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VILENKIN–FOURIER SERIES IN VARIABLE LEBESGUE SPACES

DAVITI ADAMADZE AND TENGIZ KOPALIANI ∗

(Communicated by I. Perić)

Abstract. Let Sn f be the n th partial sum of the Vilenkin-Fourier series of f ∈ L1(G). For
1 < p− � p+ < , we characterize all exponent p(·) such that if f ∈ Lp(·)(G) , Sn f converges
to f in Lp(·)(G).

1. Introduction

Let {pi}i�0 be a sequence of integers, pi � 2. Let G = 
i=0Zpi be the direct

product of cyclic groups of order pi , and  the Haar measure on G normalized by
(G) = 1. Each element of G can be considered as a sequence {xi} , with 0 � xi < pi .
Set m0 = 1, mk = k−1

i=0 pi, k = 1,2, . . . . There is a well-known and natural measure
preserving identification between group G and closed interval [0,1]. This identification
consists in associating with each {xi} ∈ G, 0 � xi < pi, the point 

i=0 xim
−1
i+1. If we

disregard the countable set of pi -rationals, this mapping is one-one, onto and measure-
preserving.

For each x = {xi} ∈G, define k(x) = exp(2 ixk/pk), k = 0,1, . . . . The set {n}
of characters of G consists of all finite product of k, which we enumerate in the fol-
lowing manner. Express each nonnegative integer n as a finite sum n = 

i=0kmk ,
with 0 � k < pk, and define n = 

i=0
k
k . The functions n form a complete or-

thonormal system on G. For the case pi = 2, i = 0,1, . . . , G is the dyadic group, k

are Rademacher functions and n are Walsh functions. In general, the system {n} is
a realization of the multiplicative Vilenkin system. In this paper, there is no restriction
on the orders {pi}.

For f ∈ L1(G) , let Sn f , n = 0,1, . . . , be the n th partial sum of the Vilenkin-Fourier
series of f . When the orders pi of cyclic groups are bounded Watari [19] showed that
for f ∈ Lp(G), 1 < p < ,

lim
n→

∫
G
|Sn f − f |pd = 0.

Young [17], Schipp [14] and Simon [15] showed independently that results concerning
mean convergence of partial sums of the Vilenkin-Fourier series are still valid even if
the orders pi are unbounded.
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Let {Gk} be the sequence of subgroups of G defined by

G0 = G, Gk = k−1
i=0 {0}×

i=kZpi , k = 1,2, . . . .

On the closed interval [0,1] , cosets of Gk are intervals of the form [ jm−1
k ,( j +

1)m−1
k ], j = 0,1, . . . ,mk − 1. By F we denote the set of generalized intervals. This

set is the collection of all translations of intervals [0, jm−1
k+1], k = 0,1, . . . j = 1, . . . , pk.

Note that a set I belongs to F if (1) for some x ∈ G and k, I ⊂ x + Gk, (ii) I is a
union of cosets of Gk+1, and (iii) if we consider x+Gk as a circle, I is an interval. Let
F−1 = {G} . For k = 0,1, . . . , let Fk be the collection of all I ∈ F such that I is a
proper subset of a coset of Gk , and is a union of cosets of Gk+1. The collections Fk

are disjoint, and F = ∪
k=−1Fk. For I ∈ F , we define the set 3I ∈ F as follows. If

I = G , let 3I = G . For I ∈ Fk, k = 0,1, . . . , there is x ∈ G such that I ⊂ x+Gk . If
(I) � (Gk)

3 , let 3I = x+Gk . If (I) < (Gk)
3 , consider x+Gk as a circle. Then I is

an interval in this circle. Define 3I ∈ Fk to be the interval in this circle which contains
I at its center and has measure (3I) = 3(I) . In all cases, for I ∈F , (3I) � 3(I) .

We say that w is a weight function on G if w is measurable and 0 < w(x) < 
a.e. Gosselin [7] (case supi pi <  ) and Young [18] (no restriction on the orders pi )
characterized all weight functions w such that if f ∈ Lp

w(G), 1 < p <, Sn f converges
to f in Lp

w(G) . Here Lp
w(G) denotes the space of measurable functions on G such that

‖ f‖p,w = (
∫
G | f |pwd)1/p < .

DEFINITION 1.1. (see [18]) (i) We say that w satisfies Ap(G) condition, 1 <
p <  , if

[w]Ap = sup
I∈F

(
1

(I)

∫
I
wd

)(
1

(I)

∫
I
w−1/(p−1) d

)p−1

< . (1.1)

(ii) We say that w satisfies A1(G) condition if

[w]A1 = sup
I∈F

1
(I)

∫
I
wd (essinfIw(x))−1 < .

