athematical
nequalities
& Papplications
Volume 26, Number 4 (2023), 1021-1038 doi:10.7153/mia-2023-26-63
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Abstract. In this paper, we establish several Holder-type inequalities using Jensen-type and
Young-type inequalities as key tools. Particularly noteworthy is a reverse Holder inequality with
the Specht’s ratio. Furthermore, we obtain a reverse Young-type inequality and we apply these
results to the fractional context, both globally and locally.

1. Introduction

Integral inequalities are a fundamental tool in mathematics and have countless
applications in various fields [15, 26, 34, 35]. They allow us to establish bounds on
integrals and compare the values of different integrals, and are an essential part of many
mathematical theories and techniques.

In recent years there has been a growing interest in the study of many classi-
cal inequalities applied to integral operators associated with different types of frac-
tional derivatives, since these fractional integral inequalities and have numerous ap-
plications in the theory of differential equations and applied mathematics, including
physics, engineering, and finance. For example, in physics, fractional differential equa-
tions are used to model systems that exhibit long-range memory effects, such as vis-
coelastic materials or anomalous diffusion processes. In finance, fractional differential
equations are used to model stock price movements, interest rates, and other finan-
cial processes. Some of the inequalities studied are Gronwall, Chebyshev, Hermite-
Hadamard-type, Ostrowski-type, Opial-type, Griiss-type, Hardy-type, Petrovié¢-type,
Milne-type, Gagliardo-Nirenberg-type, Minkowski-type and Hdolder-type inequalities
(see, e.g., [3,4,5,10,11,13,16,25,32,33,36,37,39,40,41,42,43]).

In particular, there are many generalizations of Holder inequality, see e.g., the
papers [3,4,5,19,23,38] and the books [34, 35], and their references. See also the
preliminary results in Sections 3 and 4 of this paper.
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Motivated by the recent article [9] in which the authors obtain Jensen-type in-
equalities for convex and m-convex functions, and apply these inequalities to general-
ized Riemann-Liouville-type integral operators, in the present work we provide several
Holder-type inequalities. Also, we apply them to the generalized Riemann-Liouville-
type integral operators defined in [6], which include most of known Riemann-Liouville-
type fractional integrals, and to the generalized local fractional integral operators de-
fined in [2, 7, 21, 22], which include most of known fractional conformable integral
operators.

The outline of the paper is as follows. Section 2 contains some background. In
Sections 3 and 4 we prove the Holder-type inequalities. The main tools in Section 3
and 4 are a Jensen-type inequality and a Young-type inequality, respectively. Finally, in
Sections 5 and 6 we apply our inequalities to the generalized Riemann-Liouville-type
integral operators, and to the operators associated to the generalized local fractional
derivative, respectively.

2. Basic facts

One of the classical integral inequalities frequently studied is Jensen’s inequality,
which relates the value of a convex function of an integral to the integral of the convex
function. It was proved in 1906 [29], and it can be stated as follows:

Let u be a probability measure on any measurable space X. If f: X — (a,b) is
W -integrable and ¢ is a convex function on (a,b), then

w(/xfdu) < [ ooran.

Our purpose is to prove Holder-type inequalities. The classical Holder inequality
states that if u is a measure on any measurable space X, p,q > | are real numbers
such that %—i—é =1, fel’(X,u) and g € LY(X,u), then fg € L'(X,u) and

[ el < sl gl n

As well known, if p =g =2, (1) becomes Cauchy-Schwarz inequality.

Two different and popular forms of proving Holder inequality are, respectively,
Young and Jensen inequalities.

The following Jensen-type inequality for convex functions was established in [9,
Theorem 8§]:

PROPOSITION 1. Let 1 be a probability measure on any measurable space X

and a < b real constants. If f : X — [a,b] is a measurable function and ¢ is a convex
Sfunction on [a,b], then f and Qo f are w-integrable functions and

w(a+b—/xfdu) <<p(a)+<p(b)—/x<pofdu-
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3. Two Holder-type inequalities

In [3, Theorem 2.2] appears the following stability version of Holder’s inequality,
incorporating an extra term that measures the deviation from equality.

