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WEIGHTED WEAK ESTIMATE FOR COMMUTATORS OF

FRACTIONAL TYPE PARAMETRIC MARCINKIEWICZ

INTEGRALS OVER NON–HOMOGENEOUS METRIC SPACES

SHUAIJUN FENG AND XIANGXING TAO ∗

(Communicated by I. Perić)

Abstract. Let (X ,d) be a metric space satisfying the geometrically doubling condition, and 
be a Borel measure satisfying the upper doubling condition. In this paper, the authors prove the
weak type weighted Lp() boundedness of the commutators T b

 ,,q generated by the RBMO()
function b and the fractional type parametric Marcinkiewicz integral operator T ,,q , which is
defined over the non-homogeneous metric space (X ,d,) .

1. Introduction

As it’s well-known that Stein [14] first introduced the classical Marcinkiewicz
integral over Euclidean space Rn(n � 2) , and then Hörmander [9] introduced the para-
metric Marcinkiewicz integral, and the fractional Marcinkiewicz integral is also consid-
ered by many researchers, see Lin-Lin-Tao-Yu [13] for example among others. These
Marcinkiewicz integral operators can be uniformly written as fractional type parametric
Marcinkiewicz integral operator in the following form,


,( f )(x) =

{∫ 

0

∣∣∣∣ 1
t+

∫
|x−y|�t

(x− y)
|x− y|n− f (y)dy

∣∣∣∣2 dt
t

} 1
2

, x ∈ Rn, (1)

where  > 0 and  � 0, and that  is homogeneous of degree zero in Rn , integrable
and has mean value zero on the unit sphere Sn−1 . If let  = 1, = 0 in (1) then it is just
the Marcinkiewicz integral  . If  = 0 in (1) then it is the parametric Marcinkiewicz
integral 

 . Hörmander [9] proved the Lp(1 < p < ) boundedness for 
 whenever

 is Lipschitz continuous. In 1990, Torchinsky and Wang [16] first studied the Lp

boundedness for the commutator ,b generated by the Marcinkiewicz integral 
and a BMO function b . In 2009, Lin-Lin-Tao-Yu [13] showed that, if  satisfies a
class of Dini condition, then the fractional Marcinkiewicz integral , , i.e, the case
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 = 1 in (1), is bounded from Lp(1 < p < 2) to Lq with 1
q = 1

p − 
2n , and bounded

from Hp to Hq for 2n
2n+ � p � 1 and 0 <  < 1.

In this paper, we will consider commutators of some fractional type paramet-
ric Marcinkiewicz integral on the non-homogeneous metric space, and discuss the
weak weighted boundedness of these generalized Marcinkiewicz integral operator over
metric space. To this end, let’s recall some necessary concepts by starting with the
Hytönen’s non-homogeneous metric space.

Hytönen [10] introduced the non-homogeneous space (X ,d,) , which is the
metric space satisfying the following geometric doubling condition and the upper dou-
bling condition.

DEFINITION 1. [3, 2] A metric space (X ,d) is said to satisfy the geometrically
doubling condition if there exist some N0 ∈ N such that, for all balls B(x,r) ⊂ X ,
there exists a finite ball covering

{
B(xi,

r
2)

}
i of B(x,r) such that the cardinality of this

covering is at most N0 .

DEFINITION 2. [10] A metric measure space (X ,d,) is said to satisfy the
upper doubling condition if  is a Borel measure on X and there exists a dominating
function  : X ×(0,)→ (0,) and a positive constant C such that, for each x∈X ,
r →  (x,r) is non-decreasing and, for any x ∈ X , r > 0,

(B(x,r)) �  (x,r) � C  (x,r/2). (2)

Furthermore, in [11], it shows that there exists a dominating function  such that
 �  , C � C and for any x,y ∈ X , d(x,y) � r ,

 (x,r) � C  (y,r). (3)

Hence we can assume that the dominating function  satisfies both (2) and (3).
Suppose that , ∈ (1,) , a ball B ⊂ X is called (, )-doubling if (B) �

