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Abstract. In this article, John-Nirenberg inequality for Lipschitz martingale spaces is estab-
lished. We further prove that Lipschitz martingale spaces Λp(α) are equivalent for 0 < p < ∞ ,
which generalizes an important result in classical martingale Hp theory.

1. Introduction

John-Nirenberg inequality plays an important role in harmonic analysis. A well-
known immediate consequence of the John-Nirenberg inequality is the famous John-
Nirenberg theorem, which implied the equivalence of BMO spaces (the function spaces
of bounded mean oscillation) and BMOp for 1 � p < ∞ .

In martingale setting, John-Nirenberg inequality and John-Nirenberg theorem for
BMO martingale spaces are two basic and important results in classical martingale
Hp theory (see Theorem 4.1.2 in [9]). John-Nirenberg theorem for BMO martingale
spaces states that martingale spaces BMOp are equivalent for 1 � p < ∞ . In the past
decade, more attention has been paid to John-Nirenberg type theorems on various BMO
type martingale spaces. Miyamoto, Nakai and Sadasue obtained a John-Nirenberg type
inequality for generalized martingale Campanato spaces when the stochastic basis is
regular ([10]). Hong and Mei considered the John-Nirenberg inequality for noncom-
mutative martingales in [2]. John-Nirenberg inequalities on generalized BMO martin-
gale spaces were studied by Jiao et al. in [3]. For other related work, one can refer to
[4, 5, 6, 7, 8, 12, 13].

As we know, BMO space is a special case of Lipschitz space. What we are in-
terested in is whether John-Nirenberg type inequality holds for Lipschitz martingale
spaces, and naturally consider the problem of the equivalence of Lipschitz martingale
spaces, that is, John-Nirenberg theorem for Lipschitz martingale spaces. In this arti-
cle, John-Nirenberg inequality for Lipschitz martingale spaces is established. By us-
ing this inequality, we show that Lipschitz martingale spaces Λp(α) are equivalent for
0 < p < ∞ , and thus the conclusion on BMO martingale spaces is extended to Lipschitz
martingale spaces. In particular, we obtain that martingale spaces BMOp are equivalent
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for 0 < p < ∞ , which generalizes John-Nirenberg theorem in classical martingale Hp

theory.
This paper is divided into two further sections. In Section 2 some notions and

notations appeared in this article are given. Main results and its proofs are given in the
final section.

2. Preliminaries

Let (Ω,F ,P) be a complete probability space, and (Fn)n�0 a nondecreasing
sequence of sub-σ -algebras of F such that F = σ(

⋃
n Fn) . The conditional expec-

tation operator relative to Fn is denoted by En . A martingale f = ( fn)n�0 relative to
(Ω,F ,P;(Fn)n�0 ) is an integrable sequence, which is adapted and En fm = fn for all
n � m . A stopping time relative to (Fn)n�0 is a map τ : Ω → N

⋃{∞} , which satisfies
{ω ∈ Ω : τ(ω) = n} ∈ Fn for each n � 0.

Let 0 < p < ∞ , α � 0, Lipschitz martingale spaces and BMO martingale spaces
are defined as follows:

Λp(α) =

{
f = ( fn)n�0 : ‖ f‖Λp(α) = sup

n∈N
sup

A∈Fn

(
∫
A | f − fn−1 |p dP)

1
p

P(A)
1
p +α

< ∞

}
;

BMOp =
{

f = ( fn)n�0 : ‖ f‖BMOp = sup
n�0

‖(En | f − fn−1 |p)
1
p ‖∞ < ∞

}
.

We recall that Λp(0) = BMOp . For more information on the theory of Lipschitz mar-
tingale spaces and BMO martingale spaces, one can refer to [9] and [11].

Let 0< p< ∞ , we use Lp(Fn) (Lp(F )) to denote the collection of p-th integrable
and Fn -measurable (F -measurable) functions on (Ω,Fn,P) ((Ω,F ,P)).

Let X and Y be two quasi-normed spaces, we say that X and Y are equivalent
(denoted by X = Y ), if X and Y are isomorphic and their quasi-norms are equivalent,
i.e. there exist positive constants c and C such that for all x ∈ X

c ‖ x ‖X�‖ x ‖Y� C ‖ x ‖X .