THEOREM 2. Let 1 < p <eo andlet q=p/(p—1) be its conjugate exponent. If
ferlr, geld, |flpllgllg >0, and 1 < p <2, then

(] i ”'gnq:/zzH )

Ml
p/2 q/2
f] lg] H )

1
_ Ly e
< Hf”p”g”q(l ‘ ||pr/2 Hqu/2

< sl
+

while if 2 < p < o, the terms 1/p and 1/q exchange their positions in the preceding
inequalities.

In the same direction, we are going to use Proposition | in order to obtain two
reverse Holder-type inequalities. In the next result we use the usual convention in
measure theory 0-c0=0/0=0.

THEOREM 3. Let U be a measure on any measurable space X, let p,q > 1 be
real numbers such that 11—7—1-5 =1, fel’(X,u) and g L1(X,u).

(W) IF |1 Pg e L=(X, ), then || fllp gl < [[IFI'Pg|| I fII7 and the following
Holder-type inequality holds:

1/
Il = Il = (1A Pell iz =11 hels) . @

(2) 1f flg|'=7 € L=(X, ), then ||£]l, 1gllq < |£1¢1 ||| gll¢ and the following
Holder-type inequality holds:

1/
gl > [171el L. gls — (LAl 2 gz = 1705 I8l ) . 3

Proof. Let us prove the first item. Since |f|'"Pg € L=(X,u), we have g(x) =0
for p-a.e. x with f(x) =

We can assume that || f||, > 0, since otherwise f =0 pu-a.e. and the inequality
is, in fact, an equality.

As usual, we denote by y,. the characteristic function of a set E.

If we apply Proposition 1 with the convex function ¢(¢) =7 on [0,b] to the
function and the probability measure

|fgl

W Koy

/17
1117

wdu, with w =



1024 PAZ MOYADO, QUINTANA, RODRIGUEZ AND SIGARRETA

respectively, and with

a=0, b= |||f|1 7g].. 1715 = f,lj/chc”p Airpoy = @X{#O}
Since wdu is a probability measure,
p=[pwan> [V wan= [ irelan, @
and we obtain
(b— /X {V—g;c{#o}wdu)q <vi— | “:vgq'q Xy Wil )

Since I%+$ =1, we deduce p — pg = —q and

Ifgl f1P~

||sz g
— 1L£11% 1817 20y = I£15 1317

W-a.e., where the last equality holds because g(x) =0 for u-a.e. x with f(x) =
Hence, (5) becomes

q
(l’ ‘/X'fg'd“) <bt— [ I131el7dw == 115 1 ©)

1-
=W q|f|q |g‘qx{f#0} |f|q |g‘q%{f¢0}

Since (4) implies b > [y |fg|du, we have

q
b [|f 119 Iglld = (b / Feldu) >0,
X

and so. |1, gl < b= [[I71" 7]l 115 Hence, (©) implies
b= (b1~ 1713 lgls) " < | Ifslan,
el (el itge - hrglial) ™ < [ Lrela

If we change the roles of f,p and g,q, the previous argument gives the second
item. [J

4. A reverse Holder inequality

A classical extension of Holder inequality states that if ,u is a measure on any
measurable space X, pi,...,p, > 1 are real numbers such that + + — =1, and

fe e LPx(X,u) for 1 <k <n,then fi---f, € L'(X,u) and
1f1- Fulle < Wfillpy - 1full - )
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Since Holder inequality is a very important result in Analysis, there are several
versions of reverse of Holder inequality of the following type:

1Al == [l fallpn < ANSL-fallrs (8)
with different hypothesis. For instance, in [35, p. 146] and [8, Theorem 3] appear in-
equalities as (8) with n = 2. Also, (8) is proved in [35, p. 141] for any n when the
functions fi,..., f, are bounded and greater than a positive constant. We are going to
prove (8) with weaker hypotheses.

