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OSCILLATORY AND SPECTRAL PROPERTIES OF

A CLASS OF FOURTH–ORDER DIFFERENTIAL

OPERATORS VIA A NEW HARDY–TYPE INEQUALITY

RYSKUL OINAROV, AIGERIM KALYBAY AND LARS-ERIK PERSSON ∗

(Communicated by I. Perić)

Abstract. In this paper, we study oscillatory properties of a fourth-order differential equation and
spectral properties of a corresponding differential operator. These properties are established by
first proving a new second-order Hardy-type inequality, where the weights are the coefficients
of the equation and the operator. This new inequality, in its turn, is established for functions
satisfying certain boundary conditions that depend on the boundary behavior of one of its weights
at infinity and at zero.

1. Introduction

Let I = (0,∞) , 1 < p,q < ∞ , and 1
p + 1

p′ = 1. Let u , v , and v1−p′ be locally
summable and positive weight functions on I . Moreover, suppose that v is twice con-
tinuously differentiable on the interval I .

Denote by W 2
p,v ≡ W 2

p,v(I) the space of functions f : I → R having generalized

derivatives on I , for which ‖ f ′′‖p,v < ∞ , where ‖g‖p,v =
(∞∫

0
v(t)|g(t)|pdt

) 1
p

is the

norm of the Lebesgue space Lp,v ≡ Lp,v(I) . By the conditions on the function v it
follows that for any f ∈W 2

p,v there exist the finite limits lim
t→1

f (t) = f (1) and lim
t→1

f ′(t) =

f ′(1) . Therefore, the space W 2
p,v has the norm

‖ f‖W2
p,v

= ‖ f ′′‖p,v + | f ′(1)|+ | f (1)|. (1)

Let C∞
0 (I) be the set of finitely supported functions, which are infinitely differ-

entiable on the interval I . By the conditions on the function v we have that C∞
0 (I) ⊂

W 2
p,v(I) . Denote by W̊ 2

p,v ≡ W̊ 2
p,v(I) the closure of the set C∞

0 (I) with respect to the
norm defined by (1).
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We investigate the oscillatory properties of the following fourth-order differential
equation

(v(t)y′′(t))′′ −λu(t)y(t) = 0, t ∈ I, (2)

where λ > 0 and the spectral properties of the corresponding differential operator L
generated by the expression

Ly =
1

u(t)
(v(t)y′′(t))′′, (3)

in the space L2,u(I) with inner product ( f ,g)2,u =
∞∫
0

f (t)g(t)u(t)dt . Note that (2) can

be interpreted as that λ is the eigenvalue of the differential operator L defined by (3).
The oscillatory properties of the second-order equation

(v(t)y′(t))′ −u(t)y(t) = 0, t ∈ I, (4)

have been well studied by known methods in the qualitative theory of differential equa-
tions (see [3] and the references therein). One of these methods transforms equation (4)
into a Hamiltonian system, while the second method treats the equation (4) as a pertur-
bation of an Euler-type equation. These methods have been much less developed for
the fourth-order equation (2) (see, e.g., [5], [6], [22], and [23]). In this paper, we study
the oscillatory properties of the equation (2) and the spectral properties of the operator
(3) by the variational method, using their connections with the following second-order
Hardy-type inequality:

⎛
⎝ ∞∫

0

u(t)| f (t)|qdt

⎞
⎠

1
q

� C

⎛
⎝ ∞∫

0

v(t)| f ′′(t)|pdt

⎞
⎠

1
p

, f ∈ W̊ 2
p,v, 1 < p � q < ∞. (5)

Moreover, the required oscillation and spectral conditions are obtained explicitly in
terms of the coefficients u and v of the equation (2) and the operator (3).

Concerning the current knowledge of higher-order Hardy-type inequalities we re-
fer to [13, Chapter 4].

The inequality (5) can be investigated depending on a “type of singularity” of the
weight function v at the endpoints of I . The concept “type of singularity” follows from
the combined results of the works [15] and [18] (see Theorems R and L below). For
f ∈W 2

p,v we assume that lim
t→0+

f (t) = f (0) , lim
t→0+

f ′(t) = f ′(0) , lim
t→∞

f (t) = f (∞) , and

lim
t→∞

f ′(t) = f ′(∞) if these limits are finite.

