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THE SMALLEST EIGENVALUE OF LARGE HANKEL MATRICES

ASSOCIATED WITH A SEMICLASSICAL LAGUERRE WEIGHT

DAN WANG, MENGKUN ZHU ∗ AND YANG CHEN

(Communicated by J. Jakšetić)

Abstract. The smallest eigenvalue of large Hankel matrices generated by a semiclassical La-
guerre weight, zαe−z2+tz , where z ∈ [0,∞) , α > −1 , and t ∈ R , can be obtained through the
asymptotics of the orthonormal polynomials Pn(z) with respect to this weight.

1. Introduction

One of the most important properties of the Hankel matrices Hn is to analyse
the largest or smallest eigenvalues of the Hankel matrices generated by a given weight
function w(z) , z ∈ I ⊆ R , where

u j :=
∫

I
z jw(z)dz, j = 0,1,2, · · · , (1)

are the moments and

Hn :=
(

u j

)n

j=0
, n = 0,1,2, · · · .

The asymptotic behavior of the smallest eigenvalue, as n → ∞ , has been investigated
by many authors. We refer to [2, 6, 9, 10, 11, 12, 14, 16, 18, 19, 20, 21] for more infor-
mation about the smallest eigenvalue. Based on the support, the study of the smallest
eigenvalue can be divided into two parts: finite and infinite. For finite cases, we list
a few examples of such a connection between the weight with their supports and their
associated references.

• z ∈ [−1,1] , w(z) = 1, [16].

• z ∈ [0,1] , w(z) = zα(1− z)β , α > −1, β > −1, [19]; if α = β = 0, [16, 17].

The similarly for infinite cases,
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• z ∈ [0,∞) , w(z) = zαe−zβ
, α > −1, β � 1

2 , [21]; if α = 0, β = 1
2 , [10]; if

α = 0, β > 1
2 , [6, 11].

• z ∈ [0,∞) , w(z) = zαe−z− t
z , α > −1, t � 0, [20].

• z ∈ (−∞,∞) , w(z) = zαe−|z|α , α > 1, [9].

Let λn denote the smallest eigenvalue of Hn . Widom and Wilf [17] were to sum up a
‘universal’ law for λn , i.e. if w(z) > 0, z ∈ [a,b] , and the Szegö condition is satisfied,

the asymptotic form of the smallest eigenvalue is An
1
2 B−n , where A > 0, 0 < B < 1.

There were also a new criteria for the determinacy of the Hamburger moment problem.
Berg, Chen and Ismail [1] have proved that the moment sequence (1) is determinate if
and only if λn → 0, as n → ∞ .

It is well known that λn is posed by the classical Rayleigh quotient

λn = min

⎧⎪⎪⎨
⎪⎪⎩

n
∑

j,k=0
x ju j+kxk

n
∑

k=0
|xk|2

∣∣∣∣ X := (x0,x1, · · · ,xn)T ∈ Cn+1 \ {0}

⎫⎪⎪⎬
⎪⎪⎭. (2)

There were many manuscripts mentioned how to compute λn and showed a lower
bound for λn ,

λn � 2π
n
∑
j=0

K j j

, (3)

where

K jk :=
∫ 2π

0
P j(eiφ )Pk(e−iφ )dφ ,

and Pn(z) is a polynomials of degree n , orthonormal with respect to a given weight,
see [6, 9, 16, 19, 20].

The paper is structured as follows. In Section 2, we present the main results of this
paper. The proofs of these results are provided in Section 3 and Section 4, respectively.