(B) . It is proved in [10] that, if (X ,d,) satisfies the upper doubling condition

and  > clog2
 = v , then for any ball B , there exist some j ∈ N∪{0} so that  jB is

(, )-doubling. Furthermore, if (X ,d,) satisfies the geometrically doubling con-
dition and  > n with n = log2 N0 , Hytönen [10] also proved that there exist (, )-
doubling balls centered at x and the doubling ball can be arbitrary small. More than
that, for any preassigned r > 0, their radius can be chosen to be the form − j for
j ∈ N . For any  ∈ (1,) and ball B , B̃ denote the smallest (,)-doubling ball
of the form  jB with j ∈ N , where

 = max{3n,3}+30n +30 .

In the following discussion, if there is no special statement, for any  ∈ (1,) and
B ⊂ X , B̃ always denote the smallest (30 ,30)-doubling ball which have the form
of (30) jB , j ∈ N .

In [8], Hu et al. introduced the following A
p weight.
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DEFINITION 3. [8] For  ∈ [1,) , p∈ (1,) and p′ = p/(p−1) , a nonnegative
 -measurable function  is said to belong to A

p , if there exists a positive constant C
so that, for every ball B ⊂ X ,[

1
(B)

∫
B
(x)d(x)

]{
1

(B)

∫
B
[(x)]1−p′d(x)

}p−1

� C, (4)

and  is said to belong to A
1 , if there exists a positive constant C so that, for every

ball B ⊂ X ,

1
(B)

∫
B
(x)d(x) � C inf

y∈B
(y),

and let A
() :=

⋃
p=1

A
p() .

In this paper, we will use some notations introduced by Bui and Duong [1]. For
two balls B and R in X such that B ⊂ R , let

KB,R = 1+
NB,R


i=1

(6iB)
 (cB,6irB)

, (5)

where NB,R denotes the smallest integer satisfying 6NB,RrB � rR .
For any  ∈ (0,) and any two balls B ⊂ R ⊂ X , let

K̃()
B,R := 1+

N
()
B,R


k=−�log 2	

(kB)
 (cB,krB)

,

where N()
B,R is the smallest integer satisfying N

()
B,R rB � rR and for any a ∈ R , �a	 is

the largest integer which is less than or equal to a . It is easy to deduce that

K̃()
B,R ∼ 1+

N
()
B,R+�log 2	+1


k=1

(kB)
 (cB,krB)

.

Now we recall the definition of RBMO() introduced in [10].

DEFINITION 4. [10] For  ∈ (1,) , a function f ∈ L1
loc() is said to belong to

the space RBMO() if, for any ball B ⊂ X , there exists a positive constant C and a
number fB such that

1
(B)

∫
B
| f (x)− fB|d(x) � C, (6)

and for any two balls B ⊂ R ⊂ X ,

| fB − fR| � CB,R, (7)
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where

 (B,R) = 1+
∫
2R\B

d(x)
 (cB,d(x,cB))

.

The RBMO() norm ‖ f‖RBMO() of f is the infimum of the positive constant C
in (6) and (7). It’s worthy to point out that the norm ‖ f‖RBMO() does not depend on
 , see [10].

LEMMA 1. [11] For  ∈ (1,) and f ∈ L1
loc() , f ∈ RBMO() if and only if

for any doubling balls B ⊂ R, there exists a positive constant C such that

1
(B)

∫
B
| f (x)−mB̃ f |d(x) � C,

and

|mB f −mR f | � CB,R,

where we denote by mB f = 1
(B)

∫
B f (x)(x) .

LEMMA 2. [6] Let  ∈ (1,) and r ∈ [1,) , If f ∈ RBMO() , then there exists
a positive constant C such that for any ball B,{

1
(B)

∫
B
| f (x)−mB̃ f |rd(x)

}1/r

� C‖ f‖RBMO().