For the case where the orders of cyclic groups are bounded, Gosselin [7] defined
Ap(G) condition, as the one where (1.1) condition holds for all I that are cosets of
Gk , k = 0,1,2, . . . . For this case Ap conditions, defined by Young and Gosselin, are
equivalent (see [18]).

THEOREM 1.2. ([18]) Let w be a weight function on G. For 1 < p <  , the
following statements are equivalent:

(i) w ∈ Ap(G),
(ii) There is a constant C , depending only on w and p, such that for every f ∈

Lp
w(G) , we have ∫

G
|Sn f |pwd � C

∫
G
| f |pwd ,
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(iii) For every f ∈ Lp
w(G) , we have

lim
n→

∫
G
|Sn f − f |pwd = 0.

In this paper we characterize all exponents p(·) such that if f ∈ Lp(·)(G) , then
partial sums Sn f of the Vilenkin-Fourier series of f ∈ Lp(·)(G) converge to f with
Lp(·) -norm. Now we give a definition of variable Lebesgue space. Let p(·) : G →
[1,) be a measurable function. The variable Lebesgue space Lp(·)(G) is the set of all
measurable functions f such that for some  > 0,

p(·)( f/ ) =
∫

G
(| f (x)|/ )p(x)d < .

Lp(·)(G) is a Banach function space equipped with the Luxemburg norm

‖ f‖p(·) = inf{ > 0 : p(·)( f/ ) � 1}.

We use the notations p−(I) = essinfx∈I p(x) and p+(I) = esssupx∈I p(x) where
I ⊂ G . If I = G we simply use the following notation p−, p+ . The function p′(·)
denotes the conjugate exponent function of p(·) , i.e., 1/p(x)+ 1/p′(x) = 1 (x ∈ G).
In this paper the constants C,c are absolute constants and may be different in different
contexts and A denotes the characteristic function of set A.

Very recently the convergence of partial sums of the Walsh-Fourier series in
Lp(·)([0,1)) space was investigated by Jiao et al. [8]. We denote by Clog

d the set of
all functions p(·) : [0,1)→ [1) , for which there exists a positive constant C such that

|I|p−(I)−p+(I) � C

for all dyadic intervals I = [k2−n,(k+1)2−n) (k,n ∈ N 0 � k < 2n) , here |I| denotes
the Lebesgue measure of I . Note that this condition may be interpreted as a dyadic ver-
sion of log-Hölder continuity condition of p(·) (or on dyadic group). The log-Hölder
condition is a very common condition for solving various problems of harmonic analy-
sis in Lp(·)(Rn) (see [2], [5]).

THEOREM 1.3. ([8]) Let p(·)∈Clog
d with 1 < p− � p+ <. If f ∈ Lp(·)([0,1)) ,

then for partial sums Sn f of the Walsh-Fourier series of f ∈ Lp(·)([0,1)) we have

sup
n∈N

‖Sn f‖p(·) � C‖ f‖p(·).

Since Walsh polynomials are dense in Lp(·)([0,1)) , Theorem 1.3 implies that Sn f
converges to the original function in Lp(·)([0,1))-norm (for more details see [8] and the
recent book [13], chapter 9).

In order to extend techniques and results of constant exponent case to the setting
of variable Lebesgue spaces, a central problem is to determine conditions on an ex-
ponent p(·) under which the Hardy-Littlewood maximal operator is bounded on Lp(·)
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(see monographs Cruz-Uribe and Fiorenza [2] and Diening et.al. [5]). We now define
the Hardy-Littlewood maximal function that is appropriate for the study of Vilenkin-
Fourier series. For f ∈ L1(G) , let

M f (x) = sup
x∈I,I∈F

1
(I)

∫
I
| f |d .

This maximal function was introduced first by P. Simon in [16]. He showed that
the maximal operator is bounded in Lp(G), 1 < p <  and is of weak type (1,1).
Young [18] obtained the following analogue of Muckenhoupt’s theorem [11].

THEOREM 1.4. Let w be a weight function on G. For 1 < p <  , the following
two statements are equivalent:

(i) w ∈ Ap(G),
(ii) There is a constant C , depending only on w and p, such that for every f ∈

Lp
w(G) , we have ∫

G
(M f )pwd � C

∫
G
| f |pwd .

In case p = 1 the following two statements are also equivalent:
(iii) w ∈ A1(G),
(iv) There is constant C, depending only on w, such that for every f ∈ L1(G)∫

{M f>y}
wd � Cy−1

∫
G
| f |wd , y > 0.

