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JOHN-NIRENBERG INEQUALITY FOR
LIPSCHITZ MARTINGALE SPACES
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(Communicated by I. Peri¢)

Abstract. In this article, John-Nirenberg inequality for Lipschitz martingale spaces is estab-
lished. We further prove that Lipschitz martingale spaces A, (ct) are equivalent for 0 < p < e,
which generalizes an important result in classical martingale H, theory.

1. Introduction

John-Nirenberg inequality plays an important role in harmonic analysis. A well-
known immediate consequence of the John-Nirenberg inequality is the famous John-
Nirenberg theorem, which implied the equivalence of BMO spaces (the function spaces
of bounded mean oscillation) and BMO), for 1 < p < .

In martingale setting, John-Nirenberg inequality and John-Nirenberg theorem for
BMO martingale spaces are two basic and important results in classical martingale
H), theory (see Theorem 4.1.2 in [9]). John-Nirenberg theorem for BMO martingale
spaces states that martingale spaces BMO),, are equivalent for 1 < p < eo. In the past
decade, more attention has been paid to John-Nirenberg type theorems on various BMO
type martingale spaces. Miyamoto, Nakai and Sadasue obtained a John-Nirenberg type
inequality for generalized martingale Campanato spaces when the stochastic basis is
regular ([10]). Hong and Mei considered the John-Nirenberg inequality for noncom-
mutative martingales in [2]. John-Nirenberg inequalities on generalized BMO martin-
gale spaces were studied by Jiao et al. in [3]. For other related work, one can refer to
[4,5,6,7,8,12,13].

As we know, BMO space is a special case of Lipschitz space. What we are in-
terested in is whether John-Nirenberg type inequality holds for Lipschitz martingale
spaces, and naturally consider the problem of the equivalence of Lipschitz martingale
spaces, that is, John-Nirenberg theorem for Lipschitz martingale spaces. In this arti-
cle, John-Nirenberg inequality for Lipschitz martingale spaces is established. By us-
ing this inequality, we show that Lipschitz martingale spaces A, (ct) are equivalent for
0 < p < oo, and thus the conclusion on BMO martingale spaces is extended to Lipschitz
martingale spaces. In particular, we obtain that martingale spaces BMO),, are equivalent
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for 0 < p < oo, which generalizes John-Nirenberg theorem in classical martingale H,
theory.

This paper is divided into two further sections. In Section 2 some notions and
notations appeared in this article are given. Main results and its proofs are given in the
final section.

2. Preliminaries

Let (Q,.#,P) be a complete probability space, and (.%,),>0 a nondecreasing
sequence of sub- o -algebras of .# such that # = o(|J,,-%,). The conditional expec-
tation operator relative to .%, is denoted by E,. A martingale f = (f,),>0 relative to
(Q,.Z,P;(%)n=0) is an integrable sequence, which is adapted and E, f,,, = f;, for all
n < m. A stopping time relative to (%, ),>0 is amap 7 : Q — N({J{eo}, which satisfies
{oeQ:1(w) =n} € %, foreach n > 0.

Let 0 < p <o, a0 > 0, Lipschitz martingale spaces and BMO martingale spaces
are defined as follows:

—f P 4P\
Ap(a) = {fZ (f)n=0 ¢ || flla,(c) = sup sup Us |/ = o1 |7 dP) < 00};

neNAcF, IP’(A)%HX

BMOp = {f = (fhiz0 |/ w0, = sup (B | £ —fu-t )7l < =}

We recall that A,(0) = BMO,,. For more information on the theory of Lipschitz mar-
tingale spaces and BMO martingale spaces, one can refer to [9] and [11].

Let 0 < p <oo,weuse L,(.%,) (Ly(#)) to denote the collection of p-th integrable
and .%, -measurable (.% -measurable) functions on (Q,.%,,P) ((Q,.%#,P)).

Let X and Y be two quasi-normed spaces, we say that X and Y are equivalent
(denoted by X =Y), if X and Y are isomorphic and their quasi-norms are equivalent,
i.e. there exist positive constants ¢ and C such that for all x € X

cllxlx<llxlly<Clx]x-

Throughout this paper, we use N and Z" to denote the set of nonnegative inte-
gers and the set of positive integers, respectively. We use C and ¢ to denote positive
constants and may be different from one line to another.

3. Main results and its proofs

We first establish John-Nirenberg inequality for Lipschitz martingale spaces.

