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THE CONTINUITY OF PSEUDO–DIFFERENTIAL OPERATORS ON

LOCAL VARIABLE HARDY SPACES AND THEIR DUAL SPACES

JIAN TAN ∗ , HONGBIN WANG AND FANGHUI LIAO

(Communicated by I. Perić)

Abstract. In this paper we establish the continuity of pseudo-differential operators with symbols
in S−1, on local variable Hardy spaces and their dual spaces. Precisely, we show that the pseudo-
differential operator maps continuously one local variable Hardy space into another one, maps
continuously one local variable Carleson measure spaces into another one and maps continuously
one variable Lebesgue spaces into one local variable Carleson measure spaces.

1. Introduction and statement of main results

The main purpose of this paper is to generalize the results due to Goldberg in [11]
to a large class of pseudo-differential operators with symbols in S−1, and obtain the
boundedness for such pseudo-differential operators on the local variable Hardy spaces
and their dual spaces.

The real-variable theory of Hardy spaces in R
n was initiated by Stein and Weiss

[29] and systematically developed by Fefferman and Stein [9]. The Hardy space Hp(0 <
p � 1) is a suitable substitute of the Lebesgue space Lp when studying the bounded-
ness of some classical operators. However, while they are well suited as functional
spaces for their applications to PDE’s with constant coefficients, the Hardy spaces are
not stable under multiplication by Schwartz class, a fact that seriously hinders their
role when it comes to PDE’s with variable coefficient. Thus, the theory of local Hardy
space hp plays an important role in various fields of analysis and partial differential
equations. In particular, pseudo-differential operators of order zero are bounded on lo-
cal Hardy spaces hp for 0 < p < 1, but they are not bounded on Hardy spaces Hp for
0 < p < 1 (see [11]). Now we come to the variable exponent counterpart. The vari-
able Hardy spaces theory was established by Nakai and Sawano ([22]), Cruz-Uribe
and Wang ([5]). The results concerning the boundedness of many classical opera-
tors on variable Hardy spaces have been obtained in recent years (see, for instance,
[5, 16, 22, 26, 38]). For more results on the variable Hardy spaces theory, we also refer
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to [30, 33, 35, 36, 37, 39]. Recently, the atomic decomposition of the local version of
variable Hardy spaces hp(·) was studied in [31, 34]. Meanwhile, some boundedness
results of linear and multi-linear pseudo-differential operators of order zero on the local
variable Hardy spaces were also established in the work.

Before we state the main results of this paper, first we recall the definition of
variable Lebesgue spaces. Note that the variable exponent function spaces, such as the
variable Lebesgue spaces and the variable Sobolev spaces, were studied by a substantial
number of researchers (see, for instance, [2, 3, 8, 20]). For any Lebesgue measurable
function p(·) : R

n → (0,] and for any measurable subset E ⊂R
n , we denote p−(E) =

infx∈E p(x) and p+(E) = supx∈E p(x). Especially, we denote p− = p−(Rn) , p+ =
p+(Rn) and p− = min{p−,1} . Let p(·) : R

n → (0,) be a measurable function with
0 < p− � p+ <  and P0 be the set of all these p(·) . Let P denote the set of all
measurable functions p(·) : R

n → [1,) such that 1 < p− � p+ < .

DEFINITION 1. Let p(·) : R
n → (0,] be a Lebesgue measurable function. The

variable Lebesgue space Lp(·) consisits of all Lebesgue measurable functions f , for
which the quantity

∫
Rn | f (x)|p(x)dx is finite for some  > 0 and

‖ f‖Lp(·) = inf

{
 > 0 :

∫
Rn

( | f (x)|


)p(x)

dx � 1

}
.

The variable Lebesgue space was first introduced by Orlicz [24] in 1931. Two
decades later, Nakano [23] first systematically studied modular function spaces which
include the variable Lebesgue spaces as specific examples. The modern development,
however, started with the paper [20] of Kováčik and Rákosnı́k in 1991. As a special
case of the theory of Nakano and Luxemberg, we see that Lp(·) is a quasi-normed
space. Especially, when p− � 1, Lp(·) is a Banach space. Recall the following class
of exponent function in [6]. Let B be the set of p(·) ∈ P such that the Hardy–
Littlewood maximal operator M is bounded on Lp(·) . An important subset of B is LH
condition. In the study of variable exponent function spaces it is common to assume
that the exponent function p(·) satisfies LH condition. We say that p(·) ∈ LH , if p(·)
satisfies

|p(x)− p(y)|� C
log(e+1/|x− y|) , |x− y|< 1/2

and there exists p ∈ R so that

|p(x)− p| � C
log(|x|+ e)

, ∀x ∈ R
n.