2. The main results

In this paper, we consider the asymptotic behavior of the smallest eigenvalue λn

of Hn generated by the semiclassical Laguerre weight

w(z) = zαe−z2+tz, α > −1, t ∈ R, z ∈ [0,∞). (4)
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The moments associated with (4) are

uk =
∫ ∞

0
zk+αe−z2+tzdz

=
1
2

Γ
(

1+ k+ α
2

)
1F1

(
1+ k+ α

2
;
1
2
;
t2

4

)

+
t
2

Γ
(

2+ k+ α
2

)
1F1

(
2+ k+ α

2
;
3
2
;
t2

4

)
,

where 1F1(a;b;c) is the Kummer confluent hypergeometric function.
The main results of this paper are as follow:

THEOREM 1. For n → ∞ , the asymptotic expression of the orthonormal polyno-
mials associated with the weight (4) are

Pn(z) ∼ (−1)n(2π)−
1
2 (−z)

1
4− α

2 b−
1
4 exp

{
z2

2
+

1
2
b

1
2 (−z)

1
2 (2b+ z)− tz

2

− 1
6
tb−

1
2 (−z)

1
2 (6b+ z)

}
, z /∈ [0,b], (5)

where

b =
1
3
(t +

√
24n+ t2 +12α). (6)

THEOREM 2. The smallest eigenvalue λn of large Hankel matrices Hn associated
with the weight (4) can be given by

λn ∼ 4π
3
2 b

1
2

[
t
2

+
1
2
tb−2

(
3
4
− b

2

)
+4b

1
2

] 1
2

exp

{
−1−2b

3
2 +b

1
2

+
1
3
tb−

1
2 (6b−1)− t

}
, n → ∞, (7)

with

b =
1
3
(t +

√
24n+ t2 +12α).

REMARK 1. For this problem, using the theory of Coulomb fluid [4, 5, 7],

v(z) = − lnw(z) = z2 − tz−α lnz, (8)

supported on [a,b] , following the discussions of Chen and Lawrence [5, 6], Zhu, Em-
mart, Chen and Weems[21], here a = 0 and b satisfies the supplementary condition∫ b

0

zv′(z)√
(b− z)z

dz = 2πn,

so we have (6) and
3b2−2tb = 4α +8n. (9)

Kindly reminder, b := bn depends on n , which is used in section 4.
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3. Proof of Theorem 1

In this section, we will utilize the approach, established by Chen and Lawrence [5],
which is based on the Coulomb fluid linear statistics, to derive the asymptotic behavior
of orthonormal polynomials with respect to (4). In this case, the asymptotic expression
of the monic orthogonal polynomials {Pn(z)} , [5, 8], are approximated by

Pn(z) ∼ e−S1(z)−S2(z), (10)

where

e−S1(z) =
1
2

[(
z−b

z

) 1
4

+
(

z
z−b

) 1
4
]

, z /∈ [0,b] (11)

S2(z) =
1
2π

∫ b

0

v(x)√
(b− x)x

[√
(z−b)z
x− z

+1

]
dx

−n ln

(√
z+

√
z−b

2

)2

, z /∈ [0,b], (12)

and the relationship between the orthogonal polynomials {Pn(z)} and the orthonormal
polynomials {Pn(z)} , [5], can be given by

Pn(z) =
√

2e
A
2√

bπ
Pn(z), (13)

with

A =
∫ b

0

v(x)
π
√

(b− x)x
dx−2n ln

b
4
, (14)

where the orthonormal polynomials Pn(z) with respect to (4),∫ b

0
P2

n (z)w(z)dz = 1.

It mainly divides into two steps to prove the theorem 1.

Step 1 : The asymptotic of the monic orthogonal polynomials associated with (4)
Firstly, let η := − z

b , z /∈ [0,b] and |η | � 1, it handles the below integral√
z(z−b)
2π

∫ b

0

x2 − tx−α lnx

(x− z)
√

(b− x)x
dx

=

√
z(z−b)
2π

∫ b

0

x2

(x− z)
√

(b− x)x
dx− t

√
z(z−b)
2π

∫ b

0

x

(x− z)
√

(b− x)x
dx

− α
√

z(z−b)
2π

∫ b

0

lnx

(x− z)
√

(b− x)x
dx

=− 3b2
√

z(z−b)
16z 2F1

(
1,

5
2
;3;

b
z

)
+

tb
√

z(z−b)
4z 2F1

(
1,

3
2
;2;

b
z

)
+

α
2

ln(−z)