We now give the definition of fractional type parametric Marcinkiewicz integral
over the non-homogeneous metric space (X ,d,) . Let K(x,y) be a locally integrable
function in (X ×X )\{(x,x) : x ∈ X } satisfying, for any x,y ∈ X with x �= y ,

|K(x,y)| � C
[d(x,y)]1+

 (x,d(x,y))
, (8)

and if d(x,y) � 2d(x,x′) ,

|K(x,y)−K
(
x′,y

) |+ |K(y,x)−K
(
y,x′

) |� C
[d (x,x′)]++1

[d(x,y)]  (x,d(x,y))
, (9)

for some  ∈ [0,) ,  ∈ (0,1] and the positive constant C .
For  ∈ (0,) , q ∈ (1,) , the fractional type parametric Marcinkiewicz integral

operator T , ,q with the kernel K(x,y) is then defined by

T , ,q( f )(x) :=
{∫ 

0

∣∣∣∣ 1

t+

∫
d(x,y)<t

K(x,y)
[d(x,y)]1−

f (y)d(y)
∣∣∣∣q dt

t

} 1
q

. (10)
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Let b ∈ RBMO() , we consider the commutators generated by b and the frac-
tional type parametric Marcinkiewicz integral operator T , ,q , which is defined by

T b
 , ,q( f )(x)

:=
{∫ 

0

∣∣∣∣ 1

t+

∫
d(x,y)<t

K(x,y)
[d(x,y)]1−

[b(x)−b(y)] f (y)d(y)
∣∣∣∣q dt

t

} 1
q

. (11)

In [15], the authors proved the boundedness in Lp() of the commutators T b
0, ,2

if the kernel K(x,y) satisfies some Log-Dini condition and that T0, ,2 is bounded on
L2() . Zhou [4] proved some similar results under the following Hörmander type
condition for the kernel K(x,y) satisfying

sup
r>0

d(y,y′)�r




i=1

i
∫

6ir<d(x,y)�6i+1r

[∣∣K(x,y)−K
(
x,y′

)∣∣
+

∣∣K(y,x)−K
(
y′,x

)∣∣] 1
d(x,y)

d(x) � C.

In this paper, we devote to give the weak type weighted boundedness of the com-
mutator T b

 , ,q as follows.

THEOREM 1. Let  ∈ [1,) and  ∈ A
p , 1 < p <  , and let K(x,y) satisfy (8)

and (9). Suppose that T , ,q is bounded on L2() , then for the commutator T b
 , ,q ,

we have

sup
t>0

t
[


({
x ∈ X : T b

 , ,q( f )(x) > t
})] 1

p � ‖ f‖Lp() .

2. Some lemmas

For a  -measurable real function f and a ball B with (B) �= 0, we let mf (B) be
a real number such that inf∈R mB(| f −  |) is attained. Moreover, mf (B) satisfies

({x ∈ B : f (x) > mf (B)}) � (B)/2

and

({x ∈ B : f (x) < mf (B)}) � (B)/2.

In the case that (B) = 0, set mf (B) ≡ 0. For a complex-valued f , we then take
mf (B)≡mRe f (B)+ imIm f (B) , where i is imaginary unit. It is known that, for a complex
number z , Re(z) and Im(z) denote the real part and the imaginary part, respectively.

For any  -measurable function f and ball B , when (B) > 0, define m ,
0,s;B( f )

by setting

m ,
0,s;B( f ) := inf{t > 0 : ({y ∈ B : | f (y)| > t}) < s(B)}
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where s ∈ (0,1) ,  ∈ [1,) and  ∈ [1,) , while (B) = 0, set m ,
0,s;B( f ) = 0. By the

definition of m ,
0,s;B( f ) , we give the following John-Strömberg-type maximal operator,

which is defined as

M ,
0,s ( f )(x) := sup

B�x,B(30,30 )-doubling
m ,

0,s;B( f ),

and the John-Strömberg-type sharp maximal operator corresponding to M ,
0,s ( f ) is de-

fined as

M ,;�
0,s ( f )(x) :=sup

B�x
m ,

0,s;B

(
f −mf (B̃)

)
+ sup

x∈B⊂R
B,R(30,30 )-doubling

∣∣mf (B)−mf (R)
∣∣

K̃()
B,R

.

