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OF SPECIAL TRIGONOMETRIC INTEGRALS
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(Communicated by J. Pečarić)

Abstract. Necessary and sufficient conditions for the uniform convergence of trigonometric
Fourier integrals are well-established when admissible monotone or general monotone functions
are considered. In this paper, we generalize these main results by giving such conditions for the
uniform convergence of sine and cosine integrals

∫ ∞
0 f1(x)sin (uxp)dx and

∫ ∞
0 f2(x)cos (uxp)dx

in case of admissible general monotone functions f1 and f2 . Moreover, we give necessary
and sufficient conditions for the Lq -integrability with the power weights of these integrals when
non-negative functions f1 and f2 belong to the class GMpθ .

1. Preliminaries on uniform convergence

Let f1, f2 : R+ → C be measurable functions in Lebesgue’s sense and p > 0,
where R+ = (0,∞) . We consider the uniform convergence of the sine and the cosine
integrals

F1(p,u) := F1( f1(x); p,u) =
∞∫

0

f1(x)sin (uxp)dx, (1.1)

F2(p,u) := F2( f2(x); p,u) =
∞∫

0

f2(x)cos(uxp)dx (1.2)

in u ∈ R+ = [0,∞) , where we mean the uniform convergence of

S1(p,b,u) := S1( f1(x); p,b,u) =
b∫

0

f1(x)sin (uxp)dx, b → ∞,

S2(p,b,u) := S2( f1(x); p,b,u) =
b∫

0

f2(x)cos(uxp)dx, b → ∞,
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respectively.
We recall that the uniform convergence of the sine and the cosine integrals

F1(1,u) =
∞∫

0

f1(x)sin (ux)dx, (1.3)

F2(1,u) =
∞∫

0

f2(x)cos(ux)dx (1.4)

in u ∈ R+ has been studied by many authors, see e.g. [2, 3, 9, 16].
Throughout the paper, we deal with functions f1 and f2 defined on R+ , of

bounded variation on R+ , vanishing at infinity, and such that xp f1(x) ∈ L1([0,1]) for
p > 0 and f2 (x) ∈ L1([0,1]) . We will denote the above presumptions in the following
way: f1 ∈ Φp (p > 0) and f2 ∈ Ψ , respectively. It is clear that Ψ ⊂ Φp1 ⊂ Φp2 for
0 < p1 < p2 . Then local integrability of f1(x)sin (uxp) and f2(x)cos(uxp) are ensured.

It is clear that for p > 0 and f1 ∈ Φp or f2 ∈ Ψ we have

F1( f1(x); p,u) =
∞∫

0

1
p
x1/p−1 f1(x1/p)sin (ux)dx = F1

(
1
p x1/p−1 f1(x1/p);1,u

)
(1.5)

or

F2( f2(x); p,u) = F2

(
1
p x1/p−1 f2(x1/p);1,u

)
, (1.6)

respectively.

DEFINITION 1.1. ([3, 12]) Suppose that f : R+ →C is a function locally of boun-
ded variation on R+ . We say that f is general monotone with majorant β , or shortly,
f ∈ GM(β ) , if there exist positive constants C , A and a function β : R+ → R+ such
that

2x∫
x

|d f (t)| � Cβ (x)

for all x > A .

If we consider majorant 0β (x) = | f (x)| , then class GM(0β ) contains M , the class
of non-negative, monotone non-increasing functions (see [14, 15]).

In case of

1β (x) =
1
x

cx∫
x/c

| f (t)|dt, (x ∈ R+)

functions from GM(1β ) = MVBVF are called mean value bounded variation func-
tions, where c > 1 (see [13]).
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There are several intermediate classes that have been considered in various publi-
cations. Further if we choose

2β (x) =
1
x

sup
a�B(x)

2a∫
a

| f (t)|dt, (x ∈ R+)

class GM(2β ) = SBVF2 consists of supremum bounded variation functions of second
type, where B is a positive non-decreasing function such that B(x) → ∞ as x → ∞ .
Note that M � GM(0β ) � GM(1β ) � GM(2β ) (see [9]).

We recall the main results regarding the uniform convergence of (1.3) and (1.4)
from [3].

THEOREM 1.1. ([3, Theorem 3]) Suppose that a function f1 : R+ → C belongs
to Φ1 .

(i) If f1 ∈ GM(β ) and xβ (x) → 0 as x → ∞ , or equivalently,

x

2x∫
x

|d f1(t)| → 0 as x → ∞, (1.7)

then the integral (1.3) converges uniformly in u ∈ R+ and

‖F1(1)−S1(1,a)‖∞ � Cs max
x�a/2

⎛
⎝x

2x∫
x

|d f1(t)|
⎞
⎠ . (1.8)

(ii) Let a non-negative function f1 satisfy

f1(x) � C
x

max
a�x/c

2a∫
a

f1(t)dt for some c > 1. (1.9)

Then the uniform convergence of the integral (1.3) implies

x f1(x) → 0 as x → ∞. (1.10)

THEOREM 1.2. ([3, Theorem 2]) Suppose that a function f2 : R+ → C belongs
to Ψ.