−α ln(
√

η +
√

η +1). (15)
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We give the explanations for the above three integrals. The detailed evaluation of the
first integral using the basic properties of the hypergeometric function is as follows:√

z(z−b)
2π

∫ b

0

x2

(x− z)
√

(b− x)x
dx (x := by)

=− b2
√

z(z−b)
2πz

∫ 1

0
y

3
2 (1− y)−

1
2

(
1− by

z

)−1

dy

=− b2
√

z(z−b)
2πz

B

(
5
2
,
1
2

)
2F1

(
1,

5
2
;3;

b
z

)
,

where B(x,y) denotes the Beta function. Similarly, the second integral can be evalu-
ated using the same approach. With the aid of the principal integral in Appendix A, the
third integral is dealt with

−α
√

z(z−b)
2π

∫ b

0

lnx

(x− z)
√

(b− x)x
dx =

α
2

ln
−bz

(
√−z+

√
b− z)2

.

Subsequently, the another principal integral is conducted as

1
2π

∫ b

0

x2 − tx−α lnx√
(b− x)x

dx =
3b2

16
− tb

4
− α

2
ln

b
4

=
α
4

+
n
2
− tb

8
− α

2
ln

b
4
, (16)

where we use (9) instead of b2 .
Then, substituting z = −bη and (8) into (12),

−S2(z) =n ln
−b(

√η +
√

η +1)2

4
− 1

2π

∫ b

0

x2− tx−α lnx√
(b− x)x

dx

−
√

z(z−b)
2π

∫ b

0

x2− tx−α lnx

(x− z)
√

(b− x)x
dx; (17)

taking (15) and (16) into (17),

−S2(z) = ln

{
[2−2n−αη− α

2 (−b)n(
√

η +
√

η +1)2n+α ]exp

[
tb
8
−L(z)− α +2n

4

]}
,

(18)

where

L(z) = −3b2
√

z(z−b)
16z 2F1

(
1,

5
2
;3;

b
z

)
+

tb
√

z(z−b)
4z 2F1

(
1,

3
2
;2;

b
z

)
.

In addition, substituting z = −bη into (11),

e−S1(z) =
1
2

η− 1
4 (η +1)−

1
4 [(η +1)

1
2 + η

1
2 ]. (19)
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The asymptotic of the monic orthogonal polynomials associated with (4) are derived by
combining (19), (18) with (10), i.e.

Pn(z) ∼ (−1)nbnη− 1
4− α

2 2−2n−α−1(η +1)−
1
4 (

√
η +1+

√
η)2n+α+1

× exp

{
tb
8
−L(z)− α +2n

4

}
, z /∈ [0,b], (20)

where

L(z) = −3b2
√

z(z−b)
16z 2F1

(
1,

5
2
;3;

b
z

)
+

tb
√

z(z−b)
4z 2F1

(
1,

3
2
;2;

b
z

)
, (21)

b =
1
3
(t +

√
24n+ t2 +12α).

Step 2 : Asymptotic behaviors
We use the standard method to obtain the asymptotic orthonormal polynomials

with respect to (4). Putting (8) into the identity relating (14),

A =
3b2

8
− tb

2
− (α +2n) ln

b
4

=
α +2n

2
− (α +2n) ln

b
4
− tb

4
, (22)

where b2 is replaced by (9).
Substituting (20) and (22) into (13), with some simplifications, n → ∞ ,

Pn(z) ∼ 2−
1
2 π− 1

2 (−1)nb−
1
2 (−z)−

α
2 [η(η +1)]−

1
4 exp{(2n+ α +1)

× ln(
√

η +1+
√

η)−L(z)}, z /∈ [0,b], (23)

where

L(z) = −3b2
√

z(z−b)
16z 2F1

(
1,

5
2
;3;

b
z

)
+

tb
√

z(z−b)
4z 2F1

(
1,

3
2
;2;

b
z

)
.