It is well known that p(·) ∈ B if p(·) ∈ P ∩LH. Moreover, example shows that
the above LH conditions are necessary in certain sense, see Pick and Ru̇žička ([25])
for more details. Next we also recall the definition of local Hardy spaces with variable
exponents hp(·) as follows.
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DEFINITION 2. ([22]) Let f ∈ S ′ , p(·) ∈ P0 ∩LH and t(x) = t−n(t−1x) ,
x ∈ R

n . Denote by M the grand maximal operator given by Mloc f (x) = sup{|t ∗
f (x)| : 0 < t < 1, ∈ FN} for any fixed large integer N , where FN = { ∈ S :∫
(x)dx = 1,| |�N sup(1+ |x|)N|(x)|� 1} . The local Hardy space with variable

exponent hp(·) is the set of all f ∈ S ′ for which the quantity

‖ f‖hp(·) = ‖Mloc f‖Lp(·) < .

We recall the Hörmander class of pseudo-differential operators [18]. Suppose that
m ∈ R and  ,  ∈ [0,1] . Let T be a classical pseudo-differential operator of the form

T ( f )(x) =
∫

Rn
(x, ) f̂ ( )e2 ix·d , f ∈ S ,

where  ∈ Sm
 , , that is, (x, ) is a smooth function for (x, ) ∈ R

n×R
n and

|x  (x, )| � C(1+ | |)m− | |+ | |. (1)

We say that a cube Q ⊂ R
n is dyadic if Q = Qjk = {x = (x1,x2, . . . ,xn) ∈ R

n :
2− jki � xi < 2− j(ki + 1), i = 1,2, . . . ,n} for some j ∈ Z , some fixed positive large
integer N and k = (k1,k2, . . . ,kn) ∈ Z

n . Denote by �(Q) = 2− j the side length of
Q = Qjk . Denote D j = {Q : Q = Qjk} and D = ∪ j∈ND j . Denote by zQ = 2− jk the
left lower corner of Q and by xQ is any point in Q when Q = Qjk . For any function
 defined on R

n, j ∈ Z , and Q = Qjk , set

 j(x) = 2 jn(2 jx), Q(x) = |Q|1/2 j(x− zQ).

DEFINITION 3. Let 0 < p− � p+ � 1 and 0, ∈ S (Rn) with

supp̂0 ⊆ { ∈ R
n : | | � 2}; ̂0( ) = 1, if | | � 1; (2)

supp̂ ⊆ { ∈ R
n :

1
2

� | | � 2}; (3)

and

|̂0( )|2 +



j=1

|̂(2− j )|2 = 1, for all  ∈ R
n. (4)

The local variable Carleson measure space cmop(·)(Rn) is the collection of all f ∈ S ′
fulfilling

‖ f‖cmop(·) := sup
P∈D

{
|P|

‖P‖2
p(·)

∫
P

j∈N


Q∈D j , Q⊂P

|Q|−1| 〈 f ,Q〉 |2Q(x)dx

}1/2

< .

The main goal of this paper is to prove the following results:
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THEOREM 1. Let  ∈ [0,n) , 0 �  < 1 and p(·) ∈ LH ∩P0 and p(·) ∈P0 be
Lebesgue measure functions satisfying

1
p(x)

− 1
q(x)

=

n

, x ∈ R
n. (5)

Then T with  ∈ S−1, maps continuously hp(·) to hq(·) .

THEOREM 2. Let  ∈ [0,n) , 0 �  < 1 and p(·) ∈ LH ∩P0 and p(·) ∈P0 be
Lebesgue measure functions satisfying

1
p(x)

− 1
q(x)

=

n

, x ∈ R
n. (6)

For 0 < q− � q+ � 1 , then T with  ∈ S−1, maps continuously cmoq(·) to cmop(·) .
For p+ � 1 < q− � q+ <  , then T with  ∈ S−1, maps continuously Lq(·)′ to

cmop(·) .

