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Abstract. In this paper, we establish several Hölder-type inequalities using Jensen-type and
Young-type inequalities as key tools. Particularly noteworthy is a reverse Hölder inequality with
the Specht’s ratio. Furthermore, we obtain a reverse Young-type inequality and we apply these
results to the fractional context, both globally and locally.

1. Introduction

Integral inequalities are a fundamental tool in mathematics and have countless
applications in various fields [15, 26, 34, 35]. They allow us to establish bounds on
integrals and compare the values of different integrals, and are an essential part of many
mathematical theories and techniques.

In recent years there has been a growing interest in the study of many classi-
cal inequalities applied to integral operators associated with different types of frac-
tional derivatives, since these fractional integral inequalities and have numerous ap-
plications in the theory of differential equations and applied mathematics, including
physics, engineering, and finance. For example, in physics, fractional differential equa-
tions are used to model systems that exhibit long-range memory effects, such as vis-
coelastic materials or anomalous diffusion processes. In finance, fractional differential
equations are used to model stock price movements, interest rates, and other finan-
cial processes. Some of the inequalities studied are Gronwall, Chebyshev, Hermite-
Hadamard-type, Ostrowski-type, Opial-type, Grüss-type, Hardy-type, Petrović-type,
Milne-type, Gagliardo-Nirenberg-type, Minkowski-type and Hölder-type inequalities
(see, e.g., [3, 4, 5, 10, 11, 13, 16, 25, 32, 33, 36, 37, 39, 40, 41, 42, 43]).

In particular, there are many generalizations of Hölder inequality, see e.g., the
papers [3, 4, 5, 19, 23, 38] and the books [34, 35], and their references. See also the
preliminary results in Sections 3 and 4 of this paper.
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Motivated by the recent article [9] in which the authors obtain Jensen-type in-
equalities for convex and m-convex functions, and apply these inequalities to general-
ized Riemann-Liouville-type integral operators, in the present work we provide several
Hölder-type inequalities. Also, we apply them to the generalized Riemann-Liouville-
type integral operators defined in [6], which include most of known Riemann-Liouville-
type fractional integrals, and to the generalized local fractional integral operators de-
fined in [2, 7, 21, 22], which include most of known fractional conformable integral
operators.

The outline of the paper is as follows. Section 2 contains some background. In
Sections 3 and 4 we prove the Hölder-type inequalities. The main tools in Section 3
and 4 are a Jensen-type inequality and a Young-type inequality, respectively. Finally, in
Sections 5 and 6 we apply our inequalities to the generalized Riemann-Liouville-type
integral operators, and to the operators associated to the generalized local fractional
derivative, respectively.

2. Basic facts

One of the classical integral inequalities frequently studied is Jensen’s inequality,
which relates the value of a convex function of an integral to the integral of the convex
function. It was proved in 1906 [29], and it can be stated as follows:

Let  be a probability measure on any measurable space X . If f : X → (a,b) is
 -integrable and  is a convex function on (a,b) , then


(∫

X
f d

)
�
∫

X
 ◦ f d .

Our purpose is to prove Hölder-type inequalities. The classical Hölder inequality
states that if  is a measure on any measurable space X , p,q > 1 are real numbers
such that 1

p + 1
q = 1, f ∈ Lp(X ,) and g ∈ Lq(X ,) , then f g ∈ L1(X ,) and

∫
X
| f g|d � ‖ f‖p ‖g‖q . (1)

As well known, if p = q = 2, (1) becomes Cauchy-Schwarz inequality.
Two different and popular forms of proving Hölder inequality are, respectively,

Young and Jensen inequalities.
The following Jensen-type inequality for convex functions was established in [9,

Theorem 8]:

PROPOSITION 1. Let  be a probability measure on any measurable space X
and a � b real constants. If f : X → [a,b] is a measurable function and  is a convex
function on [a,b] , then f and  ◦ f are  -integrable functions and


(
a+b−

∫
X

f d
)

� (a)+(b)−
∫
X
 ◦ f d .
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3. Two Hölder-type inequalities

In [3, Theorem 2.2] appears the following stability version of Hölder’s inequality,
incorporating an extra term that measures the deviation from equality.