Next, we will simplify the representation of the orthonormal polynomials given by
(23). Let’s focus on the first part of the exponential term in (23), where |η | � 1 and
η = − z

b :

(2n+ α +1) ln(
√

η +1+
√

η)

∼ (2n+ α) ln(
√

η +1+
√

η) =
3b2−2tb

4

√
η 2F1

(
1
2
,
1
2
;
3
2
;−η

)

=
(

3z2

4η2 +
tz
2η

) ∞

∑
k=0

(−1)k ηk+1Γ(k+ 1
2 )

2
√

π(k+ 1
2)Γ(k+1)

∼
1
2
b

1
2 (−z)

1
2 (2b+ z)− 1

6
tb−

1
2 (−z)

1
2 (6b+ z). (24)

Here, we utilize the inverse hyperbolic sine and the formula from Gradshteyn and
Ryzhik ([13], cf. 9.121.26) to obtain the simplification.
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As η → 0, for z = −bη , with the aid of mathematical software, the second part
of the exponential term for (23),

L(z) =
[

z
2
− b

2

√
η(η +1)

]
t− z2

2
+b2√η

√
η +1(2η −1) ∼ − z2

2
+

tz
2

. (25)

Substituting η = − z
b , (24) and (25) into (23), it arrives at (5).

REMARK 2. (5) with t = 0, we find b = 2× 3−
1
3 (2n + α)

1
2 ; consequently, it

covers the approximation result for the deformed Laguerre polynomials due to Zhu,
Emmart, Chen and Weems [21] when β = 2 and n → ∞ ,

Pn(z) ∼ (2π)−
1
2 (−1)n(−z)−

α
2 − 1

4 2−
1
4 3

1
8 (2n+ α)−

1
8 exp

{
2−

3
2 3−

3
4 (2n+ α)

3
4 (−z)

1
2

× [8+2×3
1
2 (2n+ α)−

1
2 z]+

z2

2

}
, z /∈ [0,∞].

4. Proof of Theorem 2

Before proving the theorem 2, we first reminder that b mentioned in (6) will be
denoted as bn , for convenience,

bn : = b =
1
3
(t +

√
24n+ t2 +12α),

bμ : =
1
3
(t +

√
24μ + t2 +12α).

With Pn(z) having the form (5), we use the approach of [6, 16, 19, 20, 21] to deter-
minate the asymptotic behavior of λn for large n . For sufficiently large μ and ν , the
dominant contributions to Kμν are from the arc of the unit circle |z| = 1. Let δ > 0 be
an arbitrary positive number, which regulates the value of μ , ν to satisfy

n− δn
1
2 � μ , ν � n, n → ∞; (26)

meanwhile, considering θ = φ −π and expanding |θ | � 1, it shows

Kμν ∼

∫ ε

−ε
Pμ(−eiθ )Pν(−e−iθ )dθ

∼(2π)−1(−1)μ+νb−
1
2 exp

⎧⎨
⎩2b

3
2 −2b

1
2 +

b
1
2
μ

2
+

b
1
2
ν
2

+1+ t− tb−
1
2

3
(6b−1)

⎫⎬
⎭

×
∫ ε

−ε
exp

{[
t
2

+4b
1
2 +

tb−
1
2

2

(
3
4
− b

2

)]
(−θ 2)

}
dθ . (27)

It is emphasized that the contributions to the integral from (−∞,−ε) and (ε,∞) are
sub-dominant compared to those from [−ε,ε] as μ and ν tend to infinity. This is
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achieved by eliminating the linear terms since they remain bounded under the restriction
on μ and ν .

Thus, dealing with (27) by the Laplace method, see Appendix B, Kμν can be
rewritten as

Kμν ∼ (2π)−1π
1
2 (−1)μ+νb−

1
2

[
t
2

+4b
1
2 +

tb−2

2

(
3
4
− b

2

)]− 1
2

× exp

{
2b

3
2 −2b

1
2 +

b
1
2
μ

2
+

b
1
2
ν
2

+1+ t− tb−
1
2

3
(6b−1)

}
.