REMARK 1. It follows from the (1) that S−1
1, ⊂ S−1, when 1 �  . Thus, it

is obviously that under the above assumptions any T with S−1
1, (1 � ) is also

(hp(·),hq(·))-bounded, (cmoq(·),cmop(·))-bounded or (Lq(·)′ ,cmop(·))-bounded. More-
over, the result is optimal. To see this, even p(·) and q(·) are constant functions, we
know that from [17, Proposition 1.1] if 1 <  there exists T with  ∈ S−1, which is
not continuous from hp to hq .

Throughout this paper, C or c will denote a positive constant that may vary at
each occurrence but is independent to the essential variables, and A ∼ B means that
there are constants C1 > 0 and C2 > 0 independent of the essential variables such that
C1B � A � C2B . Given a measurable set S ⊂ R

n , |S| denotes the Lebesgue measure
and S means the characteristic function. For a cube Q , let Q∗ denote with the same
center and 2

√
n its side length. The symbols S and S ′ denote the class of Schwartz

functions and tempered functions, respectively. As usual, for a function  on R
n

and t(x) = t−n(t−1x) . We also use the notations j∧ j′ = min{ j, j′} and j ∨ j′ =
max{ j, j′} . We write N = {0,1,2, · · ·} .

2. Proof of Theorem 1

In this section, we will show that the continuity of pseudo-differential operators
in the class OpS−1, for 0 �  < 1 on local Hardy spaces with variable exponents by
applying the atomic decomposition theory. Atomic decomposition is a significant tool
in harmonic analysis and wavelet analysis for the study of function spaces and the oper-
ators acting on these spaces. In 1979, Goldberg ([11]) introduced the atomic decompo-
sition of local Hardy spaces. The atomic decomposition of variable Hardy spaces was
established independently in [5, 22]. By using local grand maximal characterization
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we recall the new atomic decompositions for local Hardy spaces with variable expo-
nents hp(·) in [34]. In what follows, we recall the definitions of local (p(·),q)-atom
and (p(·),q)-block for hp(·) .

DEFINITION 4. Let p(·) : R
n → (0,) , p(·)∈P0 and 1 < q � . Fix an integer

d � dp(·) ≡ min{d ∈ N : p−(n+d +1) > n} . Define a local (p(·),q)-atom of hp(·) to
be a function a of compact support which has the additional properties that ‖a‖Lq �

|Q|1/q

‖Q‖Lp(·)(Rn)
and

∫
Rn a(x)xdx = 0 for all ||� d and |Q|� 1, where Q is the smallest

cube containing the support of a .

DEFINITION 5. Let p(·) : R
n → (0,) , p(·) ∈ P0 and 1 < q �  . Define a

(p(·),q)-block of hp(·) to be a function b of compact support which has the additional

properties that ‖b‖Lq � |P|1/q

‖P‖Lp(·)(Rn)
and |P| > 1, where P is the smallest cube contain-

ing the support of b .

For convenience, the set of all such pairs (a,Q) will be denoted by A (p(·),q)
and the set of all such pairs (b,P) will be denoted by B(p(·),q) .

For sequences of scalars { j} and cubes {Qj} , define that

As({ j}j=1,{Qj}j=1) =

∥∥∥∥∥∥
{

j

(
| j|Qj

‖Qj‖Lp(·)

)s} 1
s
∥∥∥∥∥∥

Lp(·)

,

and for sequences of scalars { j} and cubes {Pj} ,

Bs({ j}j=1,{Pj}j=1) =

∥∥∥∥∥∥
{

j

(
| j|Pj

‖Pj‖Lp(·)

)s} 1
s
∥∥∥∥∥∥

Lp(·)

.

When s = p− , we denote

Ap−({ j}j=1,{Qj}j=1) = A ({ j}j=1,{Qj}j=1)

and
Bp−({ j}j=1,{Pj}j=1) = B({ j}j=1,{Pj}j=1).

Now we recall the definition of atomic local Hardy space with variable exponent

hp(·),q
atom .

