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INEQUALITIES FOR THE RIEMANN ZETA

FUNCTION ON THE POSITIVE REALS
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Abstract. In this paper we obtain a sequence of inequalities regarding the Riemann zeta function
and its derivative. The simplest special cases of this gives − ′(s) < 1

(s−1)2 for s > 0 and

 (s) > 1
s−1 +  for s > 1 .

1. Introduction and statement of results

For n ∈ N , let

Fn(s) =
1
n m>n

log m
n

(m
n )s . (1.1)

This converges for Re s > 1 and is directly related to the Riemann’s zeta function. Thus
F1(s) = − ′(s) and more generally,

Fn(s) =

(
− ′(s)−

n


m=1

logm
ms −

(
 (s)−

n


m=1

1
ms

)
logn

)
ns−1. (1.2)

Hence, Fn(s) has an analytic continuation to C\ {1} , which we also denote by Fn(s) .
However, we shall only be interested in this function for real values of s (see [4] and
[6] for the relevant properties of  (s)).

The object of this paper is to prove:

THEOREM 1. For each n ∈ N and s > 0 such that s �= 1 , we have

Fn(s) < F2n(s).

Observe that the sum in (1.1) is a Riemann sum approximation to the integral∫ 
1

logt
ts dt so that, as n →  , for Re s > 1,

Fn(s) →
∫ 

1

log t
ts

dt =
1

(s−1)2 . (1.3)

Using n�x
1
ns = x1−s

1−s + (s)+O(x−s) and n�x
logn
ns = x1−s logx

1−s − x1−s

(1−s)2 − ′(s)+
O(x−s logx) for 0 < s < 1, we see that (1.2) implies (1.3) also holds for this range.
As an immediate consequence, we therefore have
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COROLLARY 1. For each n ∈ N and s > 0 such that s �= 1 , we have

Fn(s) <
1

(s−1)2 .

As Fn(s) = −(ns−1m>n
1
ms )′ , this in turn implies

COROLLARY 2. For each n ∈ N and s > 0 , the function

kn(s) := ns−1
(
 (s)−

n


m=1

1
ms

)
− 1

s−1

is strictly increasing. (At s = 1 we take limits as s → 1 .) This further implies that, with
Hn = n

r=1
1
r and  denoting Euler’s constant,

− 1
2n

< kn(s) < logn+ −Hn (0 < s < 1) and logn+ −Hn < kn(s) < 0 (s > 1).
(1.4)

We point out a few special cases, starting with Corollaries 1 and 2. When n = 1
these give: for s > 0

− ′(s) <
1

(s−1)2 and  (s)− 1
s−1

is strictly increasing,

while (1.4) says

1
2

<  (s)− 1
s−1

<  (0 < s < 1) and  <  (s)− 1
s−1

< 1 (s > 1).

Even these inequalities appear to be new. For example, it follows from the above that
for s > 1

− ′(s)
 (s)

<
1

(s−1)2 ·
1

1
s−1 + 

=
1

s−1
− 

1+ (s−1)
;

i.e.
 ′(s)
 (s)

+
1

s−1
>


1+ (s−1)

(s > 1). (1.5)

The same argument gives  ′(s)
 (s) + 1

s−1 < 
1+(s−1) for 0 < s < 1. Inequality (1.5) im-

proves a recent result by Alzer and Kwong [1] (itself an improvement on an earlier
inequality by Delange [5]) where the RHS in (1.5) is 

s .

Theorem1 says something more directly about the function (s)= (1−21−s) (s) .
Observe that

F2n(s)−Fn(s) =
1
2n 

m>2n

log m
2n

( m
2n )s − 1

n m>n

log m
n

(m
n )s =

1
2n 

m>2n

(−1)m−1 log m
2n

( m
2n )s ,

by splitting the first sum into even m and odd m . Further note that this is

− 1
2n

(


m>2n

(−1)m−1

(m/2n)s

)′
.
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Thus Theorem 1 implies that for every n ∈ N

�n(s) := (2n)s−1
(
(s)−

2n


m=1

(−1)m−1

ms

)
is strictly decreasing on (0,) .

This can be compared to the result that (s) is strictly concave on (0,) , see [2]. Note
that �n(0) = 1

4n while �n() = 0, so 0 < �n(s) < 1
4n .

There have been a number of results on inequalities for  (s) (eg [1], [2]) often in
conjunction with results on (s) . See for example, [3], where inequalities and conjec-
tures are given for the Hurwitz zeta function on (1,) . These complement our results.

2. Proof of Theorem 1

Before we start the proof, we have the following Mellin transform representation
of Fn :

Fn(s) =
1

(s−1)2 − sns−1
∫ 

n

En(x)
xs+1 dx, (2.1)

where

En(x) =
∫ x

n
log

t
n

d{t} = {x} log
x
n
−
∫ x

n

{t}
t

dt.