DEFINITION 1.5. We say that the exponent p(·), 1 < p− � p+ <  satisfies the
condition A (G) , if there is a constant C such that for every I ∈ F ,

1
(I)

‖I‖p(·)‖I‖p′(·) � C. (1.2)

The condition (1.2) plays exactly the same role for averaging operators in variable
Lebesgue spaces as the Muckenhoupt Ap conditions for weighted Lebesgue spaces (see
[9], [10], for Euclidian setting). We show that the A (G) condition is necessary and
sufficient for the Lp(·)(G) boundedness of Hardy-Littlewood maximal function. One of
the main result of the present paper is the following theorem.

THEOREM 1.6. Assume for the exponent p(·) we have 1 < p− � p+ < . Then
the following two statements are equivalent:

(i) p(·) ∈ A (G),
(ii) There is a constant C , depending only on p(·) such that for every f ∈ Lp(·)(G) ,

we have
‖M f‖p(·) � C‖ f‖p(·).

By the symmetry of the definition, p(·) ∈ A (G) if and only if p′(·) ∈ A (G) and
from Theorem 1.6 we have that, even though, M is not a linear operator, the bounded-
ness of M implies the ”dual” inequality.
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COROLLARY 1.7. Let for exponent p(·) we have 1 < p− � p+ < . Then the
maximal operator M is bounded on Lp(·)(G) if and only if M is bounded on Lp′(·)(G).

We prove the following theorem (in the Euclidean setting see [2], Theorem 4.37
and [5], Theorem 5.7.2).

THEOREM 1.8. Let for the exponent p(·) we have 1 < p− � p+ < . Then the
following statements are equivalent:

(i) Maximal operator M is bounded on Lp(·)(G) ,
(ii) There exists r0 , 0 < r0 < 1, such that if r0 < r < 1, then maximal operator M

is bounded on Lrp(·)(G) .

Hereafter, we will denote by S a family of pairs of non-negative, measurable
functions. Given p , 1 � p <  if for some w ∈ Ap(G) we write

∫
G

f (x)pw(x)d � C
∫

G
g(x)pw(x)d , ( f ,g) ∈ S ,

then we mean that this inequality holds for all pairs ( f ,g) ∈ S such that the left hand
side is finite, and that the constant C may depend on p and [w]Ap . If we write

‖ f‖p(·) � Cp(·)‖g‖p(·), ( f ,g) ∈ S ,

then we mean that this inequality holds for all pairs ( f ,g) ∈ S such that the left-hand
side is finite and the constant may depend on p(·) .

Using this convention we can state the Rubio de Francia extrapolation theorem in
the following manner.

THEOREM 1.9. Suppose for some p0 � 1 the family S is such that for all w ∈
A1(G) ∫

G
f (x)p0w(x)d � C

∫
G

g(x)p0w(x)d , ( f ,g) ∈ S .

If for the exponent p(·) , we have p0 < p− � p+ <  and the maximal operator M is
bounded on L(p(·)/p0)′(G) , then

‖ f‖p(·) � Cp(·)‖g‖p(·), ( f ,g) ∈ S .

Firstly, Theorem 1.9 was proved in [4] (Theorem 1.3) for variable exponent Lebes-
gue spaces on R

n and maximal operator M defined on cubes (balls) in R
n , with sides

parallel to the coordinate axes. In [3] the Rubio de Francia extrapolation theorem is
proved for general Function spaces, using A1 weights and maximal operator M de-
fined by any Muckenhoupt basis (see Definition 3.1 in [3]). By Theorem 1.4 the set of
generalized intervals F is a Muckenhoupt basis. Considering the following equality(
Lp(·)(G)

)1/p0
= Lp(·)/p0(G) , Theorem 1.9 is direct consequence of Theorem 4.6 from

[3].
Now, we can formulate the main result of the present paper.
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THEOREM 1.10. Let for exponent p(·) we have 1 < p− � p+ < . Then the
following statements are equivalent:

(i) p(·) ∈ A (G),
(ii) There is a constant C , depending only on p(·) , such that for partial sums Sn f

of the Vilenkin-Fourier series of f ∈ Lp(·)(G) we have

sup
n∈N

‖Sn f‖p(·) � C‖ f‖p(·).

(iii) Partial sums Sn f of the Vilenkin-Fourier series of f ∈ Lp(·)(G) converge to
the original function in Lp(·) space.

2. Preliminaries

The fundamental properties of Ap(G) weights were investigated by Gosselin [7]
and later by Young [18] (in this paper there is no restriction on the orders pi ). We
formulate some properties of these weights (see [18]).

Note that if w∈ Ap(G) , then Lp
w(G)⊂ L1(G) . We also mention that if w∈ Ap(G),

1 � p <  , and p < q <  then w ∈ Aq(G) . A important property of Ap(G) weights
is the reverse Hölder inequality.

PROPOSITION 2.1. ([18]) Let w ∈ Ap(G), 1 < p <  . Then there exist s > 1
and a constant C such that for any I ∈ F ,

(
1

(I)

∫
I
wsd

)1/s

� C
(I)

∫
I
wd .