DEFINITION 6. Let 1 < q �  and p(·) ∈ P0 ∩LH . The function space hp(·),q
atom

is defined to be the set of all distributions f ∈ S ′ which can be written as f =
 j  ja j + j  jb j in S ′ , where {a j,Qj} ⊂A (p(·),q) and {b j,Pj}⊂B(p(·),q) with
the quantities

A ({ j}j=1,{Qj}j=1)+B({ j}j=1,{Pj}j=1) < .
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One define

‖ f‖
hp(·),q
atom

≡ A ({ j}j=1,{Qj}j=1)+B({ j}j=1,{Pj}j=1).

The atomic decomposition for local variable Hardy spaces was established in [31,
34].

PROPOSITION 1. Let 1 < q �  and p(·) ∈ P0∩LH . Then

hp(·) = hp(·),
atom .

Especially, if f ∈ hp(·) and 0 < s < , there are {a j,Qj} ⊂ A (p(·,q)) and {b j,Pj} ⊂
B(p(·,q)) with

As({ j}j=1,{Qj}j=1)+Bs({ j}j=1,{Pj}j=1) � C‖ f‖hp(·) ,

such that f =  j  ja j + j  jb j , where the series converges to f in both hp(·) and Lq

norms.

To prove Theorem 1, we also need the Fefferman–Stein vector-valued fractional
maximal inequality.

PROPOSITION 2. [3] Given 0 � < n, 1 < r < and p(·)∈ LH∩P0 with 1 <
p− � p+ < n

 . Define q(x) by 1
p(x) − 1

q(x) = 
n , for any x ∈ R

n . Then for f = { fi}i∈Z

and M ( f ) = {M( fi)}i∈Z ,

‖‖M f )‖lq‖Lq(·) � C‖‖ f ||lq‖Lp(·) .

The following result provides the (Lp,Lq)-boundedness of pseudo-differential op-
erators with  ∈ S−1, .

PROPOSITION 3. [1] Let T is a pseudo-differential operator with  ∈ S−1, and

0 �  < 1 . Then T maps continuously Lp into Lq for 1
p − 1

q = 
n and 1 < p � q < .

The following propositions also play a key role in the proof of the main result.

PROPOSITION 4. [4, 34] Let p(·) ∈ LH ∩P0. Suppose that we are given a se-
quence of cubes {Qj}j=1 and a sequence of non-negative functions {Fj}j=1 . Then for
any q such that p+ < q <  we have∥∥∥∥∥ 


j=1

QjFj

∥∥∥∥∥
Lp(·)

� C

∥∥∥∥∥ 


j=1

(
1

|Qj|
∫

Qj

Fq
j (y)dy

) 1
q

Qj

∥∥∥∥∥
Lp(·)

.

PROPOSITION 5. [26] Given 0 �  < n, suppose (p·) ∈ LH ∩P0 . Define q(·)
by 1

p(·) − 1
q(·) = 

n . Then for any countable collection of cubes Qk and k > 0 ,∥∥∥∥∥j  j|Qj| n Qj

∥∥∥∥∥
Lq(·)

�
∥∥∥∥∥j  jQj

∥∥∥∥∥
Lp(·)

.
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We are now ready to show Theorem 1.

Proof of Theorem 1. By applying the atomic decomposition of local Hardy space
hp(·) in Proposition 1, for each f ∈ hp(·) , 0 < s < , f admits an atomic decomposition:
There exists a sequence of nonnegative numbers  j ,  j , cubes Qj satisfying

As({ j}j=1,{Qj}j=1)+Bs({ j}j=1,{Qj}j=1) � C‖ f‖hp(·) ,

for {a j,Qj} ⊂ A (p(·,q)) and {b j,Qj} ⊂ B(p(·,q)) , and f can be decomposed as

f = 
j∈N

 ja j + 
j∈N

 jb j =: 
j∈N

 jc j in hp(·)∩Lp++1,

where  j =  j and c j = a j for |Qj| � 1, and  j =  j and c j = b j for |Qj| > 1.

