{2}}$ belong to the same \mathscr{F}_{l} 's (for some l). By Vitali covering lemma, we may select from collection $I_{\alpha}, \alpha \in A_{k}$ the finite collection of pairwise disjoint intervals $\left\{I_{j}^{k}\right\} \quad j \in\left\{1, \ldots, N_{k}\right\}$ such that $F_{k} \subset \cup_{j} 3 I_{j}^{k}$.

Without loss of generality we may assume that $\mu\left(F_{k}\right)>0$ for all $k \geqslant 1$. Define the sets $E_{1}^{k}=3 I_{1}^{k} \cap F_{k}, E_{j}^{k}=\left(3 I_{j}^{k} \backslash \cup_{s<j} 3 I_{s}^{k}\right) \cap F_{k}, j>1$. Note that the sets E_{j}^{k} are pairwise disjoint and $\cup_{j} E_{j}^{k}=F_{k}$.

Define

$$
T g(x)=\sum_{k=1}^{\infty} \sum_{j}\left(\frac{1}{\mu\left(I_{j}^{k}\right)} \int_{E_{j}^{k}} g d \mu\right) \chi_{I_{j}^{k}}(x)
$$

Using the above definition, we get

$$
\begin{aligned}
\int_{\cup_{k} F_{k}}(M f)(x) g(x) d \mu & \leqslant 3^{k+1} \sum_{k=1}^{\infty} \sum_{j} \int_{E_{j}^{k}} g d \mu \leqslant 3 \sum_{k=1}^{\infty} \sum_{j} f_{I_{j}^{k}} \int_{E_{j}^{k}} g d \mu \\
& =3 \int_{G} f T g \leqslant 6\|f\|_{p(\cdot)}\|T g\|_{p^{\prime}(\cdot)},
\end{aligned}
$$

and consequently for proving (3.8), it is sufficient to show that $\|T g\|_{p^{\prime}(\cdot)} \leqslant C$.
Note that $I_{j}^{k} \subset \Omega_{k}=\cup_{l=0}^{\infty} D_{k+l}$ and hence $T g=\sum_{l=0}^{\infty} T_{l} g$, where

$$
T_{l} g(x)=\sum_{k=1}^{\infty} \sum_{j} a_{j, k}(g) \chi_{I_{j}^{k} \cap D_{k+l}}(x), \quad(l=0,1, \ldots)
$$

where $\alpha_{j, k}(g)=\frac{1}{\mu\left(I_{j}^{k}\right)} \int_{E_{j}^{k}} g d \mu$.
Let $\mathscr{I}_{1}=\left\{(j, k): \alpha_{j, k}(g)>1\right\}$ and $\mathscr{I}_{2}=\left\{(j, k): \alpha_{j, k}(g) \leqslant 1\right\}$.
By condition $p \in \mathscr{A}(G)$ and Hölder inequality implies that for any interval $I \in \mathscr{F}$, $\left\|\chi_{3 I}\right\|_{p(\cdot)} \leqslant C\left\|\chi_{I}\right\|_{p(\cdot)}$. We have

$$
\begin{aligned}
\alpha_{j, k}(g) & \leqslant \frac{2}{\mu\left(I_{j}^{k}\right)}\left\|\chi_{E_{j}^{k}}\right\|_{p(\cdot)}\left\|g \chi_{E_{j}^{k}}\right\|_{p^{\prime}(\cdot)} \leqslant \frac{2}{\mu\left(I_{j}^{k}\right)}\left\|\chi_{3 I_{j}^{k}}\right\|_{p(\cdot)} \\
& \leqslant \frac{C}{\left\|\chi_{3 I_{j}^{k}}\right\|_{p^{\prime}(\cdot)}} \leqslant \frac{C}{\left\|\chi_{I_{j}^{k}}\right\|_{p^{\prime}(\cdot)}} .
\end{aligned}
$$

Let $(j, k) \in \mathscr{I}_{1}$. Then by Corollary $3.3 \alpha_{j, k}(g)^{p^{\prime}(x)} \in A_{\infty}\left(I_{j}^{k}\right)$ and by Lemma 3.2, (see, also (2.1))

$$
\begin{align*}
\int_{I_{j}^{k} \cap D_{k+l}} \alpha_{j, k}(g)^{p^{\prime}(x)} d \mu & \leqslant C\left(\frac{\mu\left(I_{j}^{k} \cap D_{k+l}\right)}{\mu\left(I_{j}^{k}\right)}\right)^{\varepsilon} \int_{I_{j}^{k}} \alpha_{j, k}(g)^{p^{\prime}(x)} d \mu \\
& \leqslant C\left(\frac{\mu\left(I_{j}^{k} \cap D_{k+l}\right)}{\mu\left(I_{j}^{k}\right)}\right)^{\varepsilon} \int_{E_{j}^{k}} g(x)^{p^{\prime}(x)} d \mu \tag{3.9}
\end{align*}
$$