For any f ∈ L1
loc() and x ∈ X , maximal operator Mr, is denoted by

Mr, f (x) = sup
B�x

{
1

(B)

∫
B
| f (y)|rd(y)

} 1
r

,

where  ∈ [1,) ,  , ∈ (1,) and r ∈ (0,) . Moreover, sharp maximal operator
M, ,� is given by

M, ,�( f )(x) :=sup
B�x

(
1

(B)

∫
B

∣∣∣ f (y)−mf (B̃)
∣∣∣d(y)

)
+ sup

x∈B⊂R
B,R(30,30 )-doubling

∣∣mf (B)−mf (R)
∣∣

K̃()
B,R

.

Similar to Lemma 2.6 in [8], we can easily get the following lemma, where we omit the
details.

LEMMA 3. For  ∈ [1,) ,  ∈ [5 ,) , p ∈ (1,) and  ∈ A
p() , Mr, is

bounded from Lp() to Lp,() .

LEMMA 4. By the definition of m ,
0,s;B( f ) , it is clear to see that for any constant

C ,

m ,
0,s;B ( f −C) � s−1

(
1

(B)

∫
B
| f (y)−C|d(y)

)
.

Particularly, we take C = mf (B̃) then we obtain

m ,
0,s;B

(
f −mf (B̃)

)
� s−1

(
1

(B)

∫
B

∣∣∣ f (y)−mf (B̃)
∣∣∣d(y)

)
(12)

and from (12), it follows that

M ,;�
0,s f (x) � s−1M, ,� f (x). (13)
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LEMMA 5. The following properties about KB,R are useful when we make esti-
mates over non-homogeneous metric spaces, which were proved in [6, 1].

(1) For any  ∈ [1,) , there exists a positive constant c , relying on  , such that,
for all balls B ⊂ R with rs � rB,KB,R � c .

(2) There exists a positive constant c, such that, for all balls B, KB,B̃ � c.

Using the properties of KB,R , from [5] we can easily find that K̃()
B,R ∼ KB,R .

LEMMA 6. [8] For  , p∈ [1,) ,  ∈ [5 ,) and  ∈ A
p , there exist constants

C, so that, for every ball B and  -measurable set A ⊂ B,

(A)
(B)

� C−1
[
(A)
(B)

]p

.

LEMMA 7. [7] Let f ∈ RBMO(),q ∈ (0,) and for all x ∈ X ,

fq(x) :=

{
f (x), if | f (x)| � q,

q f (x)
| f (x)| , if | f (x)| > q.

Then fq ∈ RBMO() and there exists a positive constant C , which is independent of
f , such that ‖ fq‖RBMO()�C‖ f‖RBMO()

.

LEMMA 8. [8] Let  ∈ [1,) ,  ∈ [1,30] , s1 ∈ (0,−1
30/4) , p ∈ (0,) and

 ∈ A
() . In the case that (X ) =  , f ∈ Lp0,() for some p0 ∈ (0,) , and for

all R ∈ (0,) ,

sup
t∈(0,R)

t p({x ∈ X : | f (x)| > t}) < .

Then there exists a constant C0 ∈ (0,1) which depend on s1 and  , and a positive
constant C such that for any s2 ∈ (0,C0s1) ,∥∥∥M ,

0,s1
( f )

∥∥∥
Lp,()

� C
∥∥∥M ,;�

0,s2
( f )

∥∥∥
Lp,()

.

LEMMA 9. [8] Let  , p ∈ [1,) ,  ∈ [1,30] and s ∈ (0,−1
30) , then for any  -

measurable functions f and t ∈ (0,) ,

(1) {x ∈ X : | f (x)| > t} ⊂
{

x ∈ X : M ,
0,s ( f )(x) � t

}
∪E with (E) = 0 .

(2) For  ∈ A
p() , there exists a positive constant C which is independent of f

and t , such that


({

x ∈ X : M ,
0,s ( f )(x) > t

})
� Cs−p({x ∈ X : | f (x)| > t}).

We need the following boundedness of T , ,q in [12].
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LEMMA 10. [12] For  ∈ (0,) ,  ∈ [0,) and q∈ [1,) , let K(x,y) satisfy (8)
and (9) , and T , ,q is defined as (10). Suppose that T , ,q is bounded on L2() , then
for any p ∈ (1,) , it is bounded on Lp and also bounded from L1() into L1,() .