To make the proof easier to read, first of all, we state several technical lemmas.
Let us start with an elementary fact.

LEMMA 4. If f € Cl{a,b] and f' = g1g2 with g1,82 € Cla,b], g positive and
g2 decreasing on [a,b), then f attains its minimum value on [a,b] on the set {a,b}.

LEMMA 5. If0<a <1, o4, B, A > 0 for 1 <k < n, then the function

n
F(x) =]x*
k=1
attains its minimum value on the set
7 .
E= {xER" : Z/lkxfk =1, axfk <xlﬁ’ for 1 <ik<n,

k=1

x>0 for lékén}

at the boundary dE (the boundary E is understood to be a subset of the hypersurface
Yiy lkxf" =1inR").

Proof. Since F is a continuous function on the compact set E, it attains its mini-
mum value on E.

Note that it suffices to show that the minimum value of the function
n_l a)l/B)l n71
flix)= (1 -y )ka£"> Xk
k=1

k=1

on the set
n—1
G= {xeR“fl :axf" g/l,jl(l— Z/Iixiﬁ"> <a*1x,€",xk>0 for 1<k<n—1
i=1

axfkgx?" for l<i7k<n—1}
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is attained at dG. We havefor 1 < j<n—1
af 10 g\ /b1t
%:—)Ljﬁjxj" ﬁ—:(l—g/lkxk ) H

N (1 —nz_‘,l)thf )ocn/ﬁn o T H

Xj k=1

n—1 ot/ Bu— 11 n—1
= <1 — 2 )kaﬁk> ](:l‘
k=1

Xj k=1

(i) s a1 —ilxkxfk))

n—1 ot /Bu—1 l n—1
_ <1 _ 2 )kaﬁk> ]fij
k=1

Xj k=1

(12 ) = (2

Since the last factor of d f/dx; is a decreasing function on x; and the other factors are
positive, Lemma 4 implies that the minimum value of f as a function of the variable
x; on any interval I contained in the domain of f is attained at the boundary of 7, for
each 1 < j<n.

This implies that the minimum value of the function f on G is attained at JG,
and the conclusion of the lemma holds. [l

Young inequality
1 1
xy < —xP+—y7
p q
for x,y >0 and 1/p+1/q =1, is a very important result in Analysis, since it is a

key tool in the proof of Holder 1nequa11ty Its reverse inequality was given in [45] with
Specht’s ratio as follows:

P 1 1
S(5) =+ =y ©)
¥l r q
where the Specht’s ratio [44] is defined on R™ as
Ll
a
elogaa-t

There are also several versions of the additive-type refined Young inequality (and its
reverse), see [3], even for n real numbers (see [4]).
We are going to prove a version of (9) for n real numbers, also with Specht’s ratio.

PROPOSITION 6 If0<a<l1, p1,...,pn>1and x1,...,x, 2 0 are real numbers
such that —|— + =1 and axfk < xf”' for 1 < i,k < n, then there exists a positive
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constant A, which just depends on a,py,...,pn, such that

1 1
— x4 — X < Axy - (10)
P1 Pn

In fact, if &P, denote the group of permutations of {1,...,n}, then the best value of A
is the maximum on the finite set

m

A= max <a—|— (1—a) Z _>a71+2k’”:1 1/Pok)

1<m<n,0€ 2, =1 Pok)

Proof. If x =0, then the inequality trivially holds. If x # 0, then the hypothesis
axy® <xP for 1 < ik <n gives x; >0 for 1 <k < n. Define

n
1
Elz{xeR"'z xf"zlax p’ for 1 <ik<
k=1 Pk

x>0 for lékén}

and fi(x) =x;---x,. Since f; is a positive continuous function on the compact set E| ,
there exists

I = min f; (x) >

x€E|

Note that I just depends on a,pily.--Pn-
Define t = Y7, - p— >0, then k=17 (xk/tl/l’k)l’k =1 and

n n n
_ 2’11:1,;L _ 41
\Iltl/pk kllxk—l‘ lek-
k=1 k=1

Hence,

HM:

n
@ =i <[
k=1

s
1 Pk
and so, (10) holds with A = l/F.