The following proposition is a consequence of the reverse Hölder inequality.

PROPOSITION 2.2. ([18]) (i) Suppose w ∈ Ap(G), 1 < p <  . Then there exists
1 < s < p such that w ∈ As(G) .

(ii) Suppose w ∈ Ap(G), 1 < p <  , then w ∈ A(G).

DEFINITION 2.3. ([18]) Let I0 ∈ F . We say that a weight w (i.e. a nonnegative
integrable function) satisfies A(I0) condition if for any  ∈ (0,1) there exists  ∈
(0,1) such that for any generalized interval I ⊂ I0 and for any measurable subset E ⊂ I ,
(E) � (I) implies w(E) � w(I) (for any measurable set A , w(A) =

∫
A wd and

wA = 1
(A)

∫
A wd ).

It is well known fact that the class A in Euclidian case can be defined in many
equivalent ways. The most classical definition is due to Muckenhoupt [12]. It is said
that a locally integrable function w : R

n → [0,) is in A class if for each  ∈ (0,1)
there exists  ∈ (0,1) such that |E| � |Q| ⇒ w(E) � w(Q) holds, whenever Q is a
d-dimensional cube and E is its arbitrary measurable subset of Q . Note that w satisfies
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the above condition if and only if it belongs Ap class for some p∈ (1,) . Coifman and
Fefferman [1] proposed another approach based on verifying the following inequality

w(E)
w(Q)

� C

( |E|
|Q|
)

,

where Q,E are as before, while C, > 0 are constants depending only w. Note that the
two conditions lead to same class of weights. For More detailed information we refer
the reader to [6].

To prove the main result we need analogous result for Vilenkin group. It should
be noted that we give the proof which we had not found in literature.

PROPOSITION 2.4. Let w∈ A(I0) , where I0 ∈F . There exist positive constants
C, > 0 such that for any generalized interval I ⊂ I0 and measurable subset E ⊂ I,

w(E)
w(I)

� C

(
(E)
(I)

)
. (2.1)

For proving the result we need modified form of the Calderón-Zygmund decom-
position lemma (see [17], Lemma 2).

LEMMA 2.5. Given an interval I ∈ F and a function f ∈ L1(G) , then for t �
| f |I , there exists a collection Ij of disjoint generalized intervals I j ⊂ I such that

t <
1

(I j)

∫
Ij
| f |d � 3t, ∀I j,

and for almost every x ∈ I\∪ j I j, | f (x)| � t.

Proof of Proposition 2.4. Fix a generalized interval I ⊂ I0 and for integer k � 0
define the sequence tk = 10kwI = 10kt0. Using Lemma 2.5 For each k we may find
Calderón-Zygmund generalized intervals Ik

j of w in following manner. First con-

struct Calderón-Zygmund generalized intervals I0
j relative to I at height t0 (Calderón-

Zygmund generalized intervals of rang 0). Denote 0 =∪I0
j . For any fixed I0

j interval
find Calderón-Zygmund generalized intervals (of rang 1) of w and height t1 . Denote
by I1

j the intervals of rang 1 and 1 = ∪I1
j . Note that 1 ⊂0 ⊂ I. In this manner we

may construct collection Ik
j Calderón-Zygmund generalized intervals and the set k

with properties:
a) k+1 ⊂k, k = 0,1,2, . . . ,
b) tk < wIkj

� 3tk, k = 0,1,2, . . . ,

c) w(x) � tk , x ∈ I\k.
Note that from the construction for any i there exists j such that Ik+1

i ⊂ Ik
j .

Then

(k+1∩ Ik
j ) = 

Ik+1
i ⊂Ikj

(Ik+1
i ) < t−1

k+1 
Ik+1
i ⊂Ikj

w(Ik+1
i )

� t−1
k+1w(Ik

j ) � 3tk
tk+1

(Ik
j ) =

3
10

(Ik
j ).
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Hence, by A(I0) condition with  = 3/10, there exists  > 0 such that w(k+1∩
Ik
j ) � w(Ik

j ), and if we sum over all j , we obtain w(k+1) � w(k) and conse-

quently we have that w(k) �  k+1w(I).
For almost every x ∈ I \k, w(x) � tk . For fixed 

1
(I)

∫
I
w(x)1+d =

1
(I)

∫
I\0

w(x)1+d+
1

(I)




k=0

∫
k\k+1

w(x)1+d

� t0
(I)

∫
I\0

w(x)d +
1

(I)




k=0

tk+1w(k)

� t0
(I)

∫
I\0

w(x)d +
1

(I)




k=0

10(k+1)t0
k+1w(I).