Equation (2.1) holds initially for Re s > 1, but since the integral on the right converges
absolutely for Re s > 0, it holds for all such s except s = 1. To see (2.1), note that,
with Ln(x) = n<m�x log m

n ,

Fn(s) = sns−1
∫ 

n

Ln(x)
xs+1 dx.

But

Ln(x) =
∫ x

n
log

t
n

d[t] = x log
x
n
− x+n−En(x),

on writing [t] = t−{t} . Thus

Fn(s) = sns
∫ 

n

x
n log x

n − x
n +1

xs+1 dx− sns−1
∫ 

n

En(x)
xs+1 dx.

The first integral is s
∫ 
1

y logy−y+1
ys+1 dx = 1

(s−1)2 , proving (2.1).

We note that En(x) is right continuous with jump discontinuities at integer points
and that on intervals (k,k+1) ,

E ′
n(x) = log

x
n
.

Proof of Theorem 1. From (2.1), we obtain

F2n(s) =
1

(s−1)2 − s(2n)s−1
∫ 

2n

E2n(x)
xs+1 dx =

1
(s−1)2 − sns−1

∫ 

n

1
2E2n(2x)

xs+1 dx.
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Thus we find

F2n(s)−Fn(s) = sns−1
∫ 

n

n(x)
xs+1 dx, (2.2)

where n(x) = En(x)− 1
2E2n(2x) . Hence (·) is right-continuous with jump disconti-

nuities at points k, k+ 1
2 (k ∈ N, k � n) and for x not of this form

′
n(x) = E ′

n(x)−E ′
2n(2x) = log

x
n
− log

2x
2n

= 0;

i.e. n(·) is constant on intervals [k,k + 1
2 ) and [k + 1

2 ,k + 1) for each integer k � n .
These constants are given by

n(k) = −1
2

k


r=n+1

log
( 2r

2r−1

)

n

(
k+

1
2

)
=

1
2

k


r=n

log
(2r+1

2r

)
.

To show these, use En(x) = x log x
n − x+n−n<m�x log m

n . Then

n(x) =
1
2 

2n<m�2x

log
m
2n

− 
n<m�x

log
m
n

.

Now take x = k and k+ 1
2 in turn. Then for the first sum on the right above, split the

sum into m even and m odd. For x = k we get

n(k) =
1
2

k


r=n+1

(
log

2r
2n

+ log
2r−1

2n

)
−

k


r=n+1

log
r
n

=
1
2

k


r=n+1

(
log

2r−1
2n

− log
2r
2n

)

=
1
2

k


r=n+1

log
(2r−1

2r

)

For x = k+ 1
2 , noting that 2x = 2k+1, we get

n

(
k+

1
2

)
=

1
2

k


r=n+1

log
2r
2n

+
1
2

k


r=n

log
2r+1

2n
−

k


r=n+1

log
r
n

=
1
2

log
2n+1

2n
+

1
2

k


r=n+1

(
log

2r+1
2n

− log
2r
2n

)

=
1
2

log
2n+1

2n
+

1
2

k


r=n+1

log
2r+1

2r

=
1
2

k


r=n

log
(2r+1

2r

)
.

In particular, we note that
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(a) n(n) = 0 and n(k) < 0 for k > n ;

(b) n(k+ 1
2 ) > 0 for k � n , and crucially;

(c) n(k− 1
2 )+n(k) > 0 for k > n .

(a) and (b) are immediate and for (c), we have

n

(
k− 1

2

)
+n(k) =

1
2

k−1


r=n

log
(2r+1

2r

)
− 1

2

k


r=n+1

log
( 2r

2r−1

)

=
1
2

k−1


r=n

log
( (2r+1)2

2r(2r+2)

)
> 0.

Hence

∫ 

n

n(x)
xs+1 dx = 

k>n

(∫ k

k− 1
2

n(x)
xs+1 dx+

∫ k+ 1
2

k

n(x)
xs+1 dx

)

= 
k>n

(
n

(
k− 1

2

)∫ k

k− 1
2

1
xs+1 dx+n(k)

∫ k+ 1
2

k

1
xs+1 dx

)

> 
k>n

(
n

(
k− 1

2

)
+n(k)

)∫ k

k− 1
2

1
xs+1 dx > 0,

by (a) and (c). This establishes Theorem 1. �

3. Some comments

(a) The cases s = 0 and s = 1. The inequalities in Theorem 1 and Corollary 1 say
nothing directly about s = 0,1. However, by taking limits we can see what they
tell us.