Letus compute I now. By Lemma 5, we know that I is attained at a pointin JE;
thus, there exist 1 < iy, j; <n with i} # j; and X, Piv ax; “ for that point. Hence,

I' = min f>(x)

x€Ey

with
_1+pj /pi
flx) = al/“"lxj:rp“/p1 [T x«

k#iy,j1
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1028
and
E, :{x: (xl,...,x,-l,l,x,-lﬂ,...,x,,) S RYHI :
1 1 ;
Y — gkt (——!—i)x?l“ =1,
DPj Di

kin,ji Pk
axy* <xf' for i,k # iy, x>0 for k;éil}.

By Lemma 5, we know that T" is attained at a point in JE;; thus, there exist
1 <ia, jo <n with iy, jo # iy, iy # j and xi’z = axfzjz for that point. Hence, we have

two cases:

If jo» # j1, then

I'= min
erl&lfs,l(x)
with / /
. . L+pj /pi; 1+pj,/pi
f3’1(x) :al/le+l/P12le 71 l‘sz 72150 11 Xk
ki1, iz, o
and
n—2 Ly 1 a Pjy 1 a Pjp
By = {xER : 2 —x + (——l——)x,»l + <—+—>sz =1,
ki, jrinia Pk Pi Pu’ - Pi Pr,

axpt <xj' for i,k # iy i, x>0 for k?éil,iz}.

. . Di Pj Pi
If jo=ji,then x;* =ax;! =x",

I'= mi
Jmin f3.2(x)

with
_ 1/piy+1/piy TP /PP Py
fax)=a X5 H X
ki1, j1,i2

and
n—2 1 Pk 1 a a Pj
E32:{X€R : 2 — X —|—<——|———|——>x =1,
: i Pk Pii Py P/
171512
axP* <xPi for i,k # iniy, x>0 for k;éil,zj}.

Applying this argument iteratively, we obtain

I'=minx;---x,
er(’)

with
E)=x€Ej:a%ix’* =x"" withe,, €Z for 1 <i,k<np.
0 k i s ’



NEW REVERSE HOLDER-TYPE INEQUALITIES AND APPLICATIONS 1029

Since 0 < a < 1 and axt* <x" <a 'xl* for 1 <i,k <n forevery x € Ey,

I'=minx; - -x,
x€Ey

with

Ey {xER"'Z — =1, a®%ixl* =xP" with ¢ ; € {—1,0,1}
—1 Pk

for 1 <i,k < n with some ¢;; # 0}

(recall that axfljl — ! and so, e}, ;, #0). Then Eg = U'~! Ef', where

i m=1

Ej —{xGEo Jo e &, with ax (k)) xz((’x) for 1<k<m<i<n}.

If x€ Ej and 0 € &, satisfies axz((’,(s) = xz((’;;) for 1 <k<m<i<n,definet :xz((’(ll)) )
We have
n

m n
r+
k=1 Po(k)  x=m1Polk)

(
:t(i 1 +azn: ! )

k=1 Pok)  r=mr1Pa(k)

at

»
<
q

If 1 <i<m,then

UL | 1 1 —1/pg(i
+a Z ) ().
k=1 Po(k)  k=m+1Po(k)

=

2

Il
/

If m <i<n,then

mn 71/1’51’
xo_ 1/170' ( ) )
k=1 k=m+1Po(k)
Hence,
"o L 1 \—1/psw
[Tx= H ( Z )
i=1 “k=1 k m+1p0( )
n n 1 —1/psi
H al/po. (2 ta 2 ) (i)
i=m+1 k= 1170( ) k=m+1 pg( )

m n
< ! +a 1 ) l ll/pU) 21 n1+11/17<7(i)
k=1 Po(k)  k=m+1Po(k)

— ( i i 1 >_la22:m+l 1/p°'(k)

k=1Po(k ) k=m+1Po(k)

m —
= <a+(l—a)2 l ) alfzkmzll/p"(")
k=1Po(k)
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and so,

2 1 -1 m

= min (a—i—(l —a)y, ) a' iz Vrow
I<m<n,c€%, i=1 Po(k)

Let us find a lower bound for I', which is very good when n grows.