Since T maps continuously Lp0 into Lq0 , where 1 < p0 � q0 � 2 and 1
p0
− 1

q0
=


n . Then we can obtain

|MlocT ( f )(x)| �
j

| j|||MlocT (c j)(x)|. (7)

For x ∈ R
n , we can split (7) into two terms, that is,

|MlocT ( f )(x)| �
j
| j|MlocT (c j)(x)|Q∗

j
+

j
| j||MlocT (c j)(x)|Q∗,c

j
(x)

=: I + II.

First we will show that

‖I‖Lq(·) � C‖ f‖hp(·) . (8)

Now fix atoms c j supported in cubes Qj . By Proposition 3, we get that T maps
continuously Lp0 into Lq0 , where ( n

n− ∨q+) � q0 < and 1
p0
− 1

q0
= 

n . Meanwhile,
Mloc is bounded on Ls for all 1 < s �  . Then we have

(
1

|Qj|
∫

Qj

|MlocT (c j)(x)|q0dx

)1/q0

� 1

|Qj|1/q0
‖MlocT (c j)‖Lq0

� C
1

|Qj|1/q0
‖c j‖Lp0 � C|Qj| n 1

‖Qj‖p(·)

� C
1

|Qj|1/q0
‖c j‖Lp0 � C|Q∗

j |

n

1
‖Qj‖p(·)

.

(9)
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By (9), Proposition 4 and Proposition 5, we get that

‖I‖Lq(·) �
∥∥∥∥∥j | j||MlocT (c j)|Q∗

j

∥∥∥∥∥
Lq(·)

� C

∥∥∥∥∥j | j|
(

1
|Qj|

∫
Qj

|MlocT (c j)(x)|q0dx

)1/q0

Q∗
j

∥∥∥∥∥
Lq(·)

� C

∥∥∥∥∥j | j||Q∗
j |


n

1
‖Qj‖p(·)

Q∗
j

∥∥∥∥∥
Lq(·)

� C

∥∥∥∥∥j | j|
‖Qj‖p(·)

Q∗
j

∥∥∥∥∥
Lp(·)

.

We just need to consider the case p− � 1. The other case p− > 1 is obvious due
to hp(·) ∼ Lp(·) (p− > 1) . Applying Proposition 2 yields that

∥∥∥∥∥j | j|‖Qj‖−1
Lp(·)Q∗

j

∥∥∥∥∥
Lp(·)

� C

∥∥∥∥∥∥
(

j
| j|p−‖Qj‖−p−

Lp(·) MQj

)1/p−
∥∥∥∥∥∥

Lp(·)

� C

∥∥∥∥∥∥∥
⎛⎝

j

(
| j|

Qj

‖Qj‖Lp(·)

)p−
⎞⎠

1
p−
∥∥∥∥∥∥∥

Lp(·)

� C‖ f‖hp(·) .

Now we estimate the term II . We divide in two case. When |Qj| � 1, c j = a j is
an (p(·),q)-atom. Then c j has zero vanishing moment up to the order d . We denote
T 
 the composition operator a →  ∗T (c j) with the kernel K for some  ∈ S . By

Remark 3.1 in [17], if M ∈ N and M− + n > 0 then for the multi-index , the
kernel K satisfies

sup
| |+| |=M

|x y K(x,y)| � C
1

|x− y|M−+n , x �= y. (10)

Furthermore, there exists L0 ∈ Z+

sup
|x−y|�1/2

|x− y|L|x y K (x,y)| � C (11)
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for each L > L0 . By using the Taylor expansion we get

T 
 (c j)(x) =

∫
Qj

K(x,y)c j(y)dy

=
∫

Qj

[K(x,y)−Pd
z j
(x,y)]c j(y)dy

=
∫

Qj


||=d+1

( y K )(x, )
(y− z j)

!
c j(y)dy

for some  on the line segment joining y to z j , where Pd
z j
(x,y) is the Taylor polynomial

of K(x,y) . Since x ∈ (Q∗
j)

c , we get that |x−  |� 1
2 |x− z j| and |y− z j| � �(Q) .