Fix  > 0 so that 10 < 1, we obtain that last term is bounded by

t0
1

(I)

∫
I
w(x)d +C(I)−1t0w(I) � C

(
1

(I)

∫
I
w(x)d

)1+
.

Hence, given  > 0 the weight satisfies Reverse Hölder inequality.
Finally if we use Hölder’s inequality for w(E) =

∫
E w(x)d and Reverse Hölder’s

inequality for 1+  we get (2.1). �

For 0 < r < define Mr f (x) = M(| f |r)(x)1/r. For brevity, hereafter we will write
fI instead of

∫
I f d/(I).

As a consequence of the reverse Hölder inequality we get that if w ∈ Ap(G) for
some p , then there exists s > 1 such that Msw(x) � CMw(x). We need a sharper ver-
sion of this inequality.

PROPOSITION 2.6. Given w ∈ A1(G) , if s0 = 1+ 1
8[w]A1

, then for 1 < s � s0 and

for almost every x,
Msw(x) � 4Mw(x) � 4[w]A1w(x). (2.2)

This type of estimates is well known in Euclidian setting. For the sake of com-
pleteness we will give a proof for the Vilenkin group.

We need an inequality that is the reverse of the weak (1,1) inequality for maximal
operator M.

LEMMA 2.7. Given a function f ∈ L1(G), for every interval I ∈F and t � | f |I ,

({x ∈ I : M f (x) > t}) � 1
3t

∫
{x∈I: | f (x)|>t}

| f (x)|d .

Proof. t � | f |I ; if t � ‖ f‖L , then this result is true. Otherwise, by Lemma 2.5,
let Ii be the Calderón-Zygmund intervals of f relative to I and t. For every x ∈ Ii

M f (x) � 1
(Ii)

∫
Ii
| f |d > t.
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Since | f (x)| � t for almost every x ∈ I\∪i Ii, we have

({x ∈ I : M f (x) > t}) � 
j

(I j) � 1
3t j

∫
Ij
| f |d

� 1
3t

∫
{x∈I: | f (x)|>t}

| f (x)|d . �

Proof of Proposition 2.6. Let  = (8[w]A1)
−1, s0 = 1+ , and fix an interval I

and x0 ∈ I. To prove the first inequality of (2.2) it is sufficient to show that

1
(I)

∫
I
w(x)s0d � 4Mw(x0)s0 .

We have that

1
(I)

∫
I
w(x)s0d =

1
(I)

∫
I
w(x)w(x)d

= ((I))−1
∫ 

0
t−1w({x ∈ I : w(x) > t})dt

= ((I))−1
∫ Mw(x0)

0
t−1w({x ∈ I : w(x) > t})dt

+((I))−1
∫ 

Mw(x0)
t−1w({x ∈ I : w(x) > t})dt.

For the first term we have

((I))−1
∫ Mw(x0)

0
t−1w({x ∈ I : w(x) > t})dt

� ((I))−1w(I)
∫ Mw(x0)

0
t−1dt =

1
(I)

∫
I
w(y)d ·Mw(x0) � Mw(x0)1+ .

Using Lemma 2.7 we obtain

((I))−1
∫ 

Mw(x0)
t−1w({x ∈ I : w(x) > t})dt

= ((I))−1
∫ 

Mw(x0)
t−1

∫
{x∈I:w(x)>t}

ddt

� 3((I))−1
∫ 

0
t({x ∈ I; Mw(x) > t})dt

=
3

1+ 
1

(I)

∫
I
Mw(x)1+d

�
3[w]1+

A1

1+ 
1

(I)

∫
I
w(x)1+d .
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From above estimates we get

1
(I)

∫
I
w(x)1+d � Mw(x0)1+ +

3[w]1+
A1

1+ 
1

(I)

∫
I
w(x)1+d .

Since for all x � 1, x1/8x � 2, we have

3[w]1+
A1

1+ 
� 3

8
[w]−1

A1
[w]

1+(8[w]A1
)−1

A1
� 3

4

and consequently the first inequality in (2.2) is valid. The second inequality in (2.2) is
clear. �

3. Proof of Theorem 1.6

Given a generalized interval I ∈ F define the averaging operator AI by

AI f (x) =
1

(I)

∫
I
f d I(x).

PROPOSITION 3.1. Given a exponent p(·), 1 < p− � p+ < , there exists a con-
stant C > 0 such that for any interval I ∈ F

‖AI f‖p(·) � C‖ f‖p(·)

if and only if p(·) ∈ A (G).

The proof of Proposition 3.1 is essentially the same as for averaging operator de-
fined by cubes for Euclidean setting (see for example [2], Proposition 4.47).