If $(j, k) \in \mathscr{I}_{2}$, then we have

$$
\begin{align*}
\int_{I_{j}^{k} \cap D_{k+l}} \alpha_{j, k}(g)^{p^{\prime}(x)} d \mu & \leqslant \int_{I_{j}^{k} \cap D_{k+l}} \alpha_{j, k}(g) d \mu \\
& =\frac{\mu\left(I_{j}^{k} \cap D_{k+l}\right)}{\mu\left(I_{j}^{k}\right)} \int_{E_{j}^{k}} g(x) d \mu \tag{3.10}
\end{align*}
$$

We need estimate $\mu\left(I_{j}^{k} \cap D_{k+l}\right)$ for $l \geqslant 2$. Let $x \in I_{j}^{k}$ and $I \in \mathscr{F}$ be an arbitrary interval such that $x \in I$. Observe that either $I \subset 3 I_{j}^{k}$ or $I_{j}^{k} \subset 3 I$. If the second inclusion holds, then $3 I \cap D_{k} \neq \emptyset$ and hence

$$
|f|_{I} \leqslant 3|f|_{3 I} \leqslant 3 \cdot 3^{k+1} \leqslant 3^{k+l}(l \geqslant 2)
$$

Therefore, if $|f|_{I}>3^{k+l}$, then $I \subset 3 I_{j}^{k}$. From this and from weak type property of M, we get

$$
\begin{align*}
\mu\left(I_{j}^{k} \cap D_{k+l}\right) & \leqslant \mu\left\{x \in I_{j}^{k}: M\left(f \chi_{3 I_{j}^{k}}\right)(x)>3^{k+l}\right\} \leqslant \frac{C}{3^{k+l}} \int_{3 I_{j}^{k}}|f| d \mu \\
& \leqslant C \frac{\mu\left(I_{j}^{k}\right)}{3^{k+l}}|f|_{3 I_{j}^{k}} \leqslant C \frac{3^{k+1}}{3^{k+l}} \mu\left(I_{j}^{k}\right) \leqslant \frac{C}{3^{l}} \mu\left(I_{j}^{k}\right) \tag{3.11}
\end{align*}
$$

By estimates (3.9), (3.10), (3.11), when $l \geqslant 2$ we obtain

$$
\begin{aligned}
\int_{G}\left(T_{l} g(x)\right)^{p^{\prime}(x)} d \mu & =\sum_{k=1}^{\infty} \sum_{j} \int_{I_{j}^{k} \cap D_{k+l}} \alpha_{j, k}(g)^{p^{\prime}(x)} d \mu \\
& \leqslant C 3^{-l \varepsilon} \sum_{(j, k) \in \mathscr{I}_{1}} \int_{E_{j}^{k}} g(x)^{p^{\prime}(x)} d \mu+C 3^{-l} \sum_{(j, k) \in \mathscr{I}_{2}} \int_{E_{j}^{k}} g(x) d \mu \\
& \leqslant C 3^{-l \alpha}\left(\int_{G} g(x)^{p^{\prime}(x)} d \mu+\int_{G} g(x) d \mu\right)
\end{aligned}
$$

Where $\alpha=\min \{1, \varepsilon\}$.
Using the fact that $\|g\|_{1} \leqslant 2\left\|\chi_{G)}\right\|_{p^{\prime}(\cdot)}$, and $\int_{G} g(x)^{p^{\prime}(x)} d \mu \leqslant 1$ we obtain

$$
\left\|T_{l} g\right\|_{p^{\prime}(\cdot)} \leqslant C 3^{-l \alpha / p_{+}^{\prime}}(l \geqslant 2)
$$

For $l=0,1$ if we use a trivial estimate $\mu\left(I_{j}^{k} \cap D_{k+l}\right) \leqslant \mu\left(I_{j}^{k}\right)$, analogously will be obtained the estimate $\left\|T_{l} g\right\|_{p^{\prime}(\cdot)} \leqslant C$. Finally we obtain

$$
\|T g\|_{p^{\prime}(\cdot)} \leqslant \sum_{l=0}^{\infty}\left\|T_{l} g\right\|_{p^{\prime}(\cdot)} \leqslant C
$$

4. Proof of Theorem 1.8

The implication $(i i) \Rightarrow(i)$ is straightforward. Fix $r_{0}, r_{0}<r<1$, and let $s=$ $1 / r$. by Hölder's inequality, we have that $M f(x) \leqslant M\left(|f|^{s}\right)(x)^{1 / s}=M_{s} f(x)$. Note that $\left\||f|^{s}\right\|_{p(\cdot)}=\|f\|_{s p(\cdot)}^{s}$ and

$$
\|M f\|_{p(\cdot)} \leqslant\left\|M\left(|f|^{S}\right)^{1 / s}\right\|_{p(\cdot)}=\left\|M\left(|f|^{S}\right)\right\|_{r p(\cdot)}^{r} \leqslant C\left\||f|^{s}\right\|_{r p(\cdot)}^{r}=C\|f\|_{p(\cdot)} .
$$