THEOREM R. Let 1 < p < ∞ .
(i) If v1−p′ /∈ L1(1,∞) , then

W̊ 2
p,v(1,∞) = W 2

p,v(1,∞)

(in this case, for all f ∈W 2
p,v there do not exist both f (∞) and f ′(∞)).
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(ii) If v1−p′ ∈ L1(1,∞) and t p′v1−p′(t) /∈ L1(1,∞) , then

W̊ 2
p,v(1,∞) = { f ∈W 2

p,v(1,∞) : f ′(∞) = 0}

(in this case, for all f ∈W 2
p,v there exists only f ′(∞)).

(iii) If t p′v1−p′(t) ∈ L1(1,∞) , then

W̊ 2
p,v(1,∞) = { f ∈W 2

p,v(1,∞) : f (∞) = f ′(∞) = 0}

(in this case, for all f ∈W 2
p,v there exist both f (∞) and f ′(∞)).

THEOREM L. Let 1 < p < ∞ .
(i) If t p′v1−p′(t) /∈ L1(0,1) , then

W̊ 2
p,v(0,1) = W 2

p,v(0,1)

(in this case, for all f ∈W 2
p,v there do not exist both f (0) and f ′(0)).

(ii) If v1−p′ /∈ L1(0,1) and t p′v1−p′(t) ∈ L1(0,1) , then

W̊ 2
p,v(0,1) = { f ∈W 2

p,v(0,1) : f (0) = 0}

(in this case, for all f ∈W 2
p,v there exists only f (0)).

(iii) If v1−p′ ∈ L1(0,1) , then

W̊ 2
p,v(0,1) = { f ∈W 2

p,v(0,1) : f (0) = f ′(0) = 0}

(in this case, for all f ∈W 2
p,v there exist both f (0) and f ′(0)).

We say that the weight function v is strong-singular at infinity if there do not exist
both f (∞) and f ′(∞) (see item (i), Theorem R), weak-singular at infinity if there exists
only f ′(∞) (see item (ii), Theorem R), and non-singular at infinity if there exist both
f (∞) and f ′(∞) (see item (iii), Theorem R). Similarly, Theorem L defines the concepts
of strong singularity, weak singularity, and non-singularity of the function v at zero.

It is obvious that the second-order Hardy-type inequality (5) does not hold if none
or only one of the values f (∞) , f ′(∞) , f (0) , and f ′(0) exists in both endpoints of the
interval I . If there exist exactly two values, we have “standard” cases, because then
the second-order inequality (5) has two boundary conditions. The oscillatory proper-
ties when W̊ 2

p,v(I) = { f ∈ W 2
p,v(I) : f (∞) = f ′(∞) = 0} and W̊ 2

p,v(I) = { f ∈ W 2
p,v(I) :

f (0) = f ′(0) = 0} can be derived from the well-known results on the standard differ-
ential Hardy-type inequalities (see, e.g., [12] or [13]) as they are obtained in the paper
[9] when W̊ 2

p,v(I) = { f ∈ W 2
p,v(I) : f (0) = f ′(∞) = 0} . The paper [11] considers the

case when W̊ 2
p,v(I) = { f ∈ W 2

p,v(I) : f (0) = f ′(0) = f ′(∞) = 0} , which can be called
“overdetermined” because the second-order inequality (5) has three boundary condi-
tions. Extra boundary condition causes additional difficulties in characterization of the
inequality (5). In the present paper, we investigate one more “overdetermined” case,
namely when W̊ 2

p,v(I) = { f ∈W 2
p,v(I) : f (0) = f (∞) = f ′(∞) = 0} .
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Note that the spectral properties of the operator L were also studied earlier in some
papers, but under conditions different from those discussed in this paper (see, e.g., [1],
[2], [7] (Chapters 29 and 34), [14], [21], and the references therein). Our conditions
follow from a new Hardy-type inequality of independent interest.

The paper is organized as follows: Section 2 contains all the auxiliary statements,
which are necessary to prove the main results. In Section 3 we investigate the inequality
(5) and state and prove our main result concerning Hardy-type inequalities (see Theo-
rem 1). In Section 4, we study the oscillatory properties of the differential equation (2).
Our main results are stated in Theorems 2 and 3. Finally, in Section 5, we investigate
the spectral properties of the operator (3). Our new results are given in Theorems 4–7.