THEOREM 1. Let f = (fu)n=0 € A1(t). Then forany n € Z* and A € F,, we
have

=l 2 T
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Proof. We first assume that || f]|4, (o) < 1, and for any fixed A € .7, set

fm_fn—l *
m=—-— m>=n—1, = su m | -
g Pla)e g = suwp | gm |

For A,u > 0, define stopping times
T=inf{m:| gn|>A}, t=inf{m:| gn|>A+u}.

Obviously, T >0 and T < 7. Define

Th — T, wcA; S T, WEA;
Tl ogA T = 0¢A,

it is easy to see that Ty < 74 and | g7,—1xa |< A, we then have

oa(A+u):=P({g" > A+u}(A) =P({ta < })

| fo =Sy ] >u})

gp({TA<°°a|gTA_gTA—l ‘: IF’(A)O‘ =

gl/ |fTA_fTA71‘dIP)
B J{Ty<eo} *

P(A)
1 |E((f = fr-0xa | Z1,) |

<3 fnem P(a)® *
1 E((f — fr,—1)xa | F,)

< EP({TA < °°}) | P(A)“ .

f=fr-0)xalF,)

E
If we set M = H (« PA) , and for arbitrary € > 0, define

‘ oo

Ay ={oea: B = fn-1)xa | Fs)

P(A) >M—8},

then we have

(f = fr—1)2a 24, (f = fra-1)xs
< |25 < YV ZIJL-VAB .
M Fweran | <22 |TFeme || <1 e

Hence | |
oa(A+p) < HP({TA <o) [ £ llaye< ;"A(“

Now take tt = e and A = ke, we get
1
oA((k+1)e) < —oa(ke) < P(A)e X, ke Z".
Since 04 (A) is decreasing, for A € [e, +o0) with ke <A < (k+1)e (k€ Z), we have

0A(A) < ou(ke) < P(A)ePe%
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The above inequality still holds for 0 < A < e, since

For any f = (fu)n>0 € A1(e), if we replace f above with W, then the desired
p 1(a

inequality is obtained. [J

Now let us turn to consider the equivalence of Lipschitz martingale spaces, for
which we need to provide several lemmas first.
Let A be a measurable set, we use y4 to denote its characteristic function.

LEMMA 1. (1) If O < p < 1, then for each a € L,(%,) with || a ||,< 1, it can be
approached by ' | Ak 2y — in L,(:%,), where Y], | & [P< 1.
P(A

©0?
Q) If 1< p<eo, thenfor each a € Ly (F,) with | a ||, 1< 1, it can be ap-

proached by 1 > i 1 Ak "1 in Ly (%), where 37 | 4 |< 1.
P(Ar) P

k

Proof. 1t is easy to obtain (1) from the approximation properties of integrable
functions. Now we only give a proof for (2).

Here we only consider the case of nonnegative functions. In general, we can con-
sider the positive part and the negative part respectively according to the general prac-
tice. Since simple functions are dense in L, 1(.%,), then for each nonnegative func-
tion a € Ly, 1 (:#,) with || a ||, 1< 1, it can be approached by positive simple functions

Y Mixs, - and || X5 texs, || p1i< 1. Suppose that{u, - - -, Wy} is decreasing, it can
be calculated that

==

[ i s, lpa = p((W — 12)P(B1) 7 + (to — 3) (P(B1) + P(By))
k=1

_|_...+ukm(IF)(Bl)+'""‘IP(Bm))%)'

Now set
M= plp — w)B(B1)7,
% = p(ga — 13)(P(B1) +P(Ba)) 7
Am—1 = p(Wn—1 — tn)(P(B)+---+P(B ))%
and

A =By+ - +By,
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itis clear that 3" | | A |< 1, and

D Mixs, = (11 — H2) ), + (M2 — 13) X8, +B,
k=1

+- (.le,1 - .um)XBl+~'~+Bm4 + LBy ++Bu
1 & A XAx

= — k 1 . D
Pi=1 P(A;)»r

LEMMA 2. (1) Let 0<p <1, >0, f = (fu)uz0 € Ap(er), Tu:L_p (Fu) =

L,(F) be a linear operator with Tya = (f — fu—1)a, n € N, then sup,cy || T, ||=]|

Fllap(@)
(2) Let I<p<e, 20, pOH-l <1, f=(fu)nso €Ap(a), Ty, :LWLH (%) —
L,(F) be a linear operator with Tya = (f — fy—1)a, n € N, then sup,y || T ||=||

Fllap(e)
(3)Let1 p<e, az0, g 21 f=(fnzo €Ap(@), TiiLp 1(Fn) =

L,(F) be a linear operator with Tya = (f — fu—1)a, n € N, then there exist positive
constants ¢ and C such that

el f laye< sup [T IS CI f llap(e

Proof. We only show that (1) holds, (2) and (3) can be proved in a similar way.