THEOREM 2. Let 1 < p <  and let q = p/(p−1) be its conjugate exponent. If
f ∈ Lp , g ∈ Lq , ‖ f‖p‖g‖q > 0 , and 1 < p � 2 , then

‖ f‖p‖g‖q

(
1− 1

p

∥∥∥ | f |p/2

‖ f‖p/2
p

− |g|q/2

‖g‖q/2
q

∥∥∥2

2

)
+

� ‖ f g‖1

� ‖ f‖p‖g‖q

(
1− 1

q

∥∥∥ | f |p/2

‖ f‖p/2
p

− |g|q/2

‖g‖q/2
q

∥∥∥2

2

)
,

while if 2 � p <  , the terms 1/p and 1/q exchange their positions in the preceding
inequalities.

In the same direction, we are going to use Proposition 1 in order to obtain two
reverse Hölder-type inequalities. In the next result we use the usual convention in
measure theory 0 ·= 0/0 = 0.

THEOREM 3. Let  be a measure on any measurable space X , let p,q > 1 be
real numbers such that 1

p + 1
q = 1 , f ∈ Lp(X ,) and g ∈ Lq(X ,) .

(1) If | f |1−pg ∈ L(X ,) , then ‖ f‖p ‖g‖q �
∥∥| f |1−pg

∥∥
‖ f‖p

p and the following
Hölder-type inequality holds:

‖ f g‖1 �
∥∥| f |1−pg

∥∥
‖ f‖p

p−
(∥∥| f |1−pg

∥∥q
‖ f‖pq

p −‖ f‖q
p‖g‖q

q

)1/q
. (2)

(2) If f |g|1−q ∈ L(X ,) , then ‖ f‖p‖g‖q �
∥∥ f |g|1−q

∥∥
‖g‖

q
q and the following

Hölder-type inequality holds:

‖ f g‖1 �
∥∥ f |g|1−q

∥∥
‖g‖q

q−
(∥∥ f |g|1−q

∥∥p
‖g‖pq

q −‖ f‖p
p‖g‖p

q

)1/p
. (3)

Proof. Let us prove the first item. Since | f |1−pg ∈ L(X ,) , we have g(x) = 0
for  -a.e. x with f (x) = 0.

We can assume that ‖ f‖p > 0, since otherwise f = 0  -a.e. and the inequality
is, in fact, an equality.

As usual, we denote by E the characteristic function of a set E .
If we apply Proposition 1 with the convex function (t) = tq on [0,b] to the

function and the probability measure

| f g|
w

{ f �=0} , wd , with w =
| f |p
‖ f‖p

p
,
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respectively, and with

a = 0, b =
∥∥| f |1−pg

∥∥
‖ f‖p

p � | f g|
| f |p/‖ f‖p

p
{ f �=0} =

| f g|
w

{ f �=0} .

Since wd is a probability measure,

b =
∫

X
bwd �

∫
X

| f g|
w

{ f �=0}wd =
∫

X
| f g|d , (4)

and we obtain (
b−

∫
X

| f g|
w

{ f �=0}wd
)q

� bq−
∫

X

| f g|q
wq { f �=0}wd . (5)

Since 1
p + 1

q = 1, we deduce p− pq = −q and

| f g|q
wq { f �=0}w = w1−q| f |q |g|q { f �=0} =

| f |p−pq

‖ f‖p−pq
p

| f |q |g|q { f �=0}

= ‖ f‖q
p |g|q { f �=0} = ‖ f‖q

p |g|q

 -a.e., where the last equality holds because g(x) = 0 for  -a.e. x with f (x) = 0.
Hence, (5) becomes(

b−
∫
X
| f g|d

)q

� bq−
∫

X
‖ f‖q

p |g|q d = bq−‖ f‖q
p‖g‖q

q. (6)

Since (4) implies b �
∫
X | f g|d , we have

bq−‖ f‖q
p‖g‖q

q �
(

b−
∫
X
| f g|d

)q

� 0,

and so, ‖ f‖p‖g‖q � b =
∥∥| f |1−pg

∥∥
‖ f‖p

p . Hence, (6) implies

b−(bq−‖ f‖q
p‖g‖q

q

)1/q �
∫

X
| f g|d ,

∥∥| f |1−pg
∥∥
‖ f‖p

p−
(∥∥| f |1−pg

∥∥q
‖ f‖pq

p −‖ f‖q
p‖g‖q

q

)1/q
�
∫

X
| f g|d .