(i) If f2 � 0 or f2 ∈ GM(β ) , where xβ (x) → 0 as x → ∞ , or equivalently,

x

2x∫
x

|d f2(t)| → 0 as x → ∞, (1.11)

and
∞∫

0

f2(x)dx converges, (1.12)
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then the integral (1.4) converges uniformly in u ∈ R+ and

‖F2(1)−S2(1,a)‖∞ � max
x>a

∣∣∣∣∣∣
x∫

a

f2(t)dt

∣∣∣∣∣∣+Cc max
x�a/2

⎛
⎝x

2x∫
x

|d f2(t)|
⎞
⎠ . (1.13)

(ii) If f2 � 0 or f2 ∈ GM(β ) , where xβ (x) → 0 as x → ∞ and the integral (1.4)
converges uniformly in u ∈ R+ , then (1.12) holds.

Using the above theorems, one can obtain an assumption for the uniform conver-
gence of the integrals (1.3) and (1.4) for certain classes of general monotone functions,
e.g. GM(2β ) .

THEOREM 1.3. ([9, Theorem 2.6]) Assume f1 : R+ → C belongs to the class
GM(2β )∩Φ1 .

(i) If (1.10) holds, then the integral (1.3) converges uniformly in u ∈ R+ .
(ii) Conversely, if f1 � 0 and (1.3) converges uniformly in u, then (1.10) is satis-

fied.

THEOREM 1.4. ([10, Theorem 1.3]) Assume f2 : R+ → C belongs to the class
GM(2β )∩Ψ .

(i) If (1.12) and
x f2(x) → 0 as x → ∞ (1.14)

hold, then the integral (1.4) converges uniformly in u ∈ R+ .
(ii) Conversely, if f2 � 0 and (1.4) converges uniformly in u, then (1.12) and

(1.14) are satisfied.

In [2], it is proved that the non-negativity assumption can be removed from Theo-
rem 1.3 in case of the class GM(1β ) .

THEOREM 1.5. ([2, Theorem 3.3]) Assume f1 : R+ → R belongs to the class
GM(1β )∩Φ1 .Then, a necessary and sufficient condition for the sine integral (1.3) to
converge uniformly in u ∈ R+ is (1.10).

The proof of [2, Theorem 3.3] is omitted because combining the proofs of [2,
Theorem 3.1] and [6, Theorem 3.1] gives the required result. By analyzing the proofs
of these theorems, and noting

cosξ t � 1√
2

for ξ = ξ (x) =
π

16x
, t ∈ [x,4x]

regarding [2, Theorem 3.1] and

cosξ t � 1√
2

for ξ = ξ (x) =
π

4λx
, t ∈

[ x
λ

,λx
]

regarding [6, Theorem 3.1], we can deduce the following:
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THEOREM 1.6. Assume f2 : R+ → R belongs to class GM(1β )∩Ψ . Then, the
necessary and sufficient conditions for the cosine integral (1.4) to converge uniformly
in u ∈ R+ are (1.12) and (1.14).

We remark that the investigation of the uniform convergence of trigonometric in-
tegrals (1.3)–(1.4) is motivated by and often studied together with the uniform conver-
gence of trigonometric series. For more background, see for example papers [3, 4, 6,
18, 19]. The investigation of (1.1)–(1.2) is motivated by the recent papers of M. R.
Gabdullin [7], S. K ↪eska [11], and K. A. Oganesyan [17], where the uniform conver-
gence of series ∑∞

k=1 ck sinkαx and ∑∞
k=1 ck coskαx has been considered (in [11], only

the special case ∑∞
k=1 ck sin

√
kx is considered).

2. Results on uniform convergence

We extend Theorems 1.1 and 1.2 to the setting of the integrals (1.1) and (1.2).

THEOREM 2.1. Suppose that a function f1 : R+ → C belongs to Φp with p > 0 .
If f1 ∈ GM(β ) and xβ (x) → 0 as x → ∞ , or equivalently (1.7) holds, then the integral
(1.1) converges uniformly in u ∈ R+ and

‖F1(p)−S1(p,a)‖∞ � C max
x�a/21+1/p

⎛
⎝x

2x∫
x

|d f1(t)|
⎞
⎠ . (2.1)

THEOREM 2.2. Suppose that a function f2 : R+ → C belongs to Ψ , and p > 0 .
If f2 ∈ GM(β ) , (1.12) and xβ (x) → 0 as x → ∞ , or equivalently (1.11) hold, then the
integral (1.2) converges uniformly in u ∈ R+ and

‖F2(p)−S2(p,a)‖∞ � max
x>a

∣∣∣∣∣∣
x∫

a

f2(t)dt

∣∣∣∣∣∣+C max
x�a/21+1/p

⎛
⎝x

2x∫
x

|d f2(t)|
⎞
⎠ . (2.2)

Now, we formulate criteria for the uniform convergence of the integrals (1.1) and
(1.2) for general monotone functions from GM(2β ) .