2. Auxiliary statements

The symbol A 	 B means A � CB with some constant C . If A 	 B 	 A , then
we write A ≈ B . Moreover, denote by χM the characteristic function of the set M .

Assume that v(t)= v(t)
t p , t ∈ I . Since t p′v1−p′ = t p′v1−p′t p(1−p′) = v1−p′t p′+p−pp′ =

v1−p′ , from t p′v1−p′ ∈ L1(I) we have that v1−p′ ∈ L1(I) . In this case, for any τ ∈ I there
exists kτ such that

τ∫
0

v1−p′(t)dt = kτ

∞∫
τ

v1−p′(t)dt. (6)

In addition, kτ increases in τ , lim
τ→0+

kτ = 0, and lim
τ→∞

kτ = ∞ .

Let 0 � a < b � ∞ . We need the following well-known statement (see, e.g., [12]
or [13]).

THEOREM A. Let 1 < p � q < ∞ and 0 � a < b � ∞ .
(i) The inequality

⎛
⎝ b∫

a

u(x)

∣∣∣∣∣∣
x∫

a

f (t)dt

∣∣∣∣∣∣
q

dx

⎞
⎠

1
q

� C

⎛
⎝ b∫

a

v(t)| f (t)|pdt

⎞
⎠

1
p

, (7)

holds if and only if

A+ = sup
a<z<b

⎛
⎝ b∫

z

u(x)dx

⎞
⎠

1
q
⎛
⎝ z∫

a

v1−p′(t)dt

⎞
⎠

1
p′

< ∞.

Moreover, A+ � C � p
1
q (p′)

1
p′ A+ , where C is the best constant in (7).

(ii) The inequality

⎛
⎝ b∫

a

u(x)

∣∣∣∣∣∣
b∫

x

f (t)dt

∣∣∣∣∣∣
q

dx

⎞
⎠

1
q

� C

⎛
⎝ b∫

a

v(t)| f (t)|pdt

⎞
⎠

1
p

, (8)
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holds if and only if

A− = sup
a<z<b

⎛
⎝ z∫

a

u(x)dx

⎞
⎠

1
q
⎛
⎝ b∫

z

v1−p′(t)dt

⎞
⎠

1
p′

< ∞.

Moreover, A− � C � p
1
q (p′)

1
p′ A− , where C is the best constant in (8).

We also need the combined results from the papers [10] and [20]. Let 0 < τ < ∞
and

B−
1 (τ) = sup

z>τ

⎛
⎝ z∫

τ

u(t)dt

⎞
⎠

1
q
⎛
⎝ ∞∫

z

(s− z)p′v1−p′(s)ds

⎞
⎠

1
p′

,

B−
2 (τ) = sup

z>τ

⎛
⎝ z∫

τ

(z− t)qu(t)dt

⎞
⎠

1
q
⎛
⎝ ∞∫

z

v1−p′(s)ds

⎞
⎠

1
p′

,

B−(τ) = max{B−
1 (τ),B−

2 (τ)}.
THEOREM B. Let 1 < p � q < ∞ and 0 < τ < ∞ . Then the inequality

⎛
⎝ ∞∫

τ

u(t)

∣∣∣∣∣∣
∞∫

t

(x− t) f (x)dx

∣∣∣∣∣∣
q

dt

⎞
⎠

1
q

� C

⎛
⎝ ∞∫

τ

v(t)| f (t)|pdt

⎞
⎠

1
p

, (9)

holds if and only if B−(τ) < ∞; in addition, B−(τ) � C � 8p
1
q (p′)

1
p′ B−(τ) , where C

is the best constant in (9).