If we change the roles of f , p and g,q , the previous argument gives the second
item. �

4. A reverse Hölder inequality

A classical extension of Hölder inequality states that if  is a measure on any
measurable space X , p1, . . . , pn > 1 are real numbers such that 1

p1
+ . . .+ 1

pn
= 1, and

fk ∈ Lpk(X ,) for 1 � k � n , then f1 · · · fn ∈ L1(X ,) and

‖ f1 · · · fn‖1 � ‖ f1‖p1 · · · ‖ fn‖pn . (7)
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Since Hölder inequality is a very important result in Analysis, there are several
versions of reverse of Hölder inequality of the following type:

‖ f1‖p1 · · · ‖ fn‖pn � A‖ f1 · · · fn‖1 , (8)

with different hypothesis. For instance, in [35, p. 146] and [8, Theorem 3] appear in-
equalities as (8) with n = 2. Also, (8) is proved in [35, p. 141] for any n when the
functions f1, . . . , fn are bounded and greater than a positive constant. We are going to
prove (8) with weaker hypotheses.

To make the proof easier to read, first of all, we state several technical lemmas.
Let us start with an elementary fact.

LEMMA 4. If f ∈ C1[a,b] and f ′ = g1g2 with g1,g2 ∈ C[a,b] , g1 positive and
g2 decreasing on [a,b] , then f attains its minimum value on [a,b] on the set {a,b} .

LEMMA 5. If 0 < a < 1 , k,k,k > 0 for 1 � k � n, then the function

F(x) =
n


k=1

xk
k

attains its minimum value on the set

E =
{

x ∈ R
n :

n


k=1

kx
k
k = 1, axk

k � xi
i for 1 � i,k � n,

xk > 0 for 1 � k � n
}

at the boundary E (the boundary E is understood to be a subset of the hypersurface

n
k=1kx

k
k = 1 in Rn ).

Proof. Since F is a continuous function on the compact set E , it attains its mini-
mum value on E .

Note that it suffices to show that the minimum value of the function

f (x) =
(
1−

n−1


k=1

kx
k
k

)n/n n−1


k=1

xk
k

on the set

G =
{

x ∈ R
n−1 :axk

k � −1
n

(
1−

n−1


i=1

ix
i
i

)
� a−1xk

k , xk > 0 for 1 � k � n−1

axk
k � xi

i for 1 � i,k � n−1
}
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is attained at G . We have for 1 � j � n−1

 f
x j

= − j jx
 j−1
j

n

n

(
1−

n−1


k=1

kx
k
k

)n/n−1 n−1


k=1

xk
k

+
(
1−

n−1


k=1

kx
k
k

)n/n  j

x j

n−1


k=1

xk
k

=
(
1−

n−1


k=1

kx
k
k

)n/n−1 1
x j

n−1


k=1

xk
k

·
(
− j jx

 j
j
n

n
+ j

(
1−

n−1


k=1

kx
k
k

))

=
(
1−

n−1


k=1

kx
k
k

)n/n−1 1
x j

n−1


k=1

xk
k

·
(
 j

(
1−

k �= j

kx
k
k

)
−
(
 j j

n

n
+ j j

)
x
 j
j

)
.

Since the last factor of  f/x j is a decreasing function on x j and the other factors are
positive, Lemma 4 implies that the minimum value of f as a function of the variable
x j on any interval I contained in the domain of f is attained at the boundary of I , for
each 1 � j � n .

This implies that the minimum value of the function f on G is attained at G ,
and the conclusion of the lemma holds. �

Young inequality

xy � 1
p

xp +
1
q

yq

for x,y � 0 and 1/p + 1/q = 1, is a very important result in Analysis, since it is a
key tool in the proof of Hölder inequality. Its reverse inequality was given in [45] with
Specht’s ratio as follows:

S
(xp

yq

)
xy � 1

p
xp +

1
q

yq (9)

where the Specht’s ratio [44] is defined on R+ as

S(a) =
a

1
a−1

e loga
1

a−1

.

There are also several versions of the additive-type refined Young inequality (and its
reverse), see [3], even for n real numbers (see [4]).

We are going to prove a version of (9) for n real numbers, also with Specht’s ratio.