Lemma 3.2 shows that the condition p(·) ∈ A (G) is actually sufficient for mod-
ular inequality. Analogous estimate for the case Lp(·)(Rn) was obtained by Kopaliani
[9]. The proof in [9] is based on some concepts from convex analysis. Lerner in [10]
gave a different and simple proof. In this paper our approach is based on the adaptation
of Lerner’s proof [10].

LEMMA 3.2. Given exponent p(·) such that 1 < p− � p+ < , suppose p(·) ∈
A (G) . Let f ∈ Lp(·)(G). If there exists an interval I ∈ F and constants c1,c2 > 0
such that | f |I � c1 and ‖ f‖p(·) � c2, where c1,c2 > 0 , then there exists a constant c
depending only on p(·),c1,c2 such that∫

I
(| f |I)p(x)d � c

∫
I
| f (x)|p(x)d .

Proof. Using the condition p+ <  we may consider only the case c1 = c2 = 1.
Since p′+ <  , there exists  > 0 such that∫

I
 p′(y)−1d =

∫
Q
| f (x)|d . (3.1)
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Since | f |I � 1, we have  � 1. By generalized Hölder inequality∫
I
f (x)d � 2‖ f‖p(·)‖I‖p′(·)

we get
∫
I  p′(y)−1d � 2‖I‖p′(·) and consequently,

 � c/‖I‖p′(·). (3.2)

Given this value  , we have that
∫

I
(| f |I)p(x)d =

∫
I

(
1

(I)

∫
I
 p′(y)−1d

)p(x)

d (3.3)

=

(
1

(I)

∫
I

(
1

(I)

∫
I
 p′(y)−p′(x)d

)p(x)−1

d

)∫
I
 p′(y)d .

For each x ∈ I partition I into E1(x) = {y ∈ I : p′(y) > p′(x)} and E2(x) =
I\E1(x) . Using (3.2) and the estimate  � 1, we obtain∫

I
 p′(y)−p′(x)d =

∫
E1(x)

 p′(y)−p′(x)d+
∫

E2(x)
 p′(y)−p′(x)d

� c(‖I‖p′(·))p′(x) + (I).

In view of p(·) ∈ A(G) , we have

1
(I)

∫
I

(
1

(I)

∫
I
 p′(y)−p′(x)d

)p(x)−1

d (3.4)

� c
1

(I)

∫
I

(
1

(I)
(‖I‖p′(·))p′(x) +1

)p(x)−1

d

� c+ c
1

(I)

∫
I

(
1

(I)
(‖I‖p′(·))p′(x)

)p(x)−1

d

� c+ c
∫
I

(‖I‖p′(·)
(I)

)p(x)

d

� c+ c
∫
I

(
1

‖I‖p(·)

)p(x)

d � c.

Further, ∫
I
 p′(y)d = 2

∫
I
| f (x)|d−

∫
I
 p′(y)d (3.5)

� 2
∫
{y∈I:2 | f (y)|> p′(y)}

| f (y)|d

� c
∫

I
| f (y)|p(y)d .

From (3.3), (3.4) and (3.5) we obtain desired estimate. �
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COROLLARY 3.3. Let 1 < p− � p+ <  and p(·) ∈ A (G). Suppose that 1 �
t � 2/‖I‖p(·) , where 1,2 > 0 and I ∈ F . Then t p(x) ∈ A(I) with A constant
depending only on p(·), 1,2.

Proof. Let I′ ⊂ I , where I′, I ∈ F and E ⊂ I′ be any measurable subset with
(E) > (I′)/2. Define f = tE . Then

| f |I′ =
1

(I′)

∫
I′
tE(x)d = t

(E)
(I′)

� 1

2
,

‖ f‖p(·) = t‖E‖p(·) � 2
‖E‖p(·)
‖I‖p(·)

� 2.

Therefore, f satisfies the hypotheses of Lemma 3.2 with c1 = 1/2, c2 = 2 and
there exists a constant c depending only on p(·),1,2 such that

1
2p+

∫
I0

t p(·)d � c
∫

E
t p(·)d ,

which proves that t p(x) ∈ A(I). �

Proof of Theorem 1.6. The part (ii) ⇒ (i) of Theorem 1.6 follows immediately
from Proposition 3.1 and from the fact that | f |II(x) � M f (x) for any interval I ∈ F .

Implication (i) ⇒ (ii). Suppose f ∈ Lp(·)(G) and ‖ f‖p(·) � 1. It is sufficient
to proof that there exists a positive constant C (independent of f ) such that for any
nonnegative function g ∈ Lp′(·)(G) , with ‖g‖p′(·) � 1

∫
G

M f (x)g(x)d � C. (3.6)

For each positive integer k set

k = {x ∈ G : M f (x) > 3k}.