Applying the estimate for the kernel K in (10) and the size condition for the
(p(·),q)-atoms, we have

∫
Qj


||=d+1

|( y K)(x, )| |y− z j|
!

|c j(y)|dy

� C
∫

Qj

|y− z j|d+1

(|x−  |)n+d+1−

� C‖Qj‖−1
Lp(·)

|Qj|(d+1)/n+1

|x− z j|n+d+1−

� C
|Qj|1+ d+1

n

‖Qj‖Lp(·) (|x− z j|)n+d+1−

� C
|Qj|1+ d+1

n

‖Qj‖Lp(·) (|x− z j|+ �(Qj))n+d+1−

uniformly in  and x ∈ Q∗,c
j .

When |Qj| � 1, c j = b j is an (p(·),q)-block. In this case, we have |x− y| ∼
|x− z j| and |x− y| � 1/2 where x ∈ Q∗,c

j and y ∈ Qj . By applying the size condition
of K in (11), for sufficiently large L > L0 and x ∈ Q∗,c

j we obtain that

∣∣T 
 (c j)(x)

∣∣= ∣∣∣∣∫
Qj

K (x,y)c j(y)dy

∣∣∣∣
�
∫

Qj

|K(x,y)||c j(y)|dy

� C
|Qj|

‖Qj‖p(·)|x− z j|L

� C
|Qj|1+ d+1

n

‖Qj‖p(·)(|x− z j|+ �(Qj))L .
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For convenience, we can choose L = n+d+1− . Then we obtain

‖II‖Lq(·) � C

∥∥∥∥∥j | j|
|Qj|1+ d+1

n Q∗,c
j

‖Qj‖Lp(·)(|x− z j|+ �(Qj))n+d+1−

∥∥∥∥∥
Lq(·)

.

Denote  = n+d+1
n and choose d such that q− > 1. Thus,

‖II‖Lq(·) � C

∥∥∥∥∥j | j|
(MQj )



‖Qj‖Lp(·)

∥∥∥∥∥
Lq(·)

� C

∥∥∥∥∥∥
(

j

| j|
Qj

‖Qj‖Lp(·)

) 1

∥∥∥∥∥∥


L p(·)

� C‖ f‖hp(·).

Therefore, we have completed the proof of Theorem 1. �

3. Proof of Theorem 2

In this section, we will discuss the boundedness of the pseudo-differential opera-
tors with symbols in S−1, on the duals of local variable Hardy spaces. Namely, we will
show that the pseudo-differential operator maps continuously one local variable Car-
leson measure spaces into another one and maps continuously one variable Lebesgue
spaces into one local variable Carleson measure spaces. To prove it, first we see that
the local variable Carleson measure space cmop(·) is the dual space of the local variable
Hardy space hp(·) . See [12, 13, 14, 15, 21] for more details on some classical constant
Carleson measure spaces.

PROPOSITION 6. Suppose that p(·) ∈ LH , 0 < p− � p+ � 1 . The dual space of
hp(·) is cmop(·) in the following sense.

(1) For g ∈ cmop(·) , the linear functional lg , defined initially on S , extends to a
continuous linear functional on hp(·) with ‖lg‖ � C‖g‖cmop(·) .

(2) Conversely, every continuous linear functional l on hp(·) satisfies l = lg for
some g ∈ cmop(·) with ‖g‖cmop(·) � C‖l‖ .

The proof of Proposition 6 follows a standard procedure. For the homogeneous
case, see [32]. We only point out the difference when we consider the inhomogeneous
analogues. The main difference is that instead of using all cubes Q ∈ R

n , we only use
the cubes Q with �(Q) � 1, and the functions 0 in (2) corresponding to the cubes
Q with �(Q) = 1 are slightly different. Then applying similar argument as the proof
of [32, Theorem 3.1] with using the inhomogeneous Calderón identity and inhomoge-
neous sequence spaces introduced in [10, Section 12], we can obtain the desired result.

Secondly, the following proposition on the weak density property for cmop(·) plays
an important role in the proof of the main results.
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PROPOSITION 7. Let p(·) ∈ LH and 0 < p− � p+ � 1 . cmop(·)∩L2 is dense in
cmop(·) in the sense of weak topology. More precisely, for any f ∈ cmop(·) , there exist
a sequence { fm} ∈ cmop(·)∩L2 such that

lim
m→

〈
fm,g

〉
=
〈
f ,g
〉
, for g ∈ S

and

‖ fm‖cmop(·) � C‖ f‖cmop(·) , for f ∈ cmop(·).