First consider s = 0. The functions occurring in Theorem 1 and Corollary 1 are
continuous at 0, so immediately we have

Fn(0) � F2n(0) and Fn(0) � 1. (3.1)

We have from (1.2)

Fn(0) =
1
n

(
− ′(0)− logn!− ( (0)−n) logn

)
=

1
n

(
n logn− logn!+

1
2

log2n
)

=
1
n

log

(
nn
√

2n
n!

)
,



1000 T. HILBERDINK

using the values  (0) = − 1
2 and  ′(0) = − 1

2 log2 . Thus (3.1) becomes, re-
spectively, the known inequalities:

(2n)!
(n!)2 � 22n

√
n

and n! �
√

2n
(n

e

)n
.

For the case s = 1, we cannot just let s → 1. Instead consider Fn(1+ ) with 
small. From (1.2) and using  (1+ ) = 1

 + − 1 +O(2)1 it follows directly
that

Fn(1+ ) =
1
2 −An +O(),

where, with Hn =n
r=1

1
r and Sn = n

r=1
logr

r ,

An = (Sn− 1
2 (logn)2− 1)− (Hn− logn− ) logn.

Hence Theorem 1 and Corollary 1 imply An � A2n � 0. Writing Hn = logn+
 + n and Sn = 1

2 (logn)2 + 1 +n , these become

n − n logn � 2n− 2n log2n � 0.

(b) As noted in the introduction

F2n(s)−Fn(s) =
1
2n 

m>2n

(−1)m−1 log m
2n

( m
2n)s ,

which is an alternating series. If the terms decrease, Theorem 1 would follow
immediately. However the terms do not decrease for with m = 2n + k with n
large and bounded k and s , the term is ∼ k

2n ; i.e. they increase in size for the
initial part of the series.

(c) Perhaps a few words to explain the reason for considering Fn(s) in the first place.
This stemmed from trying to prove an upper bound for a certain sequence of func-
tions which appeared in a spectral theory problem. Let  > 1 and put c1(n) = 1

n

(n ∈ N) . Then for r � 1 define recursively

cr+1(n) = 
m>n

cr(m)
( 1

n
− 1

m

)
.

It is straightforward to show using n>x n− ∼ 1
−1x1− for  > 1 that for fixed

r , one has

cr(n) ∼ r

n(−1)r+1
as n →  , (3.2)

where 1 = 1 and r+1 = r( 1
(−1)r − 1

(−1)r+ ) . One can obtain a formula for
r in terms of the Gamma function. However a good upper bound was required

1Here 1 = limn→n
r=1

logr
r − 1

2 (logn)2 .
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for the cr(n) valid for large r and it seemed conceivable that the asymptotic
equality in (3.2) could be replaced by an inequality; i.e. that

cr(n) � r

n(−1)r+1
(r,n ∈ N). (3.3)

This is trivially true for r = 1, but for r = 2 it involves


m>n

1
m

( 1
n

− 1
m

)
� 2

n2−1 ,

or equivalently, on multiplying through by n2−1 ,

1
n m>n

( n
m

) − 1
n m>n

( n
m

)2
� 1

−1
− 1

2−1
. (3.4)

Note that (3.4) follows if 1
n m>n(

n
m )s − 1

s−1 increases as s increases. Taking

derivatives, this follows if Fn(s) � 1
(s−1)2 – precisely what we proved in Corollary

1. An inductive argument shows that Corollary 1 is also sufficient to prove (3.3).

Initial attempts to prove Corollary 1 by showing that
∫ 
n

En(x)
xs+1 dx > 0 proved dif-

ficult as En(x) does not have a convenient form. However it turned out that
En(x)− 1

2E2n(2x) is much easier to deal with, being a step function.

We suspect that in fact one has the stronger result Fn(s) < Fn+1(s) , but that the
proof will not be as elegant.

(d) As the last few lines in the proof of Theorem 1 indicate, there is some scope for

improvement. Noting that 1
2

∫ k
k− 1

2

1
xs+1 dx >

∫ k+ 1
2

k− 1
2

1
xs+1 dx , we see that

∫ 

n

n(x)
xs+1 dx > 

k>n

k−1


r=n

log
( (2r+1)2

2r(2r+2)

)∫ k+ 1
2

k− 1
2

1
xs+1 dx

=



r=n

log
( (2r+1)2

2r(2r+2)

)

k>r

∫ k+ 1
2

k− 1
2

1
xs+1 dx

= −



r=n

log
(
1− 1

(2r+1)2

)∫ 

r+ 1
2

1
xs+1 dx

>
2s

s




r=n

1
(2r+1)s+2 .

Hence (2.2) implies, for s > 0,

F2n(s)−Fn(s) > 2sns−1



r=n

1
(2r+1)s+2 .

This readily improves Theorem 1.
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