3. A characterization of the Hardy-type inequality (5)

We study inequality (5) in the case when v is weak-singular at zero and non-
singular at infinity, i.e., when

W̊ 2
p,v(I) = { f ∈W 2

p,v(I) : f (0) = f (∞) = f ′(∞) = 0}. (10)

Let 0 < τ < ∞ and

B−
3 (τ) =

1
τ

(∫ τ

0
tqu(t)dt

) 1
q
(∫ ∞

τ
(s− τ)p′v1−p′(s)ds

) 1
p′

,

F+
1 (τ) = sup

0<z<τ

1
τ

(∫ z

0
tqu(t)dt

) 1
q
(∫ τ

z
(τ − s)p′v1−p′(s)ds

) 1
p′

, (11)

F+
2 (τ) = sup

0<z<τ

1
τ

(∫ τ

z
(τ − t)qu(t)dt

) 1
q
(∫ z

0
sp′v1−p′(s)ds

) 1
p′

, (12)
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B−(τ) = max{B−(τ),B−
3 (τ)}, F+(τ) = max{F+

1 (τ),F+
2 (τ)},

B−F+(τ) = inf
τ∈I

max{B−(τ),F+(τ)}.

Our main result in this Section reads:

THEOREM 1. Let 1 < p � q < ∞ , v1−p′ /∈ L1(0,1) , t p′v1−p′(t) ∈ L1(0,1) , and
t p′v1−p′(t) ∈ L1(1,∞) . Then the inequality (5) holds if and only if B−F+(τ) < ∞ for
any finite τ > 0 . Moreover, for the best constant C in (5) the following estimates

4−
1
p inf

τ∈I
B−F+(τ) � C � 11p

1
q (p′)

1
p′ inf

τ∈I
B−F+(τ), (13)

sup
τ>0

(1+ kp−1
τ )−

1
p F+(τ) � C � 11p

1
q (p′)

1
p′ F+(τ+) (14)

hold, where

τ+ = inf{τ > 0 : B−(τ) � F+(τ)}. (15)

Proof. Sufficiency. Let B−F+(τ) < ∞ for any finite τ > 0. By the condition
on the weight function v , due to Theorems R (item (iii)) and L (item (ii)), we get that

(10) holds. Therefore, for f ∈ W̊ 2
p,v we have that f (t) =

t∫
0

f ′(x)dx for 0 < t < τ ,

f (t) = −
∞∫
t

f ′(x)dx for t > τ and f ′(t) = −
∞∫
t

f ′′(s)ds for all t > 0. Then

f (t) = −
t∫

0

∞∫
x

f ′′(s)dsdx = −
t∫

0

t∫
x

f ′′(s)dsdx−
t∫

0

∞∫
t

f ′′(s)dsdx

= −
t∫

0

f ′′(s)ds

s∫
0

dx−
∞∫

t

f ′′(s)ds

t∫
0

dx = −
t∫

0

s f ′′(s)ds−
∞∫

t

t f ′′(s)ds

= −
t∫

0

s f ′′(s)ds−
τ∫

t

t f ′′(s)ds−
∞∫

τ

t f ′′(s)ds (16)

= −
t∫

0

s f ′′(s)ds−
τ∫

t

s f ′′(s)
t
s
ds−

∞∫
τ

s f ′′(s)
t
s
ds. (17)

Let g(s) = s f ′′(s) . Hence, from (17) it follows that

f (t) = −
∞∫

τ

g(s)
t
s
ds−

τ∫
t

g(s)
t
s
ds−

t∫
0

g(s)ds. (18)
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Since
∞∫
0

f ′(x)dx = 0, we get that

f (t) = c1

∞∫
0

∞∫
x

f ′′(s)dsdx = c2

∞∫
0

s f ′′(s)ds =
∞∫

0

g(s)ds = 0.

Therefore, for f ∈ W̊ 2
p,v(I) , in view of (18), we obtain that

f (t) = −
∞∫

τ

g(s)
t
s
ds−

τ∫
t

g(s)
t
s
ds−

t∫
0

g(s)ds+
t
τ

∞∫
0

g(s)ds

=
∞∫

τ

g(s)
t(s− τ)

sτ
ds−

τ∫
t

g(s)
t(τ − s)

sτ
ds−

(
1− t

τ

) t∫
0

g(s)ds (19)

for 0 < t < τ . Moreover,

f (t) =
∞∫

t

∞∫
x

f ′′(s)dsdx =
∞∫

t

f ′′(s)
s∫

t

dxds

=
∞∫

t

(s− t) f ′′(s)ds =
∞∫

t

(s− t)
g(s)
s

ds (20)

for t > τ . Thus, for f ∈ W̊ 2
p,v(I) from (19) and (20) it follows that

f (t) = χ(0,τ)(t)