Throughout this paper, we use N and Z+ to denote the set of nonnegative inte-
gers and the set of positive integers, respectively. We use C and c to denote positive
constants and may be different from one line to another.

3. Main results and its proofs

We first establish John-Nirenberg inequality for Lipschitz martingale spaces.

THEOREM 1. Let f = ( fn)n�0 ∈ Λ1(α) . Then for any n ∈ Z+ and A ∈ Fn , we
have

P

({
ω ∈ A :

| f − fn−1|
P(A)α > λ

})
� P(A)e2e

− λ
e‖ f‖Λ1(α) , ∀λ > 0.
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Proof. We first assume that ‖ f‖Λ1(α) � 1, and for any fixed A ∈ Fn , set

gm =
fm − fn−1

P(A)α , m � n−1, g∗ = sup
m�n−1

| gm | .

For λ ,μ > 0, define stopping times

T = inf{m :| gm |> λ}, τ = inf{m :| gm |> λ + μ}.
Obviously, T > 0 and T � τ . Define

TA =
{

T, ω ∈ A;
∞, ω �∈ A,

τA =
{

τ, ω ∈ A;
∞, ω �∈ A,

it is easy to see that TA � τA and | gTA−1χA |� λ , we then have

σA(λ + μ) := P({g∗ > λ + μ}
⋂

A) = P({τA < ∞})

� P

({
TA < ∞, | gτA −gTA−1 |= | fτA − fTA−1 |

P(A)α � μ
})

� 1
μ

∫
{TA<∞}

| fτA − fTA−1 |
P(A)α dP

� 1
μ

∫
{TA<∞}

| E(( f − fTA−1)χA | FτA) |
P(A)α dP

� 1
μ

P({TA < ∞})
∥∥∥∥∥E(( f − fTA−1)χA | FτA)

P(A)α

∥∥∥∥∥
∞

.

If we set M =
∥∥∥E(( f− fTA−1)χA|FτA )

P(A)α

∥∥∥
∞

, and for arbitrary ε > 0, define

A1 =
{

ω ∈ A :
E(( f − fTA−1)χA | FτA)

P(A)α > M− ε
}
,

then we have

M �
∥∥∥∥∥ ( f − fTA−1)χAχA1

P(A)αP(A1)

∥∥∥∥∥
1

� sup
B∈FTA

∥∥∥∥∥ ( f − fTA−1)χB

P(B)1+α

∥∥∥∥∥
1

�‖ f ‖Λ1(α) .

Hence

σA(λ + μ) � 1
μ

P({TA < ∞}) ‖ f ‖Λ1(α)�
1
μ

σA(λ ).

Now take μ = e and λ = ke , we get

σA((k+1)e) � 1
e

σA(ke) � P(A)e−k, k ∈ Z+.

Since σA(λ ) is decreasing, for λ ∈ [e,+∞) with ke � λ < (k+1)e (k ∈ Z+ ), we have

σA(λ ) � σA(ke) � P(A)e2e−
λ
e .
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The above inequality still holds for 0 < λ < e , since

σA(λ ) � P(A)e � P(A)e2e−
λ
e .

For any f = ( fn)n�0 ∈ Λ1(α) , if we replace f above with f
‖ f‖Λ1(α)

, then the desired

inequality is obtained. �

Now let us turn to consider the equivalence of Lipschitz martingale spaces, for
which we need to provide several lemmas first.

Let A be a measurable set, we use χA to denote its characteristic function.

LEMMA 1. (1) If 0 < p � 1 , then for each a ∈ Lp(Fn) with ‖ a ‖p� 1 , it can be

approached by ∑m
k=1 λk

χAk

P(Ak)
1
p

in Lp(Fn) , where ∑m
k=1 | λk |p� 1 .

(2) If 1 � p < ∞ , then for each a ∈ Lp,1(Fn) with ‖ a ‖p,1� 1 , it can be ap-

proached by 1
p ∑m

k=1 λk
χAk

P(Ak)
1
p

in Lp,1(Fn) , where ∑m
k=1 | λk |� 1 .

Proof. It is easy to obtain (1) from the approximation properties of integrable
functions. Now we only give a proof for (2).