PROPOSITION 6. If 0 < a < 1 , p1, . . . , pn > 1 and x1, . . . ,xn � 0 are real numbers
such that 1

p1
+ . . .+ 1

pn
= 1 and axpk

k � xpi
i for 1 � i,k � n, then there exists a positive



NEW REVERSE HÖLDER-TYPE INEQUALITIES AND APPLICATIONS 1027

constant A, which just depends on a, p1, . . . , pn, such that

1
p1

xp1
1 + · · ·+ 1

pn
xpn
n � Ax1 · · ·xn. (10)

In fact, if Pn denote the group of permutations of {1, . . . ,n} , then the best value of A
is the maximum on the finite set

A = max
1�m<n,∈Pn

(
a+(1−a)

m


k=1

1
p(k)

)
a−1+m

k=1 1/p(k)

� e−1a
−1
1−a

1−a
− loga

= S(a) .

Proof. If x = 0, then the inequality trivially holds. If x �= 0, then the hypothesis
axpk

k � xpi
i for 1 � i,k � n gives xk > 0 for 1 � k � n . Define

E1 =
{

x ∈ R
n :

n


k=1

1
pk

xpk
k = 1, axpk

k � xpi
i for 1 � i,k � n,

xk > 0 for 1 � k � n
}

and f1(x) = x1 · · ·xn . Since f1 is a positive continuous function on the compact set E1 ,
there exists

 = min
x∈E1

f1(x) > 0.

Note that  just depends on a, p1, . . . , pn .
Define t = n

k=1
1
pk

xpk
k > 0, then n

k=1
1
pk

(xk/t1/pk)pk = 1 and

�
n


k=1

xk

t1/pk
= t

−n
k=1

1
pk

n


k=1

xk = t−1
n


k=1

xk.

Hence,


n


k=1

1
pk

xpk
k = t �

n


k=1

xk

and so, (10) holds with A = 1/ .
Let us compute  now. By Lemma 5, we know that  is attained at a point in E1 ;

thus, there exist 1 � i1, j1 � n with i1 �= j1 and x
pi1
i1

= ax
pj1
j1

for that point. Hence,

 = min
x∈E2

f2(x)

with

f2(x) = a1/pi1x
1+p j1

/pi1
j1 

k �=i1, j1

xk
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and
E2 =

{
x = (x1, . . . ,xi1−1,xi1+1, . . . ,xn) ∈ R

n−1 :


k �=i1, j1

1
pk

xpk
k +

( 1
p j1

+
a
pi1

)
x

p j1
j1

= 1,

axpk
k � xpi

i for i,k �= i1, xk > 0 for k �= i1
}
.

By Lemma 5, we know that  is attained at a point in E2 ; thus, there exist
1 � i2, j2 � n with i2, j2 �= i1 , i2 �= j2 and x

pi2
i2

= ax
pj2
j2

for that point. Hence, we have
two cases:

If j2 �= j1 , then
= min

x∈E3,1
f3,1(x)

with

f3,1(x) = a1/pi1+1/pi2 x
1+p j1

/pi1
j1

x
1+p j2

/pi2
j2 

k �=i1, j1,i2, j2

xk

and

E3,1 =
{

x ∈ R
n−2 : 

k �=i1, j1,i2, j2

1
pk

xpk
k +

( 1
p j1

+
a
pi1

)
x

p j1
j1

+
( 1

p j2
+

a
pi2

)
x

p j2
j2

= 1,

axpk
k � xpi

i for i,k �= i1, i2, xk > 0 for k �= i1, i2
}

.

If j2 = j1 , then x
pi2
i2

= ax
pj1
j1

= x
pi1
i1

,

= min
x∈E3,2

f3,2(x)

with

f3,2(x) = a1/pi1+1/pi2 x
1+p j1/pi1+p j1/pi2
j1 

k �=i1, j1,i2

xk

and

E3,2 =
{

x ∈ R
n−2 : 

k �=i1, j1,i2

1
pk

xpk
k +

( 1
p j1

+
a
pi1

+
a
pi2

)
x

p j1
j1

= 1,

axpk
k � xpi

i for i,k �= i1, i2, xk > 0 for k �= i1, i2
}

.