⎡
⎣ ∞∫

τ

g(s)
t(s− τ)

sτ
ds−

τ∫
t

g(s)
t(τ − s)

sτ
ds−

(
1− t

τ

) t∫
0

g(s)ds

⎤
⎦

+χ(τ,∞)(t)
∞∫

t

(s− t)
g(s)
s

ds. (21)

According to (21), the inequality (5) can be written in the form

⎛
⎝ τ∫

0

u(t)

∣∣∣∣∣∣
t
τ

∞∫
τ

(s− τ)
s

g(s)ds − (τ − t)
τ

t∫
0

g(s)ds − t
τ

τ∫
t

(τ − s)
s

g(s)ds

∣∣∣∣∣∣
q

dt

+
∞∫

τ

u(t)

∣∣∣∣∣∣
∞∫

t

(s− t)
g(s)
s

ds

∣∣∣∣∣∣
q

dt

⎞
⎠

1
q

� C

⎛
⎝ ∞∫

0

v(s)|g(s)|pds

⎞
⎠

1
p

. (22)

By now, using the Minkowski’s inequality for sums and Hölder’s inequality, from The-
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orems A and B the latter gives

⎛
⎝ ∞∫

0

u(t)| f (t)|qdt

⎞
⎠

1
q

� p
1
q (p′)

1
p′ (F+

1 (τ)+F+
2 (τ))

⎛
⎝ τ∫

0

v(t)| f ′′(t)|pdt

⎞
⎠

1
p

+(B−
3 (τ)+8p

1
q (p′)

1
p′ B−(τ))

⎛
⎝ ∞∫

τ

v(t)| f ′′(t)|pdt

⎞
⎠

1
p

� 11p
1
q (p′)

1
p′ B−F+(τ)

⎛
⎝ ∞∫

0

v(t)| f ′′(t)|pdt

⎞
⎠

1
p

. (23)

Since B−F+(τ) < ∞ for any finite τ > 0 and the left-hand side of (23) is independent
of τ > 0, we get the right-hand side estimate of (13).

For 0 < N < τ we have that

B−
3 (τ) <

⎛
⎝ N∫

0

( t
τ

)q
u(t)dt

⎞
⎠

1
q
⎛
⎝ ∞∫

τ

sp′v1−p′(s)ds

⎞
⎠

1
p′

+

⎛
⎝ τ∫

N

( t
τ

)q
u(t)dt

⎞
⎠

1
q
⎛
⎝ ∞∫

τ

sp′v1−p′(s)ds

⎞
⎠

1
p′

�

⎛
⎝ N∫

0

( t
τ

)q
u(t)dt

⎞
⎠

1
q
⎛
⎝ ∞∫

τ

sp′v1−p′(s)ds

⎞
⎠

1
p′

+

⎛
⎝ τ∫

N

u(t)dt

⎞
⎠

1
q
⎛
⎝ ∞∫

τ

sp′v1−p′(s)ds

⎞
⎠

1
p′

.

Since

lim
τ→∞

⎛
⎝ N∫

0

( t
τ

)q
u(t)dt

⎞
⎠

1
q
⎛
⎝ ∞∫

τ

sp′v1−p′(s)ds

⎞
⎠

1
p′

= 0,

then

B−
3 (τ) 	

⎛
⎝ τ∫

N

u(t)dt

⎞
⎠

1
q
⎛
⎝ ∞∫

τ

sp′v1−p′(s)ds

⎞
⎠

1
p′
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for a sufficiently large τ > N . Let

F+
2 = lim

τ→∞
F+

2 (τ) = lim
τ→∞

sup
0<z<τ

⎛
⎝ τ∫

z

(
1− t

τ

)q
u(t)dt

⎞
⎠

1
q
⎛
⎝ z∫

0

sp′v1−p′(s)ds

⎞
⎠

1
p′

= sup
z>0

⎛
⎝ ∞∫

z

u(t)dt

⎞
⎠

1
q
⎛
⎝ z∫

0

sp′v1−p′(s)ds

⎞
⎠

1
p′

.