To prove Theorem 1, we should first establish the following pointwise estimate.

LEMMA 11. Let  ∈ [0,) ,  ∈ (0,) , q ∈ (1,) and K(x,y) satisfy (8) and
(9). Suppose that T , ,q is bounded on L2() , then for any  ∈ [1,) ,  ∈ (5,30] ,
there exists a constant C , such that for any function f ∈ L() and x ∈ X ,

M, ,�
(
T b
 , ,q( f )

)
(x) � CMr, 5 

( f )(x).

Proof. Let

hB := mB
[
T , ,q

(
(b−mB̃(b)) f (5B)c

)]
.

To prove Lemma 11, it is sufficient to prove for any ball B , x ∈ B ,

1
(B)

∫
B

∣∣∣T b
 , ,q( f )(y)−hB

∣∣∣d(y) � Mr, 5 
( f )(x) (14)

and for any two balls B ⊂ R , R is a doubling ball,

|hB −hR| � KB,RMr, 5 
( f )(x). (15)

First, we estimate (14). It follows that

1
(B)

∫
B

∣∣∣T b
 , ,q( f )(y)−hB

∣∣∣d(y)

� 1
(B)

∫
B

∣∣b(y)−mB̃(b)
∣∣T , ,q( f )(y)d(y)

+
1

(B)

∫
B
T , ,q

((
b−mB̃(b)

)
f1

)
(y)d(y)

+
1

(B)

∫
B

∣∣T , ,q
((

b−mB̃(b)
)

f2
)
(y)−hB

∣∣d(y)

:= A1 +A2 +A3,

where, f1 = f (5B) , f2 = f (5B)c . By Hölder’s inequality, Lemma 2 and Lemma 10,
we see that

A1 � 1

(B)
1
r + 1

r′

[∫
B

∣∣b(y)−mB̃(b)
∣∣r′ d(y)

]1/r′ [∫
B
(T , ,q( f ))r(y)

]1/r

� ‖b‖RBMO()

[
1

(B)

∫
5B

(T , ,q( f ))r(y)
]1/r

� Mr, 5 
( f )(x).
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To estimate A2 , by Hölder’s inequality, the L2 -boundedness of T , ,q( f ) , Lemma 2
and Lemma 5, we conclude that

A2 � (B)1/2

(B)

[∫
B

∣∣T , ,q

[(
b−mB̃(b)

)
f1

]
(y)

∣∣2 d(y)
]1/2

�
[

1
(B)

∫
B

∣∣(b(y)−m5̃B(b)
)

f1(y)
∣∣2 d(y)

]1/2

+
[

1
(B)

∫
B

∣∣(m5̃B(b)−mB̃(b)
)

f1(y)
∣∣2 d(y)

]1/2

� ‖ f‖L()

[
1

(B)

∫
5B

∣∣b(y)−m5̃B(b)
∣∣2 d(y)

]1/2

+‖ f‖L()

[
1

(B)

∫
B

∣∣m5̃B(b)−mB̃(b)
∣∣2 d(y)

]1/2

� ‖ f‖L()

(
‖b‖RBMO() +

[
(B)

(B)

] 1
2
)

� ‖ f‖L() ,

where we utilize the fact that
∣∣m5̃B(b)−mB̃(b)

∣∣ � c
(
KB,B̃ +K5B,5̃B +KB,5B

)
� c. To

estimate A3 , we observe that∣∣T , ,q

((
b−mB̃(b)

)
f2

)
(y)−hB

∣∣
=

∣∣T , ,q

((
b−mB̃(b)

)
f2

)
(y)−mB

[
T , ,q

(
(b−mB̃(b)) f2

)]∣∣
�

∣∣∣∣ 1
(B)

∫
B

∣∣T , ,q

((
b−mB̃(b)

)
f2

)
(y)

−T , ,q
((

b−mB̃(b)
)

f2
)
(x)

∣∣d(x)
∣∣∣∣.