Note that ∫
G\1

M f (x)g(x)d � C. (3.7)

Define Dk = k\k+1. Let Fk be an arbitrary compact subset of Dk. We will
prove that ∫

∪Fk

M f (x)g(x)d � C. (3.8)

By simple limiting argument from (3.8) and from (3.7) we obtain (3.6).
Let (Fk) > 0. There exists a finite collection of generalized intervals I , ∈ Ak ,

Fk ⊂ ∪∈AkI , such that | f |I > 3k,  ∈ Ak and for all fixed  , there exists x ∈ I
such that M f (x ) � 3k+1. Note that if I1 and I2 belong to distinct Fl ’s and are
not disjoint ((I1 ∩ I2) > 0) then one is a subset of the other. Consequently without
loss of generality we may assume that in collection I , ∈ Ak if (I1 ∩ I2) > 0



VILENKIN-FOURIER SERIES IN VARIABLE LEBESGUE SPACES 989

for some 1 and 2 , then I1 and I2 belong to the same Fl ’s (for some l ). By
Vitali covering lemma, we may select from collection I , ∈ Ak the finite collection
of pairwise disjoint intervals {Ik

j} j ∈ {1, . . . ,Nk} such that Fk ⊂ ∪ j3Ik
j .

Without loss of generality we may assume that (Fk) > 0 for all k � 1. Define the
sets Ek

1 = 3Ik
1 ∩Fk, Ek

j = (3Ik
j\∪s< j 3Ik

s )∩Fk, j > 1. Note that the sets Ek
j are pairwise

disjoint and ∪ jEk
j = Fk.

Define

Tg(x) =



k=1

j

(
1

(Ik
j )

∫
Ek

j

gd

)
Ikj

(x).

Using the above definition, we get

∫
∪kFk

(M f )(x)g(x)d � 3k+1



k=1

j

∫
Ek

j

gd � 3



k=1

j

fIkj

∫
Ek

j

gd

= 3
∫

G
fTg � 6‖ f‖p(·)‖Tg‖p′(·),

and consequently for proving (3.8), it is sufficient to show that ‖Tg‖p′(·) � C.

Note that Ik
j ⊂k = ∪

l=0Dk+l and hence Tg = 
l=0 Tlg, where

Tlg(x) =



k=1

j

a j,k(g)Ikj ∩Dk+l
(x), (l = 0,1, . . .)

where  j,k(g) = 1
(Ikj )

∫
Ek

j
gd .

Let I1 = {( j,k) :  j,k(g) > 1} and I2 = {( j,k) :  j,k(g) � 1}.
By condition p∈A (G) and Hölder inequality implies that for any interval I ∈F ,

‖3I‖p(·) � C‖I‖p(·). We have

 j,k(g) � 2

(Ik
j )
‖Ek

j
‖p(·)‖gEk

j
‖p′(·) � 2

(Ik
j )
‖3Ikj

‖p(·)

� C
‖3Ikj

‖p′(·)
� C

‖Ikj
‖p′(·)

.

Let ( j,k) ∈ I1. Then by Corollary 3.3  j,k(g)p′(x) ∈ A(Ik
j ) and by Lemma 3.2,

(see, also (2.1))

∫
Ikj ∩Dk+l

 j,k(g)p′(x)d � C

(
(Ik

j ∩Dk+l)

(Ik
j )

) ∫
Ikj

 j,k(g)p′(x)d

� C

(
(Ik

j ∩Dk+l)

(Ik
j )

) ∫
Ek

j

g(x)p′(x)d . (3.9)
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If ( j,k) ∈ I2 , then we have

∫
Ikj ∩Dk+l

 j,k(g)p′(x)d �
∫

Ikj ∩Dk+l

 j,k(g)d

=
(Ik

j ∩Dk+l)

(Ik
j )

∫
Ek

j

g(x)d . (3.10)

We need estimate (Ik
j ∩Dk+l) for l � 2. Let x ∈ Ik

j and I ∈ F be an arbitrary

interval such that x ∈ I. Observe that either I ⊂ 3Ik
j or Ik

j ⊂ 3I. If the second inclusion
holds, then 3I∩Dk �= /0 and hence

| f |I � 3| f |3I � 3 ·3k+1 � 3k+l (l � 2).

Therefore, if | f |I > 3k+l , then I ⊂ 3Ik
j . From this and from weak type property of M,

we get

(Ik
j ∩Dk+l) � {x ∈ Ik

j : M( f 3Ikj
)(x) > 3k+l} � C

3k+l

∫
3Ikj

| f |d

� C
(Ik

j )
3k+l | f |3Ikj

� C
3k+1

3k+l (Ik
j ) � C

3l (Ik
j ). (3.11)

By estimates (3.9), (3.10), (3.11), when l � 2 we obtain

∫
G
(Tlg(x))p′(x)d =




k=1

j

∫
Ikj ∩Dk+l

 j,k(g)p′(x)d

� C3−l 
( j,k)∈I1

∫
Ek

j

g(x)p′(x)d+C3−l 
( j,k)∈I2

∫
Ek

j

g(x)d

� C3−l
(∫

G
g(x)p′(x)d+

∫
G

g(x)d
)

.