If F+
2 = ∞ , then it is obvious that B−

3 (τ) < F+
2 (τ) for a sufficiently large τ . If F+

2 < ∞ ,

then
∞∫
z
u(t)dt < ∞ , which implies that lim

τ→∞
B−

3 (τ) = 0. Hence, we again have that

B−
3 (τ) < F+

2 (τ) for a sufficiently large τ . Since the function B−(τ) is decreasing, then
we have that B−(τ) < F+(τ) for a sufficiently large τ . Moreover, the estimate

B−(τ) < sup
z>τ

⎛
⎝ z∫

τ

u(t)dt

⎞
⎠

1
q
⎛
⎝ ∞∫

z

sp′v1−p′(s)ds

⎞
⎠

1
p′

,

gives that B−
i (τ) < F+(τ) , i = 1,2. Thus, B−(τ) < F+(τ) in some neighborhood of

infinity. Therefore, in relation (15) there exists τ+ > 0 such that B−(τ+) � F+(τ+) .
Consequently,

B−F+(τ) = inf
τ∈I

max{B−(τ),F+(τ)} � F+(τ+)

and the right-hand side estimate of (14) holds, so the proof of the sufficiency is com-
plete.

Necessity. Let inequality (5) hold with the best constant C > 0. We use the meth-
ods presented in the paper [17]. Since g(s) = s f ′′(s) and v(t) = v(t)

t p , we have that

∞∫
0

v(s)| f ′′(s)|pds =
∞∫

0

v(s)
sp |s f ′′(s)|pds =

∞∫
0

v(s)|g(s)|pds.

Therefore, the condition f ∈ W̊ 2
p,v(I) is equivalent to the condition g ∈ L̃p,v(I) , where

L̃p,v(I) =
{
g ∈ Lp,v(I) :

∞∫
0

g(s)ds = 0
}

.

By the conditions t p′v1−p′(t) ∈ L1(0,1) and t p′v1−p′(t) ∈ L1(1,∞) , we find that
v1−p′ ∈ L1(I) and (6) holds. Let the function ρ(s) be such that

s∫
0

v1−p′(t)dt = kτ

∞∫
ρ(s)

v1−p′(t)dt, s ∈ (0,τ). (24)
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On the basis of the positiveness of the function v , the positive function ρ is strictly
decreasing and locally absolutely continuous on I . Moreover, from (24) it follows that
ρ(τ) = τ , lim

s→0+
ρ(s) = ∞ , and

ρ−1(s)∫
0

v1−p′(t)dt = kτ

∞∫
s

v1−p′(t)dt, s ∈ (τ,∞), (25)

where ρ−1 is the inverse function to the function ρ . Differentiating the both sides of
(24) and (25), we get that

1
kτ

=
v1−p′(ρ(s))

v1−p′(s)
|ρ ′(s)|, s ∈ (0,τ); kτ =

v1−p′(ρ−1(s))
v1−p′(s)

|(ρ−1(s))′|, s ∈ (τ,∞). (26)

We consider the following two sets:

L1 = {g ∈ Lp,v(0,τ) : g � 0} and L2 = {g ∈ Lp,v(τ,∞) : g � 0}.
Next we will prove that for any g1 ∈ L1 there exists g2 ∈ L2 and inversely, for any
g2 ∈ L2 there exists g1 ∈ L1 such that

∞∫
τ

v(t)|g2(t)|pdt = kp−1
τ

τ∫
0

v(t)|g1(t)|pdt. (27)

For g1 ∈ L1 we assume that

g2(t) = −kτg1(ρ−1(t))
v1−p′(t)

v1−p′(ρ−1(t))
. (28)

From the first equality in (26) we obtain that

∞∫
τ

v(t)|g2(t)|pdt = kp
τ

∞∫
τ

v(t)

∣∣∣∣∣g1(ρ−1(t))
v1−p′(t)

v1−p′(ρ−1(t))