For x,y ∈ B , we obtain∣∣T , ,q
((

b−mB̃(b)
)

f2
)
(y)−T , ,q

((
b−mB̃(b)

)
f2

)
(x)

∣∣
�

(∫ 

0

∣∣∣∣∫
d(y,z)<t

K(y,z)
|d(y,z)|1−

[
b(z)−mB̃(b)

]
f2(z)d(z)

−
∫

d(x,z)<t

K(x,z)
|d(x,z)|1−

[
b(z)−mB̃(b)

]
f2(z)d(z)

∣∣∣∣q dt

tq(+)+1

) 1
q

�
(∫ 

0

∣∣∣∣∫
d(y,z)�t�d(x,z)

K(y,z)
|d(y,z)|1−

[
b(z)−mB̃(b)

]
× f2(z)d(z)

∣∣∣∣q dt

tq(+)+1

) 1
q
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+
(∫ 

0

∣∣∣∣∫
d(x,z)�t�d(y,z)

K(x,z)
|d(x,z)|1−

[
b(z)−mB̃(b)

]
× f2(z)d(z)

∣∣∣∣q dt

tq(+)+1

) 1
q

+
(∫ 

0

∣∣∣∣∫
t>max{d(y,z),d(x,z)}

(
K(y,z)

|d(y,z)|1− − K(x,z)
|d(x,z)|1−

)

× [
b(z)−mB̃(b)

]
f2(z)d(z)

∣∣q dt

tq(+)+1

) 1
q

:= B1 +B2 +B3.

As in the estimate for B1 , by Minkowski inequality, (8), and note that, for y ∈ B and
z ∈ X \kB(k > 1) ,  (y,d(y,z)) ∼  (y,d(cB,z)) ∼  (cB,d(cB),z) . It follows that

B1 �
∫

X \5B

|K(y,z)|
d(y,z)1−

∣∣b(z)−mB̃(b)
∣∣ | f (z)|

×
(∫

d(y,z)�t�d(x,z)

dt

tq(+)+1

) 1
q

d(z)

�



k=1

1
5kq

1
 (cB,5krB)

∫
5k+1B

∣∣∣m
5̃k+1B

(b)−mB̃(b)
∣∣∣ | f (z)|d(z)

+



k=1

1
5kq

1
 (cB,5krB)

∫
5k+1B

∣∣∣m
5̃k+1B

(b)−b(z)
∣∣∣ | f (z)|d(z)

�



k=1

‖ f‖L()
k+1
5kq

(5k+1B)
 (cB,5krB)

+



k=1

‖ f‖L() ‖b‖RBMO()
1

5kq

� ‖ f‖L() ,

where, for  > 1, if we take m = �log2 5� , from (2), we know that

(5k+1B)
 (cB,5krB)

�
Cm
  (cB, 5k+1

2m rB)
 (cB,5krB)

� Cm
 .

With the similar argument, we also have B2 � ‖ f‖L() . Next we estimate B3 , from
Minkowski inequality, and note that for any x,y ∈ B and z ∈ (5B)c , d(x,z) ∼ d(y,z) ∼
d(cB,z) , then it follows that

B3 �
∫

X \5B

∣∣∣∣ K(y,z)
d(y,z)1− − K(x,z)

d(x,z)1−

∣∣∣∣ ∣∣b(z)−mB̃(b)
∣∣

×| f (z)|
(∫ 

d(x,z)

dt

tq(+)+1

) 1
q

d(z)

�
∫

X \5B
|K(y,z)−K(x,z)| ∣∣b(z)−mB̃(b)

∣∣
×| f (z)| 1

d(x,z)+1
d(z)
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+
∫

X \5B
|K(x,z)|

∣∣∣∣ 1
d(y,z)1− − 1

d(x,z)1−

∣∣∣∣ ∣∣b(z)−mB̃(b)
∣∣

×| f (z)| 1

d(x,z)+ d(z)

:= B31 +B32,

Similar to the discussion with B1 , we conclude that B31 � ‖ f‖L() . It is easy to show
that

B32 �
∫

X \5B

1
 (cB,d(cB,z))