THEOREM 2.3. Assume f1 ∈ GM(2β )∩Φp with p > 0 .
(i) If f1 : R+ → C and (1.10) holds, then integral (1.1) converges uniformly in

u ∈ R+ .

(ii) Let f1 : R+ → R and suppose that Is (x) :=
2x∫
x
| f1(t)|dt is bounded at infinity.

Then the uniform convergence of the integral (1.1) implies (1.10).

THEOREM 2.4. Assume f2 ∈ GM(2β )∩Ψ and p > 0 .
(i) If f2 : R+ → C , (1.12) and (1.14) hold, then integral (1.2) converges uniformly

in u ∈ R+ .
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(ii) Let f2 : R+ → R and suppose that Ic (x) :=
2x∫
x
| f2(t)|dt is bounded at infinity.

Then the uniform convergence of the integral (1.2) implies (1.12) and (1.14).

Using Lemma 3.2 we can show, similarly as in [2, Remark 4.2], that the hypothesis
of Is (x) and Ic (x) being bounded is not needed if we assume that f1 or f2 are non-
negative, respectively.

Similarly, as in [2, Theorem 3.3] we can formulate criteria for the uniform conver-
gence of the integrals (1.1) and (1.2) for the class GM(1β ) .

THEOREM 2.5. Assume f1 : R+ → R belongs to the class GM(1β )∩Φp with
p > 0 . Then, a necessary and sufficient condition for the sine integral (1.1) to converge
uniformly in u ∈ R+ is (1.10).

THEOREM 2.6. Assume f2 : R+ → R belongs to the class GM(1β )∩Ψ and p >
0 . Then, the necessary and sufficient conditions for the cosine integral (1.2) to converge
uniformly in u ∈ R+ are (1.12) and (1.14).

We show some examples of general monotone functions which can be considered
in the main theorems to favor reading. In every case, except for the last one, p > 0 is
arbitrary.

EXAMPLE 2.1. Let fα (x) = (1+x)−α for an α > 0. Then fα is decreasing, fα ∈
M∩Ψ , and by Theorems 2.3 and 2.4 (or, Theorems 2.5 and 2.6), both

∞∫
0

fα(x)sin (uxp)dx

and
∞∫
0

fα (x)cos(uxp)dx are uniformly convergent in u for α > 1 but not for 0 < α � 1.

EXAMPLE 2.2. Let gα(x) = (1+ x)−α sinx for an α ∈ (0,1)∪ (2,∞) . Then gα
is not decreasing, however, gα ∈ GM(2β )∩Ψ . Indeed, there exist positive constants
C , C

′
and A such that

2x∫
x

|dgα(t)| �
2x∫
x

∣∣∣∣ cost
(1+ t)α

∣∣∣∣dt +
2x∫
x

∣∣∣∣ α sin t
(1+ t)α+1

∣∣∣∣dt � (α +1)x
(1+ x)α

� C
x1− 2−α

1−α
(
1+2x

2−α
1−α

)α

(1+ x)α

2·x
2−α
1−α∫

x
2−α
1−α

∣∣∣∣ sin t
(1+ t)α

∣∣∣∣dt

� C
′

x

2·x
2−α
1−α∫

x
2−α
1−α

∣∣∣∣ sin t
(1+ t)α

∣∣∣∣dt � C
′

x
sup

a�x
2−α
1−α

2a∫
a

∣∣∣∣ sin t
(1+ t)α

∣∣∣∣dt

for x > A . Due to Theorems 2.3 and 2.4, both
∞∫
0

gα(x)sin (uxp)dx and
∞∫
0

gα(x)cos(uxp)dx

are uniformly convergent in u for α > 2 but not for 0 < α < 1.
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EXAMPLE 2.3. Let hα(x) = e−αx for an α > 0. Then hα ∈ M ∩Ψ , and both
∞∫
0

hα(x)sin (uxp)dx and
∞∫
0

hα(x)cos(uxp)dx are uniformly convergent.

EXAMPLE 2.4. For i(x) = ((1+x) ln(2+x))−1 , i∈M∩Ψ , and Theorem 2.3 (or,

2.5) implies the uniform convergenceof
∞∫
0

i(x)sin (uxp)dx in u while
∞∫
0

i(x)cos(uxp)dx

is not uniformly convergent in u since (1.12) is not satisfied for i .