Proof. Suppose that f ∈ cmop(·) . Then by the inhomogeneous Calderón identity
[31, Theorem 1.1],

f (x) = 
j∈N


Q∈D

|Q|( j ∗ f )(xQ) j(x− xQ), (12)

where the series converges in L2, S and S ′ .
The partial sum of the identity will be denoted by fm and it is given by

fm(x) = 
0� j�m


Q∈D

|Q|( j ∗ f )(xQ) j(x− xQ).

First we see that fm ∈ L2 . In fact, we only need to observe that for any fixed j and any
given integer M > 0 we have∣∣∣

Q

|Q|( j ∗ f )(xQ)( j)(x− xQ)
∣∣∣� C2− j(1+ |x|)−M.

Next we need to prove that fm ∈ cmop(·) . That is, we need to prove that for any P ∈D ,⎧⎨⎩ |P|
‖P‖2

p(·)

∫
P

j′∈N


Q′∈D j′ , Q′⊂P

|Q′|−1|〈 fm,Q′
〉 |2Q′(x)dx

⎫⎬⎭
1/2

� C‖ f‖cmop(·) .

Now we recall the classical almost orthogonality estimates. For any given positive
integers L1 and L2 , we have

| j ∗ j′(x)| � C
2−| j− j′|L1 2( j∧ j′)n

(1+2( j∧ j′)|x|)L2
.

Then by almost orthogonality estimates and repeating the similar argument in the
proof of [32, Theorem 2.7] (also see [7, Lemma 3.2]), we can obtain that

‖ fm‖cmop(·) � C‖ f‖cmop(·) .
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Thus, by duality for any g ∈ S , we have

〈
f − fm,g

〉
=
〈

j>m


Q∈D j

|Q|( j ∗ f )(xQ) j(x− xQ),g
〉

=
〈

f , 
j>m


Q∈D j

|Q|( j ∗ g)(xQ) j(x− xQ)
〉

� C‖ f‖cmop(·)

∥∥∥∥ 
j>m


Q∈D j

|Q|( j ∗ g)(xQ) j(x− xQ)
∥∥∥∥

hp(·)

� C‖ f‖cmop(·)‖g−gm‖hp(·) ,

which implies that 〈 f − fm,g〉 tends to 0 as m→ for g∈S . Then by the fact that S
is dense in hp(·) . Thus, fm converges to f in the sense of weak topology. We complete
the proof of the Proposition 7. �

We are now turning to the proof of Theorem 2.

Proof of Theorem 2. Given f ∈ cmoq(·) , by applying Proposition 7, there exists a
sequence { fm} ⊂ cmoq(·)∩L2 with

‖ fm‖cmoq(·) � C‖ f‖cmoq(·)

such that fm converges to f in the weak sense. Since S−1, ⊂ S0
1, , we obtain that T

with  ∈ S−1, is also a bounded operator from L2 into L2 . We claim that 〈T fm,g〉 is

convergent as m tends to infinity. To prove it, we have
〈
T ( fi − f j),g

〉
=
〈
fi − f j,T ∗

 (g)
〉
,

where fi − f j and g belong to L2(Rn) and where T ∗
 is the disjoint of T . Note that

T ∗
 = T∗ satisfies the same conditions of T . For more information, we refer to [27,

Theorem 5.13], [19, Theorem 4.1] and [28, p. 259]. Hence, applying Theorem 1 yields
that T ∗

 g ∈ hq(·)∩L2 and that〈
T ( fi − f j),g

〉
=
〈
fi − f j,T

∗
 (g)

〉→ 0

as i, j tend to infinity. Thus, for f ∈ cmoq(·) and g ∈ hp(·)∩L2 , we can define

〈T f ,g〉 = lim
m→

〈T fm,g〉 , fm ∈ hq(·)∩L2,

which implies that T f is well defined on cmop(·) and

〈T f ,g〉 = lim
m→

〈T fm,g〉

for any g ∈ hp(·)∩L2 and fm ∈ cmoq(·)∩L2 . Now we show that for f ∈ cmoq(·)∩L2,
T is a bounded operator from cmoq(·) to cmop(·) , when 0 < q− � q+ � 1. The adjoint
operator T ∗

 is defined by

〈T ∗
 f ,g〉 = 〈 f ,Tg〉 , f ,g ∈ S .
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From Theorem 1, we know that T ∗
 is also a bounded operator from hp(·) to hq(·) . Then

we get that

| 〈T f ,g〉 | = | 〈 f ,T ∗
 g〉 | � ‖ f‖cmoq(·)‖T ∗

 g‖hq(·) � C‖ f‖cmoq(·)‖g‖hp(·).