Applying this argument iteratively, we obtain

 = min
x∈E ′

0

x1 · · ·xn

with
E ′

0 =
{

x ∈ E1 :aek,i xpk
k = xpi

i with ek,i ∈ Z for 1 � i,k � n
}
.
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Since 0 < a < 1 and axpk
k � xpi

i � a−1xpk
k for 1 � i,k � n for every x ∈ E1 ,

 = min
x∈E0

x1 · · ·xn

with

E0 =
{

x ∈ R
n :

n


k=1

1
pk

xpk
k = 1, aek,i xpk

k = xpi
i with ek,i ∈ {−1,0,1}

for 1 � i,k � n with some ek,i �= 0
}

(recall that ax
pj1
j1

= x
pi1
i1

and so, e j1,i1 �= 0). Then E0 = ∪n−1
m=1E

m
0 , where

Em
0 =

{
x ∈ E0 : ∃ ∈ Pn with ax

p(k)
(k) = x

p(i)
(i) for 1 � k � m < i � n

}
.

If x∈Em
0 and  ∈Pn satisfies ax

p(k)
(k) = x

p(i)
(i) for 1 � k � m < i � n , define t = x

p(1)
(1) .

We have

1 =
n


k=1

1
p(k)

x
p(k)
(k) =

m


k=1

1
p(k)

t +
n


k=m+1

1
p(k)

at

= t
( m


k=1

1
p(k)

+a
n


k=m+1

1
p(k)

)
.

If 1 � i � m , then

x(i) =
( m


k=1

1
p(k)

+a
n


k=m+1

1
p(k)

)−1/p(i)
.

If m < i � n , then

x(i) = a1/p(i)
( m


k=1

1
p(k)

+a
n


k=m+1

1
p(k)

)−1/p(i)
.

Hence,
n


i=1

xi =
m


i=1

( m


k=1

1
p(k)

+a
n


k=m+1

1
p(k)

)−1/p(i)

·
n


i=m+1

a1/p(i)
( m


k=1

1
p(k)

+a
n


k=m+1

1
p(k)

)−1/p(i)

=
( m


k=1

1
p(k)

+a
n


k=m+1

1
p(k)

)−n
i=1 1/p(i)

a
n
i=m+1 1/p(i)

=
( m


k=1

1
p(k)

+a
n


k=m+1

1
p(k)

)−1
a

n
k=m+1 1/p(k)

=
(
a+(1−a)

m


k=1

1
p(k)

)−1
a1−m

k=1 1/p(k)
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and so,

 = min
1�m<n,∈Pn

(
a+(1−a)

m


k=1

1
p(k)

)−1
a1−m

k=1 1/p(k) .

Let us find a lower bound for  , which is very good when n grows.
Consider the function u : [0,1] → R given by

u(s) =
(
a+(1−a)s

)−1
a1−s.

Thus,

u′(s) = −(1−a)
(
a+(1−a)s

)−2
a1−s +

(
a+(1−a)s

)−1
a1−s(− loga)

=
(
a+(1−a)s

)−2
a1−s(− (1−a)− (a+(1−a)s

)
loga

)
.

The function v(s) = −(1− a)− (a + (1− a)s
)
loga is increasing, v(0) = −1 + a−

a loga and v(1) = −1+a− loga .
If w1(a) = −1+a−a loga , then w′

1(a) =− loga > 0 and w1(a) < w1(1) = 0 for
every 0 < a < 1.

If w2(a) = −1+a− loga , then w′
2(a) = 1−1/a < 0 and w2(a) > w2(1) = 0 for

every 0 < a < 1.
Therefore, v(0) = w1(a) < 0 and v(1) = w2(a) > 0, and so, u′(s0) = 0 if and only

if

− (1−a)− (a+(1−a)s0
)
loga = 0 ⇐⇒ a+(1−a)s0 =

1−a
− loga

⇐⇒ s0 =
1−a+a loga
−(1−a) loga

.

Since u′ < 0 on (0,s0) and u′ > 0 on (s0,1) , we have u(s) � u(s0) for every s∈ (0,1) .
We have

a+(1−a)s0 = a+(1−a)
1−a+a loga
−(1−a) loga

=
1−a
− loga

and

1− s0 = 1+
1−a+a loga
(1−a) loga

=
1−a+ loga
(1−a) loga

a1−s0 = e(1−s0) loga = e1+ loga
1−a = ea

1
1−a .