Itis easy to obtain that sup,cy || T || 2] f (A (e » if We take a = —.,AEF.
P(A)P
For the converse, by Lemma 1, for each a € L o (%) with || a || < 1,itcan
x (m) D
be approached by Zk'i 17Lk m_ rin L » (%,), where Zk”’ | JLk \no++f< L,

IP,(A,(cm))oHr 7 po+I

m € Z . Hence there exists a subsequence that converges almost everywhere, denote it
4 A[((m)

. k4 (m)
still by {Zkzllk W
k

continuity of Lebesgue integral, we have

} . By Egoroff theorem and the property of absolute
m=1

) ki (m) XA(m) 14
| (f = fu-1)a ||£= 11_1:130 Z)Lk (f_fn—l)ﬁ
" k=1 P(A )T »
% |A( )|[) || (f fn 1) m Hp
< lim n
m—o g 1K IP(AI({ ))pa+l
S [T vy
< lim 2 |Akm | patT
= P(A" ))pa+l

4
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from which we obtain
sup || Ty [I<I| £ lay0) - B
neN

LEMMA 3. ([1]) Let 0 < p < e and 0 < 6 < 1, if (Ag,A}) and (By,B}) are two
couples of quasi-normed spaces, and if T is a linear operator
T:Ag— By, T:A — B
with the quasi-norms My and M respectively, then
T : (Ao,A1)e,p — (Bo,B1)e,p
with quasi-norm M < M(l)’eMle.

LEMMA 4. ([1]) Supposethat 0 < py < p; <eo, 0<q,q0,q1 <o and 0<0 <1,

then
1-6 6

(Lpo.go:Lpr.a1)e.g = Lpag +—=

1
po  pPD

THEOREM 2. Let 0 < p <o, 00 20, then Ap(or) = A ().

Proof. For 1 < p < o, by Theorem 1 we have

PA) 7N (= fo)a lp

(p/omsﬂP({w EA: % >s}>ds>

1

o s P
< <P/ s”fleze elfMA; (o) ds)
0

<C £ A ()

it follows that

==
==

= P(A)”

1 lapey < C LS Mlay e -
For the converse, by Holder inequality, we have

_ | (f = fo-0)xa lls
1/ e =508 282 ™~ Bayree
1
PA) || (f = fo—0)xa llp
< sup su = )
Rl T B@ya 1/ st

where % + é =1.
For 0 < p < 1, by Holder inequality, we have

| (F = fuet)2a < BT [ (f ~ fa-)a |1
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where }—) = é-ﬁ- 1, from which we know that || f |5, ()<l f l[A,(e)- For the con-
verse, we choose pg € (1,e0) such that % + pi =1 for some 6 € (0,1). Now we
consider the linear operator T,a = (f — fu—1)a, f=( f,,),,>0 € A(e) (note that here
J=(fa)nz0 € Ap(a) and f = (fu)nz0 € Apy(e)). If - Pt < 1, then we consider 7,
as T, : L . (Fn) = Lp(F) and T, : L o (Jn) — Ly, (%), respectively. Note that

(LP,LPO)Q_I =L,(L_r ,L_rn )g1= L 1, by Lemma 4, it follows from Lemma 3
’ po+I p0a+1 ? T+o 1
that

1717
p(Fn)—=Lp(F) nAL py (:7,1)—>L,,0 (ZF) -
pa+1 poo+T

| T ||L BRI NN I
+o’

Hence by Lemma 3 we have
eI F natay < I gl £ 108, @< € IE I8l f 18,y

from which we obtain

HfHAl(a)SCHfHAp(a) . (1)
If poa+1 > 1, then we consider T, as T, L e (Jn)—>L (F) and Ty, : L,,O’;EL 71(ﬁn)—>

LPO(J ), respectively. Similar to the above proof, we can still obtain (1). [l

COROLLARY 1. Let 0 < p < oo, then BMO, = BMO;.
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