EXAMPLE 2.5. Consider j(x) = x−2 and p > 1. Then j ∈ M ∩Φp . Integrals
∞∫
0

j(x)cos(uxp)dx ,
∞∫
0

j(x)cos(ux)dx and
∞∫
0

j(x)sin (ux)dx do not converge, since j /∈

Ψ and j /∈ Φ1 , respectively. However,
∞∫
0

j(x)sin (uxp)dx converges uniformly in u due

to Theorem 2.3 (or, 2.5). Moreover,

J1(p,u) =
∞∫

0

1
x2 sin (uxp)dx =

1
p

∞∫
0

pxp−1

xp+1 sin(uxp)dx

=
1
p

∞∫
0

1

x1+1/p
sin(ux)dx =

1
p

Γ
(
− 1

p

)
sin

−π
2p

u1/p

= Γ
(

1− 1
p

)
sin

π
2p

u1/p

since

Γ(z) =
uz

sin πz
2

∞∫
0

xz−1 sin(ux)dx, u ∈ R+, 0 < Re(z) < 1,

(see [8, p. 893]), that can be extended for −1 < Re(z) < 0 using integration by parts
and

Γ(z) =
uz

cos πz
2

∞∫
0

xz−1 cos(ux)dx, u ∈ R+, 0 < Re(z) < 1,

(also see [8, p. 893]).

3. Proofs of Theorems 2.1–2.6

First, we show an important property of class GM(β ) .

LEMMA 3.1. If f (x) ∈GM(β ) with some β (x) , where xβ (x)→ 0 (x→ ∞) , then
g(x) = x1/p−1 f (x1/p) ∈ GM(β ′) for any p > 0 with β ′(x) = 1

x maxt�x1/p/2 (tβ (t)) and

xβ ′(x) → 0 (x → ∞) .
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Proof. Calculations give us

2x∫
x

|dg(t)| =
2x∫
x

∣∣∣d (
t1/p−1 f (t1/p)

)∣∣∣

�
∣∣∣∣ 1
p
−1

∣∣∣∣
2x∫
x

t1/p−2
∣∣∣ f (t1/p)

∣∣∣dt +
2x∫
x

t1/p−1
∣∣∣d f (t1/p)

∣∣∣

�
∣∣∣∣ 1
p
−1

∣∣∣∣ 1
x

2x∫
x

t1/p−1
∣∣∣ f (t1/p)

∣∣∣dt +C0 x1/p−1

2x∫
x

∣∣∣d f (t1/p)
∣∣∣

� |1− p| 1
x

(2x)1/p∫
x1/p

| f (s)|ds+C0 x1/p−1

(2x)1/p∫
x1/p

|d f (s)|

where C0 = max{1,21/p−1} . Since for any f (x) ∈ GM(β ) , we have

| f (x)| �
∞∫

x

|d f (t)| � 1
ln2

∞∫
x/2

1
t2

⎛
⎝t

2t∫
t

|d f (s)|
⎞
⎠

� 1
ln2

1
x

max
t�x/2

⎛
⎝t

2t∫
t

|d f (s)|
⎞
⎠ � C

ln2
1
x

max
t�x/2

(tβ (t)) ,

(see [3]), we can obtain

2x∫
x

|dg(t)| � C |1− p|
ln2

1
x

(2x)1/p∫
x1/p

1
s

max
t�s/2

(tβ (t))ds+C0
1
x

n0−1

∑
k=0

x1/p

2k+1x1/p∫
2kx1/p

|d f (s)|

� C |1− p|
ln2

1
x

(21/p−1) max
t�x1/p/2

(tβ (t))+C0
1
x

n0−1

∑
k=0

2kx1/p

2k β
(
2kx1/p

)

�
(

C |1− p|
ln2

(21/p−1)+C0n0

)
1
x

max
t�x1/p/2

(tβ (t)) (3.1)

where n0 is the integer so that 2n0−1 � 21/p � 2n0 . This means g(x) ∈ GM(β ′) with

β ′(x) =
1
x

max
t�x1/p/2

(tβ (t)) .

Therefore, xβ ′(x) → 0 (x → ∞) . �

Proof of Theorem 2.1. Suppose f1 ∈GM(β )∩Φp . Then g1(x) = 1
p x1/p−1 f1(x1/p)

∈ GM(β ′)∩Φ1 . Using (1.5) and Lemma 3.1 we get from Theorem 1.1 the uniform
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convergence of (1.1). Moreover, we can obtain (2.1) from (1.8) keeping in mind (3.1):

‖F1( f1(x); p)−S1( f1(x); p,a)‖∞

= ‖F1(g1(x);1)−S1(g1(x);1,ap)‖∞ � Cs max
x�ap/2

⎛
⎝x

2x∫
x

|dg1(t)|
⎞
⎠

� Cs max
x�ap/2

⎛
⎝(

C |1− p|
p ln2

(21/p−1)+
C0n0

p

)
max

t�x1/p/2

⎛
⎝t

2t∫
t

|d f1(s)|
⎞
⎠

⎞
⎠

= C′ max
t�a/21+1/p

⎛
⎝t

2t∫
t

|d f1(s)|
⎞
⎠ , (3.2)

where C′ = Cs

(
C|1−p|
p ln2 (21/p−1)+ C0n0

p

)
.