Hence,

= min
1�m<n,∈Pn

u
( m


k=1

1
p(k)

)
� u(s0) =

− loga
1−a

ea
1

1−a . �

THEOREM 7. Let  be a measure on any measurable space X , 0 < a < 1 ,
p1, . . . , pn > 1 be real numbers such that 1

p1
+ . . . + 1

pn
= 1 , and fk : X → C mea-

surable functions with f1 · · · fn ∈ L1(X ,) and a | fk|pk � | fi|pi  -a.e. for 1 � i,k � n.
Then fk ∈ Lpk(X ,) for 1 � k � n and

‖ f1‖p1 · · · ‖ fn‖pn � A‖ f1 · · · fn‖1 , (11)
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where

A = max
1�m<n,∈Pn

(
a+(1−a)

m


k=1

1
p(k)

)
a−1+m

k=1 1/p(k)

� e−1a
−1
1−a

1−a
− loga

= S(a) .

REMARK 8. Note that the inequality

‖ f1‖p1 · · · ‖ fn‖pn � S(a)‖ f1 · · · fn‖1

holds with a constant which is the known Specht’s ratio (for two variables). Hence, this
constant just depends on a ; in particular, it does not depend on n, p1, . . . , pn, f1, . . . , fn,
and this is an important fact in the theory of Lp(·) spaces with variable exponent (see
e.g. [14, 17, 18, 20, 27]).

Proof. Proposition 6 gives

A | f1(x) · · · fn(x)| � 1
p1

| f1(x)|p1 + · · ·+ 1
pn

| fn(x)|pn

for  -a.e. x ∈ X . If we integrate this inequality with respect to  , then we obtain

A‖ f1 · · · fn‖1 � 1
p1

‖ f1‖p1
p1

+ · · ·+ 1
pn

‖ fn‖pn
pn

. (12)

Since f1 · · · fn ∈ L1(X ,) , (12) implies fk ∈ Lpk(X ,) for 1 � k � n .
If ‖ fk‖pk = 0 for some 1 � k � n , then the inequality is direct.
If ‖ fk‖pk > 0 for every 1 � k � n , applying (12) to the functions fk/‖ fk‖pk , we

obtain

A
∥∥∥ f1
‖ f1‖p1

· · · fn
‖ fn‖pn

∥∥∥
1
� 1

p1

∥∥∥ f1
‖ f1‖p1

∥∥∥p1

p1
+ · · ·+ 1

pn

∥∥∥ fn
‖ fn‖pn

∥∥∥pn

pn

=
1
p1

+ · · ·+ 1
pn

= 1,

and so,
A‖ f1 · · · fn‖1 � ‖ f1‖p1 · · · ‖ fn‖pn . �

5. Generalized Riemann-Liouville-type integral operators

One of the first operators that can be called fractional is the Riemann-Liouville
fractional derivative of order  ∈ C , with Re() > 0, defined as follows (see [24]).

DEFINITION 9. Let a < b and f ∈ L1((a,b);R) . The right and left side Riemann-
Liouville fractional integrals of order  , with Re() > 0, are defined, respectively, by

RLJa+ f (t) =
1

()

∫ t

a
(t− s)−1 f (s)ds, (13)
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and
RLJb− f (t) =

1
()

∫ b

t
(s− t)−1 f (s)ds, (14)

with t ∈ (a,b) .

When  ∈ (0,1) , their correspondingRiemann-Liouville fractional derivatives are
given by

(RLD
a+ f
)
(t) =

d
dt

(RLJ1−
a+ f (t)

)
=

1
(1−)

d
dt

∫ t

a

f (s)
(t− s)

ds,

(RLD
b− f
)
(t) = − d

dt

(RLJ1−
b− f (t)

)
= − 1

(1−)
d
dt

∫ b

t

f (s)
(s− t)

ds.

Now, we give the definition of a general fractional integral in [6] (see also [12]).

DEFINITION 10. Let a < b and  ∈ R+ . Let g : [a,b] → R be a positive func-
tion on (a,b] with continuous positive derivative on (a,b) , and G : [0,g(b)− g(a)]×
(0,) → R a continuous function which is positive on (0,g(b)−g(a)]× (0,) . Let us
define the function T : [a,b]× [a,b]× (0,)→ R by

T (t,s,) =
G(|g(t)−g(s)|,)

g′(s)
.

The right and left integral operators, denoted respectively by JT,a+ and JT,b− , are
defined for each measurable function f on [a,b] as

JT,a+ f (t) =
∫ t

a

f (s)
T (t,s,)

ds, (15)

JT,b− f (t) =
∫ b

t

f (s)
T (t,s,)

ds, (16)

with t ∈ [a,b] .
We say that f ∈ L1

T [a,b] if JT,a+ | f |(t),JT,b−| f |(t) <  for every t ∈ [a,b] .