To prove that $(i) \Rightarrow(i i)$, we first construct a $A_{1}(G)$ weight using the Rubio de Francia iteration algorithm. Given $h \in L^{p(\cdot)}(G)$, define

$$
\mathscr{R} h(x)=\sum_{k=0}^{\infty} \frac{M^{k} h(x)}{2^{k}\|M\|_{L^{p(\cdot)}(G)}^{k}},
$$

where for $k \geqslant 1, M^{k}=M \circ M \circ \cdots \circ M$ denotes k iterations of the Maximal operator M and $M^{0} f=|f|$. The function $\mathscr{R} h(x)$ has the following properties:
(a) For all $x \in G,|h(x)| \leqslant \mathscr{R} h(x)$;
(b) \mathscr{R} is bounded on $L^{p(\cdot)}(G)$ and $\|\mathscr{R} h\|_{p(\cdot)} \leqslant 2\|h\|_{p(\cdot)}$;
(c) $\mathscr{R} h \in A_{1}(G)$ and $[\mathscr{R} h]_{A_{1}} \leqslant 2\|M\|_{L^{p(\cdot)}(G)}$.

The proof of properties (a),(b),(c) are the same, as Euclidian setting (see [2], pp.157) and we omit it here. By property (c) and Proposition 2.6 there exists $s_{0}>1$ such that for all $s, 1<s<s_{0}$,

$$
M_{s}(\mathscr{R} h)(x) \leqslant M_{s_{0}}(\mathscr{R} h)(x) \leqslant 8\|M\|_{L^{p(\cdot)}(G)} \mathscr{R} h(x) .
$$

Let $r_{0}=1 / s_{0}$. Fix r such that $r_{0}<r<1$. Let $s=1 / r$.
By properties (a) and (b) we have

$$
\begin{aligned}
\|M f\|_{r p(\cdot)} & =\left\|(M f)^{1 / s}\right\|_{p(\cdot)}^{s}=\left\|M_{s}\left(|f|^{r}\right)\right\|_{p(\cdot)}^{s} \\
& \leqslant \| M_{s}\left(\mathscr{R}\left(|f|^{r}\right)\left\|_{p(\cdot)}^{s} \leqslant C\right\| M\left\|_{L^{p(\cdot)}(G)}^{s}\right\| \mathscr{R}\left(|f|^{r}\right) \|_{p(\cdot)}^{s}\right. \\
& \leqslant C\left\||f|^{r}\right\|_{p(\cdot)}^{s}=C\|f\|_{r p(\cdot)} .
\end{aligned}
$$

5. Proof of Theorem 1.10

Since Vilenkin polynomials are dense in $L^{p(\cdot)}(G)\left(1 \leqslant p_{-} \leqslant p_{+}<\infty\right)$ the proof of equivalence of (ii) and (iii) is straightforward. The implications $(i) \Rightarrow$ (ii) follows from Rubio de Francia extrapolation theorem (Theorem 1.9), if we use Young's weighted estimates for partial sum $S_{n} f$ of the Vilenkin-Fourier series (Theorem 1.2), Theorem 1.6, Theorem 1.8 and corollary 1.7.

Proof of $(i i) \Rightarrow(i)$. Consider $I \in \mathscr{F}$. There is $x \in G$ such that I is a proper subset of $x+G_{k}$ and I is a union of cosets of G_{k+1}. First consider the case $\mu(I) \leqslant \mu\left(G_{k}\right) / 2$. Take $\alpha_{k}=\left[\mu\left(G_{k}\right) / 2 \mu(I)\right]$, where $[a]$ is the largest integer less than or equal to a. We
have $\alpha_{k} \geqslant 1$. Let $f \in L^{p(\cdot)}(G)$ be a nonnegative function with support in I. We use the following estimate (see [18], pp. 286-287): for $x \in I$,

$$
\phi_{k}^{-\left(\alpha_{k}-1\right) / 2}(x) S_{\alpha_{k} m_{k}}\left(f \phi_{k}^{\left(\alpha_{k}-1\right) / 2}\right)(x) \geqslant \frac{1}{2 \pi \mu(I)} \int_{I} f(t) d \mu=\frac{1}{2 \pi} A_{I} f(x)
$$

We have

$$
\left\|A_{I} f\right\|_{p(\cdot)} \leqslant C\left\|\phi_{k}^{-\left(\alpha_{k}-1\right) / 2} S_{\alpha_{k} m_{k}}\left(f \phi_{k}^{-\left(\alpha_{k}-1\right) / 2}\right)\right\|_{p(\cdot)} \leqslant C\|f\|_{p(\cdot)}
$$

From this estimate we obtain in standard way (1.2) in case $\mu(I) \leqslant \mu\left(G_{k}\right) / 2$ (see Proposition 3.1).