This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2. Suppose f2 ∈GM(β )∩Ψ . Since g2(x) = 1
p x1/p−1 f2(x1/p)

∈ GM(β ′)∩ Ψ , using (1.6) and Lemma 3.1, we get from Theorem 1.2 the uniform
convergence of (1.2). Moreover, we can obtain (2.2) from (1.13) using (3.1) and (3.2):

‖F2( f2(x); p)−S2( f2(x); p,a)‖∞

= ‖F2(g2(x);1)−S2(g2(x);1,ap)‖∞

� max
x>ap

∣∣∣∣∣∣
x∫

ap

g2(t)dt

∣∣∣∣∣∣+Cc max
x�ap/2

⎛
⎝x

2x∫
x

|dg2(t)|
⎞
⎠

� max
t>a

∣∣∣∣∣∣
t∫

a

f2(s)ds

∣∣∣∣∣∣+C′′ max
t�a/21+1/p

⎛
⎝t

2t∫
t

|d f2(s)|
⎞
⎠ ,

where C′′ = Cc

(
C|1−p|
p ln2 (21/p−1)+ C0n0

p

)
.

The proof of Theorem 2.2 is complete. �

LEMMA 3.2. If f (x) ∈ GM(2β ) , then g(x) = x1/p−1 f (x1/p) ∈ GM(2β ) , for any
p > 0 .

Proof. By Lemma 3.1, we have that g(x) ∈ GM(β ′) with

β ′(x) =
1
x

max
t�x1/p/2

t 2β (t) =
1
x

max
t�x1/p/2

sup
a�B(t)

2a∫
a

| f (s)|ds

� 1
x

sup
a�B(x1/p/2)

2a∫
a

| f (s)|ds =
p
x

sup
a�B(x1/p/2)

(2a)p∫
ap

t1/p−1
∣∣∣ f (t1/p)

∣∣∣dt



10 P. KÓRUS AND B. SZAL

=
p
x

sup
a�B(x1/p/2)

n0−1

∑
k=0

2k+1ap∫
2kap

|g(t)|dt � pn0

x
sup

a�B(x1/p/2)
sup
b�ap

2b∫
b

|g(t)|dt

� pn0

x
sup

b�(B(x1/p/2))p

2b∫
b

|g(t)|dt

where n0 is the integer so that 2n0−1 � 2p � 2n0 . This means g(x) ∈ GM(2β ) . �

Proof of Theorem 2.3. Part (i). Using Theorem 2.1 we obtain the uniform conver-
gence of (1.1).

Part (ii). Suppose that f1 : R+ → R , f1 ∈ GM(2β ) , Is (x) is bounded at infinity,
p > 0 and (1.1) converges uniformly in u . We start with setting

ξ = ξ (x) =
π

2(4x)p , x ∈ R+.

Then for x � t � 4x , we have

π
22p+1 � ξ (x) t p � π

2
,

therefore
sin(ξ (x)t p) � sin

π
22p+1 .

Using this inequality, we can show, analogously as in the proof of [2, Theorem 3.1],
that Is (x)

3 → 0 as x → ∞ . This completes the proof of part (ii) and that of Theorem
2.3. �

Proof of Theorem 2.4. Part (i). Using Theorem 2.2 we obtain the uniform conver-
gence of (1.2).

Part (ii). Suppose that f2 : R+ → R , f2 ∈ GM(2β ) , Ic (x) is bounded at infinity,
p > 0 and (1.2) converges uniformly in u . Taking u = 0, we immediately get (1.12)
since cos(uxp) ≡ 1. Moreover, for

ξ = ξ (x) =
π

4(4x)p , x ∈ R+.

and x � t � 4x , we have
π

22p+2 � ξ (x) t p � π
4

.

Therefore

cos(ξ (x) t p) � 1√
2
.

Using this inequality, we can show, analogously as in the proof of [2, Theorem 3.1], that
Ic (x)3 → 0 as x → ∞ . The proof of part (ii) and that of Theorem 2.4. is complete. �
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LEMMA 3.3. If f (x) ∈ GM(1β ) , then g(x) = x1/p−1 f (x1/p) ∈ GM(1β ) , for any
p > 0 .

Proof. The proof is similar to that of Lemma 3.2. �

Proof of Theorem 2.5. Lemma 3.3 and Theorem 1.5 yield the required result. �

Proof of Theorem 2.6. Lemma 3.3 and Theorem 1.6 yield the required result. �

4. Weighted integrability

We consider the weighted Lq -convergence, q � 1, of the sine and cosine integrals
(1.1)–(1.2) with power weights x−γ for certain γ ∈ R .