Here we only consider the case of nonnegative functions. In general, we can con-
sider the positive part and the negative part respectively according to the general prac-
tice. Since simple functions are dense in Lp,1(Fn) , then for each nonnegative func-
tion a ∈ Lp,1(Fn) with ‖ a ‖p,1� 1, it can be approached by positive simple functions
∑m

k=1 μkχBk , and ‖ ∑m
k=1 μkχBk ‖p,1� 1. Suppose that{μ1, · · ·,μm} is decreasing, it can

be calculated that

‖
m

∑
k=1

μkχBk ‖p,1 = p
(
(μ1 − μ2)P(B1)

1
p +(μ2− μ3)(P(B1)+P(B2))

1
p

+ · · ·+ μkm(P(B1)+ · · ·+P(Bm))
1
p
)
.

Now set

λ1 = p(μ1− μ2)P(B1)
1
p ,

λ2 = p(μ2− μ3)(P(B1)+P(B2))
1
p ,

· ··
λm−1 = p(μm−1− μm)(P(B1)+ · · ·+P(Bm))

1
p ,

λm = pμm(P(B1)+ · · ·+P(Bm))
1
p

and

Ak = B1 + · · ·+Bk,
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it is clear that ∑m
k=1 | λk |� 1, and

m

∑
k=1

μiχBk = (μ1− μ2)χB1 +(μ2− μ3)χB1+B2

+ · · ·+(μm−1− μm)χB1+···+Bm−1 + μmχB1+···+Bm

=
1
p

m

∑
k=1

λk
χAk

P(Ak)
1
p

. �

LEMMA 2. (1) Let 0 < p � 1 , α � 0 , f = ( fn)n�0 ∈ Λp(α) , Tn : L p
pα+1

(Fn) →
Lp(F ) be a linear operator with Tna = ( f − fn−1)a, n ∈ N , then supn∈N ‖ Tn ‖=‖
f ‖Λp(α) .

(2) Let 1 � p < ∞ , α � 0 , p
pα+1 � 1 , f = ( fn)n�0 ∈ Λp(α) , Tn : L p

pα+1
(Fn) →

Lp(F ) be a linear operator with Tna = ( f − fn−1)a, n ∈ N , then supn∈N ‖ Tn ‖=‖
f ‖Λp(α) .

(3) Let 1 � p < ∞ , α � 0 , p
pα+1 � 1 , f = ( fn)n�0 ∈ Λp(α) , Tn : L p

pα+1 ,1(Fn) →
Lp(F ) be a linear operator with Tna = ( f − fn−1)a, n ∈ N , then there exist positive
constants c and C such that

c ‖ f ‖Λp(α)� sup
n∈N

‖ Tn ‖� C ‖ f ‖Λp(α) .

Proof. We only show that (1) holds, (2) and (3) can be proved in a similar way.
It is easy to obtain that supn∈N ‖ Tn ‖�‖ f ‖Λp(α) , if we take a = χA

P(A)
1
p +α

, A∈Fn .

For the converse, by Lemma 1, for each a ∈ L p
pα+1

(Fn) with ‖ a ‖ p
pα+1

� 1, it can

be approached by ∑km
k=1 λ (m)

k

χ
A
(m)
k

P(A(m)
k )α+ 1

p
in L p

pα+1
(Fn) , where ∑km

k=1 | λ (m)
k | p

pα+1 � 1,

m ∈ Z+ . Hence there exists a subsequence that converges almost everywhere, denote it

still by

{
∑km

k=1 λ (m)
k

χ
A
(m)
k

P(A(m)
k )α+ 1

p

}
m�1

. By Egoroff theorem and the property of absolute

continuity of Lebesgue integral, we have

‖ ( f − fn−1)a ‖p
p = lim

m→∞

∥∥∥∥∥
km

∑
k=1

λ (m)
k ( f − fn−1)

χ
A

(m)
k

P(A(m)
k )α+ 1

p

∥∥∥∥∥
p

p

� lim
m→∞

km

∑
k=1

| λ (m)
k |p

‖ ( f − fn−1)χ
A(m)

k
‖p

p

P(A(m)
k )pα+1

� lim
m→∞

km

∑
k=1

| λ (m)
k | p

pα+1

‖ ( f − fn−1)χ
A

(m)
k

‖p
p

P(A(m)
k )pα+1

�‖ f ‖p
Λp(α),
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from which we obtain
sup
n∈N