Consider the case $\mu(I)>\mu\left(G_{k}\right) / 2$. Note that every coset of G_{k} is in \mathscr{F}_{k-1} and $\mu\left(G_{k}\right) \leqslant \mu\left(G_{k-1}\right) / 2$ and consequently (1.2) holds for all cosets of G_{k}. We have

$$
\left\|\chi_{I}\right\|_{p(\cdot)}\left\|\chi_{I}\right\|_{p^{\prime}(\cdot)} \leqslant\left\|\chi_{x+G_{k}}\right\|_{p(\cdot)}\left\|\chi_{x+G_{k}}\right\|_{p^{\prime}(\cdot)} \leqslant C \mu\left(G_{k}\right) \leqslant C \mu(I)
$$

REFERENCES

[1] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
[2] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Foundations and Harmonic Analysis, Birkhäuser, Basel (2013).
[3] D. Cruz-Uribe, J. M. Martell and C. Pérez, Weights, extrapolation and theory of Rubio de Francia, Operator Theory: Advances and Applications, 2015, Birkhäuser/Springer Basel AG, Basel, 2011.
[4] D. Cruz-Uribe, A. Fiorenza, J. M. Martell and C. Pérez, The boundedness of classical operators on variable L^{p} spaces, Ann. Acad. Sci. Fen. Math. 31 (1): 239-264, 2006.
[5] L. Diening, P. Harjulehto, P. Hästö and M. RŮžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017. Springer, Heidelberg (2011).
[6] J. Duoandikoetxea, F. J. Martín-Reyes and S. Ombrosi, On the A_{∞} conditions for general bases, Math. Z. 282 (2016), no. 3-4, 955-972.
[7] J. A. Gosselin, A weighted norm inequality for Vilenkin-Fourier series, Proc. Amer. Math. Soc. 49 (1975), 349-353.
[8] Y. Jiao, F. Weisz, L. Wu and D. Zhou, Variable martingale Hardy spaces and their applications in Fourier analysis, Dissertationes Math. $\mathbf{5 5 0}$ (2020) pp. 1-67.
[9] T. Kopaliani, Infimal convolution and Muckenhoupt $A_{p(\cdot)}$ condition in variable Lp spaces, Arch. Math. (Basel), 89 (2): 185-192, 2007.
[10] A. K. Lerner, On some questions related to the maximal operator on variable L^{p} spaces, Trans. Amer. Math. Soc., 362 (8): 4229-4242, 2010.
[11] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-251.
[12] B. Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1974), 101-106.
[13] L.-E. Persson, G. Tephnadze and F. Weisz, Martingale Hardy spaces and summability of the one-dimensional Vilenkin-Fourier series, Birkhäuser/Springer, 2022.
[14] F. Schipp, On L^{p}-convergence of series with respect to product systems, Analysis Mathematica, 2 (1976), 49-64.
[15] P. Simon, Verallgemeinerte Walsh-Fourierreihen, II, Acta Math. Acad. Sci. Hungar. 27 (1976), 49-64.
[16] P. Simon, On a maximal function, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 21 (1978), 41-44.
[17] W.-S. Young, Mean convergence of generalized Walsh-Fourier series, Trans. Amer. Math. Soc. 218 (1976), 311-320.
[18] W.-S. Young, Weighted norm inequalities for Vilenkin-Fourier series, Trans. Amer. Math. Soc. 340 (1993), 273-291.
[19] C. Watari, On generalized Walsh Fourier series, Tohoku Math. J. (2) 10, 211-241 (1958).
(Received January 29, 2022)

Daviti Adamadze
Faculty of Exact and Natural Sciences
Javakhishvili Tbilisi State University
13, University St., Tbilisi, 0143, Georgia
e-mail: daviti.adamadze2013@ens.tsu.edu.ge
Tengiz Kopaliani Faculty of Exact and Natural Sciences Javakhishvili Tbilisi State University
13, University St., Tbilisi, 0143, Georgia
e-mail: tengiz.kopaliani@tsu.ge

[^0]: Mathematics subject classification (2020): 42C10, 42B25, 46E30.
 Keywords and phrases: Vilenkin-Fourier series, maximal operator, variable exponent Lebesgue space. This work was supported by Shota Rustaveli National Science Foundation of Georgia FR-21-12353.
 ${ }^{*}$ Corresponding author.