Theorems 7 and 3 have, respectively, the following direct consequences for gener-
alized Riemann-Liouville-type integral operators.

PROPOSITION 11. Let 0 < a < 1 , p1, . . . , pn > 1 be real numbers such that 1
p1

+
. . .+ 1

pn
= 1 , c < d real constants and d(s)= ds/T (d,s,) on [c,d] . If fk : [c,d]→C

are measurable functions with f1 · · · fn ∈ L1( , [c,d]) and a | fk|pk � | fi|pi  -a.e. for
1 � i,k � n, then fk ∈ Lpk( , [c,d]) for 1 � k � n and

(∫ d

c

| f1(s)|p1

T
(
d,s,

) ds

)1/p1

· · ·
(∫ d

c

| fn(s)|pn

T
(
d,s,

) ds

)1/pn

� A
∫ d

c

| f1(s) · · · fn(s)|
T
(
d,s,

) ds, (17)
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where

A = max
1�m<n,∈Pn

(
a+(1−a)

m


k=1

1
p(k)

)
a−1+m

k=1 1/p(k)

� e−1a
−1
1−a

1−a
− loga

.

PROPOSITION 12. Let c < d be real constants, d(s) = ds/T (d,s,) on [c,d] ,
let p,q > 1 be real numbers such that 1

p + 1
q = 1 , f ∈ Lp( , [c,d]) and g∈Lq( , [c,d]) .

(1) If | f |1−pg ∈ L[c,d] , then

(∫ d

c

| f (s)|p
T
(
d,s,

) ds

)1/p (∫ d

c

|g(s)|q
T
(
d,s,

) ds

)1/q

�
∥∥| f |1−pg

∥∥


∫ d

c

| f (s)|p
T
(
d,s,

) ds

and the following Hölder-type inequality holds:

∫ d

c

| f g|
T (d,s,)

ds �
∥∥| f |1−pg

∥∥


∫ d

c

| f (s)|p
T
(
d,s,

) ds

−
(∥∥| f |1−pg

∥∥q


(∫ d

c

| f (s)|p
T
(
d,s,

) ds

)q

−
(∫ d

c

| f (s)|p
T
(
d,s,

) ds

)q/p(∫ d

c

|g(s)|q
T
(
d,s,

) ds

))1/q

.

(2) If f |g|1−q ∈ L[c,d] , then

(∫ d

c

| f (s)|p
T
(
d,s,

) ds

)1/p (∫ d

c

|g(s)|q
T
(
d,s,

) ds

)1/q

�
∥∥ f |g|1−q

∥∥


∫ d

c

|g(s)|q
T
(
d,s,

) ds

and the following Hölder-type inequality holds:

∫ d

c

| f g|
T (d,s,)

ds �
∥∥ f |g|1−q

∥∥


∫ d

c

|g(s)|q
T
(
d,s,

) ds

−
(∥∥ f |g|1−q

∥∥p


(∫ d

c

|g(s)|q
T
(
d,s,

) ds

)p

−
(∫ d

c

| f (s)|p
T
(
d,s,

) ds

)(∫ d

c

|g(s)|q
T
(
d,s,

) ds

)p/q )1/p

.
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6. Generalized local fractional derivative

Let us recall the definition of generalized local fractional derivative in [2,7,21,22].
Given s ∈ R , we denote by s� the upper integer part of s , i.e., the smallest integer
greater than or equal to s .

DEFINITION 13. Given an interval I ⊆ R , f : I → R ,  ∈ R
+ and a positive

continuous function F(t,) on I× (0,) , the derivative G
F f of f of order  at the

point t ∈ I is defined by

G
F f (t) = lim

h→0

1

h�
�

k=0

(−1)k
(�

k

)
f
(
t− khF(t,)

)
. (18)

If a = inf{t ∈ I} (respectively, b = sup{t ∈ I} ), then G
F f (a) (respectively, G

F f (b))
is defined with h → 0− (respectively, h → 0+ ) instead of h → 0 in the limit.

If F(t,) = 1 when  ∈ N , then we obtain a conformable local fractional deriva-
tive of any order. See [1,28,30] for more information on conformable fractional deriva-
tives. If F(t,) depends on t when  ∈ N , then we get a non-conformable local
fractional derivative of any order.