‖ Tn ‖�‖ f ‖Λp(α) . �

LEMMA 3. ([1]) Let 0 < p � ∞ and 0 < θ < 1 , if (A0,A1) and (B0,B1) are two
couples of quasi-normed spaces, and if T is a linear operator

T : A0 → B0, T : A1 → B1

with the quasi-norms M0 and M1 respectively, then

T : (A0,A1)θ ,p → (B0,B1)θ ,p

with quasi-norm M � M1−θ
0 Mθ

1 .

LEMMA 4. ([1]) Suppose that 0 < p0 < p1 � ∞ , 0 < q,q0,q1 � ∞ and 0 < θ < 1 ,
then

(Lp0,q0 ,Lp1,q1)θ ,q = Lp,q,
1−θ

p0
+

θ
p1

=
1
p
.

THEOREM 2. Let 0 < p < ∞ , α � 0 , then Λp(α) = Λ1(α) .

Proof. For 1 � p < ∞ , by Theorem 1 we have

P(A)−
1
p−α ‖ ( f − fn−1)χA ‖p

= P(A)−
1
p

(
p
∫ ∞

0
sp−1

P

({
ω ∈ A :

| f − fn−1 |
P(A)α > s

})
ds

) 1
p

�
(

p
∫ ∞

0
sp−1e2e

− s
e‖ f‖Λ1(α) ds

) 1
p

� C ‖ f ‖Λ1(α),

it follows that
‖ f ‖Λp(α)� C ‖ f ‖Λ1(α) .

For the converse, by Hölder inequality, we have

‖ f ‖Λ1(α) = sup
n∈N

sup
A∈Fn

‖ ( f − fn−1)χA ‖1

P(A)1+α

� sup
n∈N

sup
A∈Fn

P(A)
1
q ‖ ( f − fn−1)χA ‖p

P(A)1+α =‖ f ‖Λp(α),

where 1
p + 1

q = 1.
For 0 < p < 1, by Hölder inequality, we have

‖ ( f − fn−1)χA ‖p� P(A)
1
q ‖ ( f − fn−1)χA ‖1,
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where 1
p = 1

q + 1, from which we know that ‖ f ‖Λp(α)�‖ f ‖Λ1(α) . For the con-

verse, we choose p0 ∈ (1,∞) such that 1−θ
p + θ

p0
= 1 for some θ ∈ (0,1) . Now we

consider the linear operator Tna = ( f − fn−1)a , f = ( fn)n�0 ∈ Λ1(α) (note that here
f = ( fn)n�0 ∈ Λp(α) and f = ( fn)n�0 ∈ Λp0(α)). If p0

p0α+1 � 1, then we consider Tn

as Tn : L p
pα+1

(Fn) → Lp(F ) and Tn : L p0
p0α+1

(Fn) → Lp0(F ) , respectively. Note that

(Lp,Lp0)θ ,1 = L1,(L p
pα+1

,L p0
p0α+1

)θ ,1 = L 1
1+α ,1 by Lemma 4, it follows from Lemma 3

that

‖ Tn ‖L 1
1+α ,1

(Fn)→L1(F )�‖ Tn ‖1−θ
L p

pα+1
(Fn)→Lp(F )‖ Tn ‖θ

L p0
p0α+1

(Fn)→Lp0 (F ) .

Hence by Lemma 3 we have

c ‖ f ‖Λ1(α)�‖ f ‖1−θ
Λp(α)‖ f ‖θ

Λp0(α)� C ‖ f ‖1−θ
Λp(α)‖ f ‖θ

Λ1(α),

from which we obtain
‖ f ‖Λ1(α)� C ‖ f ‖Λp(α) . (1)

If p0
p0α+1 > 1, then we consider Tn as Tn : L p

pα+1
(Fn)→ Lp(F ) and Tn : L p0

p0α+1 ,1(Fn)→
Lp0(F ) , respectively. Similar to the above proof, we can still obtain (1). �

COROLLARY 1. Let 0 < p < ∞ , then BMOp = BMO1 .
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