∣∣d(x,z)1− −d(y,z)1− ∣∣
d(x,z)1−

× ∣∣b(z)−mB̃(b)
∣∣ | f (z)|d(z)

�



k=1

k+1
5k

1
 (cB,5krB)

∫
5k+1

| f (z)|d(z)

+



k=1

1
5k

1
 (cB,5krB)

∫
5k+1

∣∣∣m
5̃k+1B

(b)−b(z)
∣∣∣ | f (z)|d(z)

�



k=1

k+1
5k

(5k+1B)
 (cB,5krB)

‖ f‖L

+



k=1

1
5k ‖b‖RBMO() ‖ f‖L()

� ‖ f‖L() .

From B31 and B32 , we obtain B3 � ‖ f‖L() , which completes the estimate of (14).

Next, we consider (15). Note that

| hB−hR | �
∣∣∣mR

[
T , ,q

((
b−mB̃(b)

)
f X \5NB

)]
− mB

[
T , ,q

((
b−mB̃(b)

)
f X \5NB

)]∣∣∣
+

∣∣∣mR

[
T , ,q

(
(b−mR(b)) f X \5NB

)]
− mR

[
T , ,q

((
b−mB̃(b)

)
f X \5NB

)]∣∣∣
+

∣∣∣mB

[
T , ,q

((
b−mB̃(b)

)
f 5NB\5B

)]∣∣∣
+

∣∣∣mR

[
T , ,q

((
b−mB̃(b)

)
f 5NB\5R

)]∣∣∣
:= C1 +C2 +C3 +C4,

where, N =NB,R+1. Similar with A3 , we conclude that C1 � ‖ f‖L() . From Hölder’s
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inequality, Lemma 5 and Lemma 10, we see that

C2 � mR

∣∣∣(mR(b)−mB̃(b)
)
T , ,q

(
f X \5NB

)∣∣∣
�

KB,R +KB,B̃

(R)

∫
R
T , ,q

(
f X \5NB

)
(y)d(y)

� KB,R

(R)
(R)1/r′

(∫
R

∣∣∣T , ,q

(
f X \5NB

)
(y)

∣∣∣r d(y)
)1/r

� KB,R

(
1

(R)

∫
5R

∣∣∣T , ,q

(
f X \5NB

)
(y)

∣∣∣r d(y)
)1/r

� KB,RMr, 5 
( f )(x).

With the same argument of B1 , we get C3 � ‖ f‖L() . As for C4 , it follows that∣∣∣T , ,q

(
(b−mR(b)) f 5NB\5R

)∣∣∣
� ‖ f‖L

∫
6NB

|b(z)−m
6̃2R

(b)+m
6̃2R

(b)−mR(b)|
 (cB,6NrB)

(z)

+‖ f‖L
1

 (cB,6NrB)

∫
6NB

|mR(b)−m
6̃2R

(b)|d(z)

� ‖ f‖L
(5NB)

 (cB,5NrB)
+‖ f‖L

1
(62R)

∫
62R

|b(z)−m
6̃2R

(b)|d(z)

� ‖ f‖L ,

hence we obtain C4 � ‖ f‖L . Combining (14) and (15), we prove the Lemma 11. �

3. Proof of the Theorem 1

In order to prove Theorem 1, we first estimate that for R ∈ (0,) and  ∈ A
p ,

sup
t∈(0,R)

t p({x ∈ X : T b
 , ,q( f )(x) > t}) < . (16)

Fix x0 ∈ X . Take l ∈ (0,) be large enough such that supp( fi) is contained in
the ball B(x0, l) , then we have

sup
t∈(0,R)

t p({x ∈ B(x0,2l) : T b
 , ,q( f )(x) > t}) � Rp(B(x0,2l)) < . (17)

From Lemma 7 and a standard limit argument, without loss of generality, we can
suppose that b is bounded function. We note that, for any x ∈ X \B(x0,2l) and
y ∈ B(x0, l) , d(x,x0) ∼ d(x,y) . From (8), Minkowski inequality and (3), for any
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x ∈ X \B(x0,2l) , we observe that,

T b
 , ,q( f )(x) �

∫
X

| f (x)|
 (x,d(x,y))

|b(x)−b(y)|d(y)

�
‖ f‖L1()

 (x0,d(x,x0))

=
C∗

 (x0,d(x,x0))
, (18)

where C∗ is a positive constant just depending on f . Note that (X ) =  , thus for
x0 ∈ X ,

lim
r→

 (x0,r) � lim
r→

 (B(x0,r)) = .