Consider the function u : [0,1] — R given by

u(s) = (a+(1 —a)s)_lal_s.
Thus,

W'(s)=—(1—-a)(a+(1 —a)s)_zalf“'—k (a+(1 —a)s)_lalf“‘(—loga)
=(a+(1 —a)s)_zal_s(— (1—a)— (a+ (1 —a)s)loga).

The function v(s) = —(1 —a) — (a+ (1 — a)s) loga is increasing, v(0) = —1+a —
aloga and v(1) = —1+a—loga.

If wi(a) = —1+a—aloga, then w)(a) = —loga > 0 and w;(a) <w;(1) =0 for
every 0 <a<1.

If wy(a) = —1+a—loga, then wy(a) =1—1/a <0 and wy(a) > wy(1) =0 for
every 0 <a<1.

Therefore, v(0) = wy(a) <0 and v(1) =ws(a) > 0, and so, ’(sp) = 0 if and only

if
—(1—a)— (a+(1—a)sp)loga=0 = a+(1—a)so= I —a
—loga
1 —a+aloga
= o= —————°=—
—(1—a)loga

Since «/ <0 on (0,s0) and «’ >0 on (s¢,1), we have u(s) > u(so) forevery s € (0,1).
We have
l—a+aloga 1-—a

at(I-as=a+(l-a) —(1—a)loga —loga

and
] H_l—a—f—aloga 1 —a+loga
— S0 = =
0 (1—a)loga (1—a)loga
al =50 — p(1=s0)loga _ el+lf’§z _ eallfa.
Hence,

&1 —loga

1
> u(sg) = eat™a, [
Z‘lpc(k)) I—a

I'= min u(

1<m<n,c€ 2,

THEOREM 7. Let U be a measure on any measurable space X, 0 < a <1,
Pls---,Pn > 1 be real numbers such that %—F...—i—pl—n =1, and f; : X — C mea-

surable functions with fi--- f, € L'(X, 1) and a|fi|Px < |fi|P! w-ae. for 1 <ik <n.
Then fi € LPv(X, ) for 1 <k <n and

1Fillpy == 1 fallpw < AlSL--- fullrs (11)
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where
m
A= max < (1—a 2 ) —5L Ypow)
1<m<n,0€2, =1 po-
-1 l—a
<e laTa =S(a)
—loga

REMARK 8. Note that the inequality

1A llpy - 1l p < SC@) [Lfr--- Fully

holds with a constant which is the known Specht’s ratio (for two variables). Hence, this
constant just depends on a; in particular, it does not depend on n, py,...,pu, f15-- -, fu,
and this is an important fact in the theory of L) spaces with variable exponent (see
e.g. [14,17,18,20,27]).

Proof. Proposition 6 gives
1 1
Alfi(x) - fu)| Z —[fil@)[7' -+ — | fu ) [P
P1 Pn
for p-a.e. x € X. If we integrate this inequality with respect to u, then we obtain
1 1
Allfifalle =2 — LA+ — [ fallpr- (12)
P1 Pn
Since fi---f, € L'(X,u), (12) implies f; € LPx(X,u) for 1 <k < n.
If || fx|| p, = O for some 1 < k < n, then the inequality is direct.

If || fillp, > O for every 1 < k < n, applying (12) to the functions fi /|| fi|l, . we
obtain

”fl“m ||f"||17n1 P ”fl”m [ W1
1 1
=— 4.4+ —=1,
P1 Pn

and so,

Allfiflle = 1Allpy - I fall - B

5. Generalized Riemann-Liouville-type integral operators

One of the first operators that can be called fractional is the Riemann-Liouville
fractional derivative of order o € C, with Re(a) > 0, defined as follows (see [24]).