Namely, for each f ∈ cmoq(·)∩L2 , l f (g) = 〈T f ,g〉 defines a continuous linear func-
tional on hp(·)∩L2 . By the fact that hp(·)∩L2 is dense in hp(·) (see [31, Corollary 1.1]),
l f can be extended to a continuous linear functional on hp(·) with ‖Lf ‖ � C‖ f‖cmoq(·) .

On the other hand, by Proposition 6, there exists h∈ cmop(·) such that 〈T f ,g〉= 〈h,g〉
for g ∈ hp(·)∩L2 and ‖h‖cmop(·) � C‖Lf ‖. Then for all f ∈ cmop(·)∩L2

‖T f‖cmop(·) = sup
P∈D

{
|P|

‖P‖2
p(·)

∫
P

j∈N


Q∈D j , Q⊂P

|Q|−1| 〈T f ,Q〉 |2Q(x)dx

}1/2

= sup
P∈D

{
|P|

‖P‖2
p(·)

∫
P

j∈N


Q∈D j , Q⊂P

|Q|−1| 〈h,Q〉 |2Q(x)dx

}1/2

= ‖h‖cmop(·) � C‖l f ‖ � C‖ f‖cmoq(·) .

Moreover, by Fatou’s lemma, for each dyadic cube P ∈ D ,{
|P|

‖P‖2
p(·)

∫
P

j∈N


Q∈D j , Q⊂P

|Q|−1| 〈T f ,Q〉 |2Q(x)dx

}1/2

� liminf
m→

{
|P|

‖P‖2
p(·)

∫
P

j∈N


Q∈D j , Q⊂P

|Q|−1| 〈T fm,Q〉 |2Q(x)dx

}1/2

.

Therefore, for any f ∈ cmoq(·) we get that

‖T f‖cmop(·) � liminf
m→

‖T fm‖cmop(·) � C‖ fm‖cmoq(·) � C‖ f‖cmoq(·) .

Thus, T with  ∈ S−1, maps continuously cmoq(·) to cmop(·) .
Next we prove the other part of Theorem 2. Since q ∈ P , it is well-known that

hq(·) = Lq(·), and that the dual of Lq(·) is Lq′(·) . By repeating the similar argument,
we obtain that T can be extended to be a bounded operator from Lq′(·) to cmop(·) .
Here we only need to show the difference. First we observe that T is a bounded
operator from Lq′(·) to cmop(·) for f ∈ Lq′(·) ∩L2 for 1 < q− � q+ <  . By duality,
for p+ � 1 < q− � q+ <  we have

| 〈T f ,g〉 | = | 〈 f ,T ∗
 g〉 | � ‖ f‖Lq′(·)‖T ∗

 g‖Lq(·) � C‖ f‖Lq′(·)‖g‖hp(·),

which means that for each f ∈ Lq′(·)∩L2 , l f (g) = 〈T f ,g〉 is a continuous linear func-
tional on hp(·)∩L2 . Similarly, l f can be extended to a continuous linear functional on
hp(·) with

‖l f ‖ � C‖ f‖Lq′(·) .
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Meanwhile, there exists h ∈ cmop(·) such that 〈T f ,g〉 = 〈h,g〉 for g ∈ hp(·)∩L2 and
‖h‖cmop(·) � C‖l f ‖. Then we see that

‖T f‖cmop(·) = ‖h‖cmop(·) � C‖l f ‖ � C‖ f‖Lq′(·) .

Hence, T with  ∈ S−1, maps continuously Lq(·)′(Rn) to cmop(·)(Rn) , for p+ � 1 <

q− � q+ <  . We completed the proof of Theorem 2. �

RE F ER EN C ES
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