DEFINITION 14. Let I be an interval I ⊆ (0,) , f : I → R and  ∈ R+ . The
conformable derivative G f of f of order  at the point t ∈ I is defined by

G f (t) = lim
h→0

1

h�
�

k=0

(−1)k
(�

k

)
f
(
t− kht�−

)
. (19)

Note that F(t,) = t�− = 1 for every  ∈ N . We know from the classical
calculus that if f is a function defined in a neighborhood of the point t , and there exists
the n -th derivative Dn f (t) , then

Dn f (t) = lim
h→0

1
hn

n


k=0

(−1)k
(

n
k

)
f (t − kh).

Therefore, if  = n ∈ N and f is smooth enough, then Definition 14 coincides with
the classical definition of the n -th derivative. The same holds for any choice of F with
F(t,) = 1 for t ∈ I and  ∈ N .

Let I be an interval I ⊆ R , a,t ∈ I and  ∈ R . The integral operator JF,a is
defined for every locally integrable function f on I as

JF,a( f )(t) =
∫ t

a

f (s)
F(s,)

ds.

The following results in [2, 7, 21, 22, 31] contain some basic properties of this
integral operator.
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PROPOSITION 15. Let I be an interval I ⊆ R , a ∈ I , 0 <  � 1 and f a differ-
entiable function on I such that f ′ is a locally integrable function on I . Then, we have
for all t ∈ I

JF,a

(
G

F ( f )
)
(t) = f (t)− f (a).

PROPOSITION 16. Let I be an interval I ⊆ R , a ∈ I and  ∈ (0,1] .

G
F

(
JF,a( f )

)
(t) = f (t),

for every continuous function f on I and a,t ∈ I .

Theorems 7 and 3 have, respectively, the following direct consequences for the
integral operator JF,c .

PROPOSITION 17. Let 0 < a < 1 , p1, . . . , pn > 1 be real numbers such that 1
p1

+
. . .+ 1

pn
= 1 , c < d real constants and d(s) = ds/F(s,) on [c,d] . If fk : [c,d] → C

are measurable functions with f1 · · · fn ∈ L1( , [c,d]) and a | fk|pk � | fi|pi  -a.e. for
1 � i,k � n, then fk ∈ Lpk( , [c,d]) for 1 � k � n and

(∫ d

c

| f1(s)|p1

F(s,)
ds

)1/p1

· · ·
(∫ d

c

| fn(s)|pn

F(s,)
ds

)1/pn

� A
∫ d

c

| f1(s) · · · fn(s)|
F(s,)

ds, (20)

i.e., (
JF,c(| f1|p1)(d)

)1/p1 · · · (JF,c(| fn|pn)(d)
)1/pn � AJF,c(| f1 · · · fn|)(d), (21)

where

A = max
1�m<n,∈Pn

(
a+(1−a)

m


k=1

1
p(k)

)
a−1+m

k=1 1/p(k)

� e−1a
−1
1−a

1−a
− loga

.

PROPOSITION 18. Let c < d be real constants, d(s) = ds/F(s,) on [c,d] , let
p,q > 1 be real numbers such that 1

p + 1
q = 1 , f ∈ Lp( , [c,d]) and g ∈ Lq( , [c,d]) .

(1) If | f |1−pg ∈ L[c,d] , then

(
JF,c(| f |p)(d)

)1/p (
JF,c(|g|q)(d)

)1/q �
∥∥| f |1−pg

∥∥
 JF,c(| f |p)(d)

and the following Hölder-type inequality holds:

JF,c(| f g|)(d) �
∥∥| f |1−pg

∥∥
 JF,c(| f |p)(d)

−
(∥∥| f |1−pg

∥∥q

(
JF,c(| f |p)(d)

)q − (JF,c(| f |p)(d)
)q/p (

JF,c(|g|q)(d)
))1/q

.

(2) If f |g|1−q ∈ L[c,d] , then

(
JF,c(| f |p)(d)

)1/p (
JF,c(|g|q)(d)

)1/q �
∥∥ f |g|1−q

∥∥
 JF,c(| f |p)(d)
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and the following Hölder-type inequality holds:

JF,c(| f g|)(d) �
∥∥ f |g|1−q

∥∥
 JF,c(|g|q)(d)

−
(∥∥ f |g|1−q

∥∥p

(
JF,c(|g|q)(d)

)p − (JF,c(| f |p)(d)
)(

JF,c(|g|q)(d)
)p/q

)1/p
.
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inequality via fractional calculus, submitted.
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