DEFINITION 9. Let a < b and f € L'((a,b);R). The right and left side Riemann-
Liouville fractional integrals of order o, with Re(c) > 0, are defined, respectively, by

RLJE f(r) = ﬁ / (-5 f(s)ds, (13)
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and

KL f(e) = ﬁ /tb (s—1)*" f(s)ds, (14)

with 7 € (a,b).

When o € (0, 1), their corresponding Riemann-Liouville fractional derivatives are
given by

(D)0 = 1 (L 0) = g L G
b N
(1)) == i(RLJI}*a (t)):_ml_a)%/t (sf—(t))ads,

Now, we give the definition of a general fractional integral in [6] (see also [12]).

DEFINITION 10. Let a < b and @ € R, Let g: [a,b] — R be a positive func-
tion on (a,b] with continuous positive derivative on (a,b), and G : [0,g(b) — g(a)] x
(0,00) — R a continuous function which is positive on (0,g(b) — g(a)] x (0,0). Let us
define the function 7 : [a,b] X [a,b] x (0,%0) — R by

G(|g(t) —g(s)], )
g'(s) '

The right and left integral operators, denoted respectively by J. a+ and JT - are
defined for each measurable function f on [a,b] as

I f () / T”a 5, (15)

b
Iy f() Z/t %d& (16)
with ¢ € [a,D].

We say that f € Ly[a,b] if J¥ .| f|(t),J%, |f|(t) < e forevery ¢ € [a,b].

T(t,s,0) =

Theorems 7 and 3 have, respectively, the following direct consequences for gener-
alized Riemann-Liouville-type integral operators.

PROPOSITION 11. Let 0 <a< 1, py,...,pn > 1 be real numbers such that le +
St an =1, ¢ <d real constants and du(s) =ds/T (d,s,a) on [c,d]. If fi:[c,d] —C

are measurable functions with f--- f, € L'(u,[c,d]) and a|fi|Px < |fi|P! u-a.e. for
1 < i,k <n,then fi € LPk(u,[c,d]) for 1 <k <n and

1/p1 1/pn
¢ Ifi(s)P < fuls) [P U fils)- fuls)]
( T(d.sa) ds) | ( T(d.sa) ds) <af T(dsa) 07
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where
m 1 _ m
A— max <a+(1_a)2 —)a 1+Zk:11/17cr(k)
I<m<n,c€P, k=1 po—(k)
-1 =L l—a
< e al-a .
—loga

PROPOSITION 12. Let ¢ < d be real constants, du(s) =ds/T(d,s,c) on [c,d],
let p,q > 1 be real numbers such that %—Fé =1, fell(u,lc,d]) and g € L1(u,[c,d]).

(1) 1f |f1'"g € L*[c.d], then

1/p 1/q
O 4 g(s)|? - 4 1f(s)IP
( T(d 5,0) ds) ( ¢ T(d,s,a) ds) <171 ngoo/C T(d,s,a) ds
and the following Holder-type inequality holds:
[ — - s> 111 7g]. [ ria )ds
q
(Hfl ! (/ )
/ /
IO RO AR
T(d s, OC) ¢ T(d,s,a) '
(2) If flg|'~? € L”[c.d], then
1/p 1/q
O 4 |g(s)]? - 4 |g(s)|
( T(d,s, oc) ds) ( ¢ T(d,s,a) ds) <|l7lel qH“‘/c T(d,s, o) ds

and the following Holder-type inequality holds:
¢ |fel 1 [C_l8(9)
_ 8L s g / _18W17
/c T(d,s, ) s> |71e]l ¢ T(d,s,a) *

)4
(- quw(/ )
4 |f(s)l? O A
( T(dsoc)ds><cT(d,s,oc)ds> ) :
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6. Generalized local fractional derivative

Let us recall the definition of generalized local fractional derivative in [2,7,21,22].
Given s € R, we denote by [s] the upper integer part of s, i.e., the smallest integer
greater than or equal to s.