We recall that the weighted Lq -convergence of sine and cosine integrals (1.3)–
(1.4) were considered by various authors, see e.g. [1, 3, 13, 20].

DEFINITION 4.1. ([3]) Suppose that f : R+ →C is a function locally of bounded
variation on R+ . We say that f ∈GMθ ,with θ ∈ (0,1] , if there exist positive constants
C, A and c > 1 such that

∞∫
x

|d f (t)| � Cxθ−1

∞∫
x/c

| f (t)|
tθ dt < ∞

for all x > A .

It is known that M � GM1 ⊆ GMθ2 ⊆ GMθ1 for 0 < θ1 � θ2 � 1, where M
denotes the class of non-negative, monotone non-increasing functions (see [5] and [14,
15]).

THEOREM 4.1. ([3]) Let f1 : R+ → R+ belong to GMθ ∩Φ1 , where θ ∈ (0,1] .
If q � 1 and 1−θq < γ < 1+q, then

|F1( f1(x);1,u)|q
uγ ∈ L(R+) ⇔

∞∫
0

xγ+q−2 f q
1 (x)dx < ∞.

THEOREM 4.2. ([3]) Let f2 : R+ → R+ belong to class GMθ ∩Ψ , where θ ∈
(0,1] . If q � 1 and 1−θq < γ < 1 , then

|F2( f2(x);1,u)|q
uγ ∈ L(R+) ⇔

∞∫
0

xγ+q−2 f q
2 (x)dx < ∞.
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5. Results on weighted integrability

We extend Theorems 4.1 and 4.2 to the integrals (1.1) and (1.2).

THEOREM 5.1. Let p > 0 and a function f1 : R+ → R+ belong to GMpθ ∩Φp ,
where pθ ∈ (0,1] and θ ∈ (0,1) . If q � 1 and 1−θq < γ < 1+q, then

|F1( f1(x); p,u)|q
uγ ∈ L(R+) ⇔

∞∫
0

upγ+q−p−1 f q
1 (u)du < ∞. (5.1)

THEOREM 5.2. Let p > 0 and a function f2 : R+ → R+ belong to GMpθ ∩Ψ ,
where pθ ∈ (0,1] and θ ∈ (0,1) . If q � 1 and 1−θq < γ < 1 , then

|F2( f2(x); p,u)|q
uγ ∈ L(R+) ⇔

∞∫
0

upγ+q−p−1 f q
2 (u)du < ∞. (5.2)

It is clear that Theorems 5.1 and 5.2 do not work when θ = 1. As Lemma 6.2
shows, in order to prove (5.1) and (5.2), the assumptions of these theorems must be
changed. Similarly as in the proofs of Theorems 5.1 and 5.2, we can show the following
theorem:

THEOREM 5.3. Suppose 0 < p � 1.

(i) Let a function f1 : R+ →R+ be such that x1/p−1 f1(x1/p)∈GM1∩Φp . If q � 1
and 1−q < γ < 1+q, then (5.1) holds.

(ii) Let a function f2 : R+ →R+ be such that x1/p−1 f2(x1/p)∈GM1∩Ψ . If q � 1
and 1−q < γ < 1 , then (5.2) holds.

We show some examples of general monotone functions for which the main inte-
grability theorems can be applied. We suppose that p > 0, q � 1.

EXAMPLE 5.1. Let fα (x) = e−αx for an α > 0. It is clear that fα ∈ M ∩ Ψ .
Applying Theorems 5.1–5.3, we get

|F1( fα (x); p,u)|q
uγ ∈ L(R+)

for 1− q
p < γ < 1+q , p > 1 or 1−q < γ < 1+q , p � 1 and

|F2( fα (x); p,u)|q
uγ ∈ L(R+)

for 1− q
p < γ < 1, p > 1 or 1−q < γ < 1, p � 1.
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EXAMPLE 5.2. Let

gα(x) =

{
0, if x ∈ [0,1)
x−α , if x ∈ [22k,22k+1), k = 0,1,2, . . .

for α > 0. One can see that for any x ∈ [22r,22r+2) , r ∈ Z+
0 ,

∞∫
x

|dgα(t)| � C1

∞

∑
k=r

(
22k

)−α
= C1

(
22r)−α 1

1−2−α

� C1α
(1−2−α)(2−2α −2−3α)

∞∫
x

|gα(t)|
t

dt,

which means gα ∈ GM1∩Ψ . By Theorems 5.1–5.3,

|F1(gα(x); p,u)|q
uγ ∈ L(R+) ⇔

∞∫
0

xpγ+q−p−1 xαq dx < ∞ ⇔ γ < 1− q
p

+
αq
p

for 1− q
p < γ < 1+q , p > 1 or 1−q < γ < 1+q , p � 1 and

|F2(gα(x); p,u)|q
uγ ∈ L(R+) ⇔ γ < 1− q

p
+

αq
p

for 1− q
p < γ < 1, p > 1 or 1−q < γ < 1, p � 1.