On the other hand, the leading behavior of (3) for large n is in turn found by
replacing the sum by an integral, so

2π
λn

∼

∫ n

0
Kμνdμ

∼(2π)−1π
1
2 b−

1
2

[
t
2

+4b
1
2 +

tb−2

2

(
3
4
− b

2

)]− 1
2

× exp

{
2b

3
2 −2b

1
2 +1+ t− tb−

1
2

3
(6b−1)

}∫ n

0
exp{b

1
2
μ}dμ .

Based on the indefinite integral
∫

exp{x 1
2 }dx = (2

√
x−2)exp{√x}+constant, we can

perform an analogous analysis to the above integral for large n . This leads us to the
expression:

2π
λn

∼ (2π)−1b−
1
2 π

1
2

[
t
2

+4b
1
2 +

tb−2

2

(
3
4
− b

2

)]− 1
2

× exp

{
2b

3
2 −b

1
2 +1+ t− tb−

1
2

3
(6b−1)

}
,

which immediately yields (7).

REMARK 3. Taking t = 0 for (7), b = 2× 3
1
3 (2n+ α)

1
2 , the result of Zhu, Em-

mart, Chen and Weems [21] with β = 2 is covered too,

λn ∼ 2
15
4 3−

3
8 π

3
2 (2n+ α)

3
8 exp{−1−2

5
2 ×3−

3
4 (2n+ α)

3
4 +2

1
2 ×3−

1
4 (2n+ α)

1
4 }.
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Appendix A

∫ b

a

1√
(b− z)(z−a)

dz = π ,

∫ b

a

z√
(b− z)(z−a)

dz =
π(a+b)

2
,

∫ b

a

1

z
√

(b− z)(z−a)
dz =

π√
ab

,

∫ b

a

z2√
(b− z)(z−a)

dz =
1
8
(3a2 +2ab+3b2)π ,

∫ b

a

1

(x+ z)
√

(b− x)(x−a)
dx =

π√
(z+a)(z+b)

,

∫ b

a

ln(x+ t)
x
√

(b− x)(x−a)
dx =

π√
ab

ln

[
(
√

ab+
√

(t +a)(t +b))2 − t2

(
√

a+
√

b)2

]
.

Appendix B

The Laplace method [15, 3] gives

∫ b

a
f (t)e−λg(t)dt ∼ e−λg(c) f (c)

√
2π

λg′′(c)
, as λ → ∞,

where g assumes a strict minimum over [a,b] at an interior critical point c such that

g′(c) = 0, g′′(c) > 0, and f (c) 	= 0.

RE F ER EN C ES

[1] C. BERG, Y. CHEN AND M. E. H. ISMAIL, Small eigenvalues of large Hankel matrices: The indeter-
minate case, Math. Scand. 91 (2002) 67–81.

[2] C. BERG AND R. SZWARC, The smallest eigenvalue of Hankel matrices, Constr. Approx. 34 (2011)
107–133.

[3] N. G. DE BRUIJIN, Asymptotic methods in Analysis, New York: Interscience, 1958.
[4] Y. CHEN AND M. E. H. ISMAIL, Thermodynamic relations of the Hermitian matrix ensembles, J.

Phys. A: Math. Gen. 30 (1997) 6633–6654.



62 D. WANG, M. ZHU AND Y. CHEN

[5] Y. CHEN AND N. LAWRENCE, On the linear statistics of Hermitian random matrices, J. Phys. A:
Math. Gen. 31 (1998) 1141–1152.

[6] Y. CHEN AND N. LAWRENCE, Small eigenvalues of large Hankel matrices, J. Phys. A: Math. Gen.
32 (1999) 7305–7315.

[7] Y. CHEN AND M. R. MCKAY, Coulomb fluid, Painlevé transcendents and the information theory of
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