Therefore, we easily see that for any t ∈ (0,) , there exists rt ∈ (0,) such that 1
t �

 (x0,rt). If there exists t ∈ (0,) such that for any r ∈ (0,) , C∗
t

�  (x0,r), then for

all t ∈ ( t ,) and r ∈ (0,) , C∗
t �  (x0,r). Let

t̂ := inf

{
t ∈ (0,) :

C∗
t

�  (x0,r) holds for any r ∈ (0,)
}

.

On the other hand, suppose that does not exist t ∈ (0,) such that for any r ∈ (0,) ,
C∗
t

�  (x0,r) , let t̂ = . In the case that t ∈ (0,) , and for any t ∈ ( t ,) and x ∈ X
satisfying

t <
C∗

 (x0,d(x,x0))
, (19)

we get that d(x,x0) = 0 and hence x = x0 . Therefore, for any t ∈ (0,] and t ∈ (0, t ) ,
there exists rt ∈ (0,) such that

 (x0,rt) � C∗
t

and  (x0,rt/2) <
C∗
t

. (20)

This indicates that for all x ∈X satisfying (19), we have d(x,x0) < rt . More than that,
notice that for all x ∈ X \B(x0,2l) ,

1
 (x0,d(x,x0))

� 1
 (x0, l)

.

This indicates that for t > C∗/ (x0, l) , there is no point x ∈ X \B(x0,2l) such that
T b
 , ,q( f )(x) > t .

Thus, by (18) , (2) , Lemma 6 with  ∈ A
p and (20), we conclude that if t �
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C∗/ (x0, l) , then

sup
t∈(0,)

t p
({

x ∈ X \B(x0,2l) : T b
 , ,q( f )(x) > t

})
= sup

t∈(0,C∗/ (x0,l)]
t p

({
x ∈ X \B(x0,2l) : T b

 , ,q( f )(x) > t
})

� sup
t∈(0,C∗/ (x0,l)]

t p
({

x ∈ X :
C∗

 (x0,d (x,x0))
> t

})
� sup

t∈(0,t ]
t p (B(x0,rt))+ sup

t∈(t ,C∗/ (x0,l)]
t p ({x0})

� 1+ sup
t∈(0,t ],rt∈(0,l]

t p (B(x0,rt))+ sup
t∈(0,t ],rt∈(l,)

t p (B(x0,rt))

� 1+ sup
t∈(0,t ],rt∈(l,)

t p (B(x0, l))
[
 (B(x0,5rt))
 (B(x0, l))

]p

� 1+u(B(x0, l))
[

1
 (B(x0, l))

]p

< .

Similarly, if t > C∗/ (x0, l) , we have

sup
t∈(0,)

t p
({

x ∈ X \B(x0,2l) : T b
 , ,q( f )(x) > t

})
< ,

which, along with (17) , implies (16).

From Lemma 9, Lemma 8, (13), Lemma 11 and Lemma 3, we have

sup
t>0

t
({

x ∈ X : T b
 , ,q( f )(x) > t

}) 1
p

� sup
t>0

t
({

x ∈ X : M ,
0,s1

(
T b
 , ,q( f )

)
(x) > t

}) 1
p

� sup
t>0

t
({

x ∈ X : M ,,�
0,s2

(
T b
 , ,q( f )

)
(x) > t

}) 1
p

� sup
t>0

t
({

x ∈ X : M ,,�
(
T b
 , ,q( f )

)
(x) > t

}) 1
p

� sup
t>0

t
({

x ∈ X : Mr, 5 
( f ) (x) > t

}) 1
p

� ‖ f‖Lp() ,

which completes the Theorem 1.
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