Where  = min{1,} .

Using the fact that ‖g‖1 � 2‖G)‖p′(·) , and
∫
G g(x)p′(x)d � 1 we obtain

‖Tlg‖p′(·) � C3−l/p′+ (l � 2).

For l = 0,1 if we use a trivial estimate (Ik
j ∩Dk+l) � (Ik

j ) , analogously will be
obtained the estimate ‖Tlg‖p′(·) � C . Finally we obtain

‖Tg‖p′(·) �



l=0

‖Tlg‖p′(·) � C. �
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4. Proof of Theorem 1.8

The implication (ii) ⇒ (i) is straightforward. Fix r0, r0 < r < 1, and let s =
1/r. by Hölder’s inequality, we have that M f (x) � M(| f |s)(x)1/s = Ms f (x). Note that
‖| f |s‖p(·) = ‖ f‖s

sp(·) and

‖M f‖p(·) � ‖M(| f |s)1/s‖p(·) = ‖M(| f |s)‖r
rp(·) � C‖| f |s‖r

rp(·) = C‖ f‖p(·).

To prove that (i) ⇒ (ii), we first construct a A1(G) weight using the Rubio de
Francia iteration algorithm. Given h ∈ Lp(·)(G), define

Rh(x) =



k=0

Mkh(x)
2k‖M‖k

Lp(·)(G)

,

where for k � 1, Mk = M ◦M ◦ · · · ◦M denotes k iterations of the Maximal operator
M and M0 f = | f |. The function Rh(x) has the following properties:

(a) For all x ∈ G, |h(x)| � Rh(x);
(b) R is bounded on Lp(·)(G) and ‖Rh‖p(·) � 2‖h‖p(·);
(c) Rh ∈ A1(G) and [Rh]A1 � 2‖M‖Lp(·)(G).

The proof of properties (a),(b),(c) are the same, as Euclidian setting (see [2],
pp.157) and we omit it here. By property (c) and Proposition 2.6 there exists s0 > 1
such that for all s, 1 < s < s0,

Ms(Rh)(x) � Ms0(Rh)(x) � 8‖M‖Lp(·)(G)Rh(x).

Let r0 = 1/s0 . Fix r such that r0 < r < 1. Let s = 1/r.
By properties (a) and (b) we have

‖M f‖rp(·) = ‖(M f )1/s‖s
p(·) = ‖Ms(| f |r)‖s

p(·)
� ‖Ms(R(| f |r)‖s

p(·) � C‖M‖s
Lp(·)(G)‖R(| f |r)‖s

p(·)
� C‖| f |r‖s

p(·) = C‖ f‖rp(·). �

5. Proof of Theorem 1.10

Since Vilenkin polynomials are dense in Lp(·)(G) (1 � p− � p+ < ) the proof
of equivalence of (ii) and (iii) is straightforward. The implications (i) ⇒ (ii) fol-
lows from Rubio de Francia extrapolation theorem (Theorem 1.9), if we use Young’s
weighted estimates for partial sum Sn f of the Vilenkin-Fourier series (Theorem 1.2),
Theorem 1.6, Theorem 1.8 and corollary 1.7.

Proof of (ii)⇒ (i) . Consider I ∈F . There is x∈G such that I is a proper subset
of x+Gk and I is a union of cosets of Gk+1. First consider the case (I) � (Gk)/2.
Take k = [(Gk)/2(I)] , where [a] is the largest integer less than or equal to a . We
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have k � 1. Let f ∈ Lp(·)(G) be a nonnegative function with support in I. We use the
following estimate (see [18], pp. 286–287): for x ∈ I,

−(k−1)/2
k (x)Skmk ( f (k−1)/2

k )(x) � 1
2(I)

∫
I
f (t)d =

1
2

AI f (x).

We have

‖AI f‖p(·) � C‖−(k−1)/2
k Skmk ( f−(k−1)/2

k )‖p(·) � C‖ f‖p(·).

From this estimate we obtain in standard way (1.2) in case (I) � (Gk)/2 (see
Proposition 3.1).

Consider the case (I) > (Gk)/2. Note that every coset of Gk is in Fk−1 and
(Gk) � (Gk−1)/2 and consequently (1.2) holds for all cosets of Gk . We have

‖I‖p(·)‖I‖p′(·) � ‖x+Gk‖p(·)‖x+Gk‖p′(·) � C(Gk) � C(I). �
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