DEFINITION 13. Given an interval I CR, f:I — R, o € R" and a positive
continuous function F(¢,a) on I x (0,%0), the derivative G%f of f of order o at the
point ¢ € [ is defined by

GEF(1) = lim —— 3 (~1)f

Vi et & )f(t —khF(t,0)). (18)

If a = inf{r € I} (respectively, b =sup{r € I}), then G¥ f(a) (respectively, G%f (b))
is defined with h — 0~ (respectively, # — 07 ) instead of 4 — 0 in the limit.

If F(t,a) =1 when o € N, then we obtain a conformable local fractional deriva-
tive of any order. See [1,28,30] for more information on conformable fractional deriva-
tives. If F(r,a) depends on r when o € N, then we get a non-conformable local
fractional derivative of any order.

DEFINITION 14. Let I be an interval 1 C (0,00), f:I — R and o € R*. The
conformable derivative G*f of f of order o at the point ¢ € [ is defined by

G%f() = lim 1 %(—1)" [o] £t — khe!1=%). (19)
h—0 h(od =0 k

Note that F(¢,a) = t/*1=% =1 for every @ € N. We know from the classical
calculus that if f is a function defined in a neighborhood of the point 7, and there exists
the n-th derivative D" f(t), then

D f(r) = lim — 2 (—1) (Z) £(t — kh).

n
h—0 h" =

Therefore, if &« =n € N and f is smooth enough, then Definition 14 coincides with
the classical definition of the n-th derivative. The same holds for any choice of F' with
F(t,a)=1fort el and o € N.

Let I be an interval I C R, a,r € I and oo € R. The integral operator Jga is
defined for every locally integrable function f on I as

f(s)
Fs.0) ds.

D0 = [

The following results in [2, 7,21, 22, 31] contain some basic properties of this
integral operator.
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PROPOSITION 15. Let I be aninterval [ CR, a€l, 0 < a <1 and f a differ-

entiable function on I such that f' is a locally integrable function on 1. Then, we have
forallt el

JEa(GE(S)) (1) = f(t) = f(a).
PROPOSITION 16. Let I be an interval  CR, a €1 and o € (0,1].
GE(IEL() (1) = £(0),
for every continuous function f on I and a,t € 1.

Theorems 7 and 3 have, respectively, the following direct consequences for the
integral operator J¢ . .

PROPOSITION 17. Let 0 <a< 1, py,...,pn > 1 be real numbers such that % +

.+ % =1, ¢ < d real constants and du(s) =ds/F(s,a) on [c,d]. If fi:[c,d] — C

are measurable functions with fi--- f, € L'(u,[c,d]) and a|fi|P* < |fi|P! w-a.e. for
1 <i,k <n,then fi € LPk(u,[c,d]) for 1 <k<n and

(/Cd?((:)(l:;l dS)l/p1~ (/j'{r((s,)ot S)l/Pn <A/d|f1 |d5 o0

VEAI@) 7 (I @) 7 < AR+ L@, @D

ie.,

where
m

A= max <a—|— (1—a) 2 _>a71+2k’”:1 1/Pok)

I<m<n,0€ 2, i=1Pok)

PROPOSITION 18. Let ¢ < d be real constants, du(s) = ds/F(s,a) on [c,d], let
p,q > 1 be real numbers such that %—Fé =1, felLl(u,lc,d]) and g € L7 (u,[c,d]).

(1) If | £1'"Pg € L™[e,d], then

1 1 -
VEAFP) @) " (R 21@) " < |71l T8 117 (@)
and the following Holder-type inequality holds:

TEAF8D (@) = 111 ]| R (A1) (@)
- (Hlfll"’ngi VA" = GEA7@)" (TElgl) () )
(2) 1f f1g]'~ € L7[e.d), then

(EADD)? (7208 9@) " < || £lel | TE(1£17) ()

1/q
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and the following Holder-type inequality holds:
JEIfeD(d) = || flel' || TF:(1g]") (@)

= (I 2 GUE et @) = G GE (et @)™ )
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