6. Proofs of Theorems 5.1–5.2

We show the following property of the classes GMpθ .

LEMMA 6.1. Let p > 0 and f (x) ∈ GMpθ , where pθ ∈ (0,1] and θ ∈ (0,1) .
Then g(x) = x1/p−1 f (x1/p) ∈ GMθ .

Proof. Elementary calculations give us

∞∫
x

|dg(t)| =
∞∫

x

∣∣∣d (
t1/p−1 f (t1/p)

)∣∣∣
�

∣∣∣∣1p −1

∣∣∣∣
∞∫

x

t1/p−2
∣∣∣ f (t1/p)

∣∣∣dt +
∞∫

x

t1/p−1
∣∣∣d f (t1/p)

∣∣∣
=

∣∣∣∣1p −1

∣∣∣∣
∞∫

x

t1/p−1
∣∣ f (t1/p)

∣∣
t1−θ+θ dt +

∞∫
x

t1/p−1
∣∣∣d f (t1/p)

∣∣∣
�

∣∣∣∣1p −1

∣∣∣∣xθ−1

∞∫
x

t1/p−1
∣∣ f (t1/p)

∣∣
tθ dt + I. (6.1)
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Taking C1 = max
{
1,21/p−1

}
, we have

I =
∞

∑
k=0

2k+1x∫
2kx

t1/p−1
∣∣∣d f (t1/p)

∣∣∣

� C1

∞

∑
k=0

(
2kx

)1/p−1
2k+1x∫
2kx

∣∣∣d f (t1/p)
∣∣∣

= C1

∞

∑
k=0

(
2kx

)1/p−1
(2k+1x)1/p∫
(2kx)1/p

|d f (z)|

� C1C
∞

∑
k=0

(
2kx

)1/p−1
((

2kx
)1/p

)pθ−1 ∞∫
(2kx)1/p

/c

| f (z)|
zpθ dz

� C1C
∞

∑
k=0

(
2kx

)θ−1
∞∫

(2kx)1/p
/c

| f (z)|
zpθ dz

� C1Cxθ−1

∞∫
x1/p/c

| f (z)|
zpθ dz

∞

∑
k=0

(
2θ−1

)k

=
C1C

p(1−2θ−1)
xθ−1

∞∫
x/cp

t1/p−1
∣∣ f (t1/p)

∣∣
tθ dt. (6.2)

Using (6.1) and (6.2), we get
∞∫

x

|dg(t)| � C′xθ−1

∞∫
x/c′

|g(t)|
tθ dt,

where C′ =
∣∣∣ 1

p −1
∣∣∣+ C1C

p(1−2θ−1) and c′ = cp . Thus g(x) ∈ GMθ . �

LEMMA 6.2. If g(x) = x1/p−1 f (x1/p) ∈ GM1 , where p ∈ (0,1] , then f (x) ∈
GMp.

Proof. Let g(x) = x1/p−1 f (x1/p) ∈ GM1 , where p ∈ (0,1] . Then
∞∫

x

|d f (t)| =
∞∫

xp

|d f (u1/p)| =
∞∫

xp

∣∣∣d (
pu1−1/p 1

pu1/p−1 f (u1/p)
)∣∣∣

�
(

1
p
−1

) ∞∫
xp

∣∣ f (u1/p)
∣∣

u
du+ p

∞∫
xp

u1−1/p
∣∣∣d (

1
pu1/p−1 f (u1/p)

)∣∣∣
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= (1− p)
∞∫

x

| f (z)|
z

dz+ pxp−1

∞∫
xp

∣∣∣d (
1
pu1/p−1 f (u1/p)

)∣∣∣
� (1− p)xp−1

∞∫
x

| f (z)|
zp dz+Cpxp−1

∞∫
xp/c

1
pu1/p−1

∣∣ f (u1/p)
∣∣

u
du

= (1− p)xp−1

∞∫
x

| f (z)|
zp dz+Cpxp−1

∞∫
x/c1/p

| f (z)|
zp dz

� C′′xp−1

∞∫
x/c′′

| f (z)|
zp dz,

where C′′ = (1− p)+Cp and c′′ = c1/p . Thus f (x) ∈ GMp . �
Proof of Theorem 5.1. Let p > 0 and a function f1 ∈ GMpθ ∩Φp , where pθ ∈

(0,1] and θ ∈ (0,1) . By (1.5),

|F1( f1(x); p,u)|q
uγ ∈ L(R+) ⇔

∣∣∣F1

(
1
px1/p−1 f1(x1/p);1,u

)∣∣∣q
uγ ∈ L(R+).

Using Lemma 6.1 we get that x1/p−1 f1(x1/p)∈GMθ . Thus by Theorem 4.1 with q � 1
and 1−θq < γ < 1+q∣∣∣F1

(
1
p x1/p−1 f1(x1/p);1,u

)∣∣∣q
uγ ⇔

∞∫
0

xγ+q−2
(

1
p
x1/p−1 f1(x1/p)

)q

dx < ∞

⇔
∞∫

0

xpγ+q−p−1 f q
1 (x)dx < ∞.

This ends our proof. �

Proof of Theorem 5.2. Let p > 0 and a function f2 ∈ GMpθ ∩Ψ , where pθ ∈
(0,1] and θ ∈ (0,1) . Using (1.6), Lemma 6.1 and Theorem 4.2 with q � 1 and 1−
θq < γ < 1 we obtain

|F2( f2(x); p,u)|q
uγ ∈ L(R+) ⇔

∣∣∣F2

(
1
px1/p−1 f2(x1/p);1,u

)∣∣∣q
uγ ∈ L(R+)

⇔
∞∫

0

xγ+q−2
(

1
p
x1/p−1 f2(x1/p)

)q

dx < ∞

⇔
∞∫

0

xpγ+q−p−1 f q
2 (x)dx < ∞

and our proof is completed. �
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7. Conclusions

In Theorems 2.1 and 2.2, we gave sufficient conditions for the uniform conver-
gence of the integrals (1.1) and (1.2) with certain general monotone functions f1 and
f2 while in Theorems 2.3 and 2.4, we gave necessary and sufficient conditions for the
uniform convergence regarding GM(2β ) functions. In addition in Theorems 2.5 and
2.6, we saw that the previously given conditions are necessary and sufficient in case of
not necessarily non-negative GM(1β ) functions. From these theorems, we conclude
the following.

THEOREM 7.1. Suppose that a function f : R+ → C belongs to Ψ . If f ∈
GM(β ) , the integral

∞∫
0

f (t)dt is convergent and xβ (x) → 0 as x → ∞ , or equivalently

x

2x∫
x

|d f (t)| → 0 as x → ∞,

then the integral

F(p,u) := F( f (x); p,u) =
∞∫

0

f (x)eiuxp
dx

converges uniformly in u ∈ R+ and

‖F(p)−S(p,a)‖∞ � max
x>a

∣∣∣∣∣∣
x∫

a

f (t)dt

∣∣∣∣∣∣+C max
x�a/21+1/p

⎛
⎝x

2x∫
x

|d f (t)|
⎞
⎠

where

S(p,a,u) := S( f (x); p,a,u) =
a∫

0

f (x)eiuxp
dx.

THEOREM 7.2. Assume f ∈ GM(2β )∩Ψ and p > 0 .
(i) If f : R+ → C , (7.1) and (7.2) hold, then the integral F(p,u) converges uni-

formly in u ∈ R+ .

(ii) Let f : R+ → R and suppose that I (x) :=
2x∫
x
| f (t)|dt is bounded at infinity.

Then the uniform convergence of the integral F(p,u) implies

x f (x) → 0 as x → ∞, (7.1)

and that
∞∫

0

f (x)dx converges. (7.2)



UNIFORM CONVERGENCE AND INTEGRABILITY OF TRIGONOMETRIC INTEGRALS 17

THEOREM 7.3. Assume f : R+ → R belongs to the class GM(1β )∩Ψ and p >
0 . Then, the necessary and sufficient conditions for the integral F(p,u) to converge
uniformly in u ∈ R+ are (7.1) and (7.2).

In Theorems 5.1 and 5.2, we presented sufficient and necessary conditions for
the weighted Lq -convergence of the integrals (1.1) and (1.2) with certain non-negative
functions f1 and f2 belonging to the class GMpθ , where pθ ∈ (0,1] and θ ∈ (0,1) .
In Theorem 5.3, we gave a necessary and sufficient condition for the weighted Lq -
convergence of the integrals (1.1) and (1.2) when p ∈ (0,1] and x1/p−1 f1(x1/p) ∈ GM1

or x1/p−1 f2(x1/p) ∈ GM1 , respectively. From these theorems, we conclude the follow-
ing.

THEOREM 7.4. Let p > 0 and a function f : R+ → R+ belong to GMpθ ∩Ψ ,
where pθ ∈ (0,1] and θ ∈ (0,1) . If q � 1 and 1−θq < γ < 1 , then

|F( f (x); p,u)|q
uγ ∈ L(R+) ⇔

∞∫
0

upγ+q−p−1 f q(u)du < ∞. (7.3)

THEOREM 7.5. Let 0 < p � 1 and a function f : R+ → R+ be such that
x1/p−1 f (x1/p) ∈ GM1∩Ψ . If q � 1 and 1−q < γ < 1 , then (7.3) holds.
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