∣∣∣∣∣
p

dt

= kp
τ

τ∫
0

v(ρ(s)) |g1(s)|p v(1−p′)p(ρ(s))
v(1−p′)p(s)

|ρ ′(s)|ds

= kp
τ

τ∫
0

v(s)|g1(s)|p v1−p′(ρ(s))
v1−p′(s)

|ρ ′(s)|ds

= kp−1
τ

τ∫
0

v(s)|g1(s)|pds < ∞,

i.e., g2 ∈ L2 and (27) holds. Similarly, for g2 ∈ L2 by assuming that

g1(t) = − 1
kτ

g2(ρ(t))
v1−p′(t)

v1−p′(ρ(t))
, (29)
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and using the second equality in (26), we get that g1 ∈ L1 and (27) holds. In both
cases, assuming that g(t) = g1(t) for 0 < t � τ and g(t) = g2(t) for t > τ , we obtain
that g ∈ Lp,v(I) . Moreover, according to (27), we have that

∞∫
0

v(t)|g(t)|pdt = (1+ kp−1
τ )

τ∫
0

v(t)|g(t)|pdt = (1+ k1−p
τ )

∞∫
τ

v(t)|g(t)|pdt. (30)

From the condition v1−p′ ∈ L1(I) it follows that the constructed function g ∈ L1(I) .

From (28) and (29) it follows that
τ∫
0

g1(t)dt = −
∞∫
τ

g2(t)dt , i.e.,
∞∫
0

g(t)dt = 0. Hence,

g ∈ L̃p,v(I) .
Denote by Gτ the set of functions g ∈ L̃p,v(I) constructed from the functions

g1 ∈ L1 and g2 ∈ L2 . By substituting g ∈ Gτ into (22) we get that⎛
⎝ τ∫

0

u(t)

⎛
⎝(τ − t)

τ

t∫
0

|g1(s)|ds+
t
τ

τ∫
t

(τ − s)
s

|g1(s)|ds+
t
τ

∞∫
τ

(s− τ)
s

g2(s)ds

⎞
⎠

q

dt

+
∞∫

τ

u(t)

⎛
⎝ ∞∫

t

(s− t)
g2(s)

s
ds

⎞
⎠

q

dt

⎞
⎠

1
q

� C

⎛
⎝ ∞∫

0

v(t) |g(t)|p dt

⎞
⎠

1
p

, (31)

Assuming that the function g2 ∈ L2 is constructed from the function g1 ∈ L1 by (28)
and g1 ∈ L1 is constructed from the function g2 ∈ L2 by (29), from (30) and (31) we
have that⎛

⎝ τ∫
0

u(t)

⎛
⎝(τ − t)

τ

t∫
0

|g1(s)|ds

⎞
⎠

q

dt

⎞
⎠

1
q

� C(1+ kp−1
τ )

1
p

⎛
⎝ τ∫

0

v(t)|g1(t)|pdt

⎞
⎠

1
p

,

⎛
⎝ τ∫

0

u(t)

⎛
⎝ t

τ

τ∫
t

(τ − s)
s

|g1(s)|ds

⎞
⎠

q

dt

⎞
⎠

1
q

� C(1+ kp−1
τ )

1
p

⎛
⎝ τ∫

0

v(t)|g1(t)|pdt

⎞
⎠

1
p

,

⎛
⎝ τ∫

0

tq

τq u(t)dt

⎞
⎠

1
q ∞∫

τ

(s− τ)
s

g2(s)ds � C(1+ k1−p
τ )

1
p

⎛
⎝ ∞∫

τ

v(t)|g2(t)|pdt

⎞
⎠

1
p

,

⎛
⎝ ∞∫

τ

u(t)

⎛
⎝ ∞∫

t

(s− t)
g2(s)

s
ds

⎞
⎠

q

dt

⎞
⎠

1
q

� C(1+ k1−p
τ )

1
p

⎛
⎝ ∞∫

τ

v(t)|g2(t)|pdt

⎞
⎠

1
p

.

Due to the arbitrariness of the function g1 ∈ Lp,v(0,τ) , by Theorem A, the first two
inequalities give that

F+(τ) � C(1+ kp−1
τ )

1
p . (32)
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Moreover, due to the arbitrariness of the function g2 ∈ Lp,v(τ,∞) , the third inequality
implies that

B−
3 (τ) � C(1+ k1−p

τ )
1
p ,

so that, by Theorem B, the last estimate implies that

B−(τ) � C(1+ k1−p
τ )

1
p .

Thus,

B−(τ) � C(1+ k1−p
τ )

1
p . (33)

From (32) and (33) it follows the finiteness of F+(τ) and B−(τ) for any τ > 0 and

inf
τ∈I

maxB−F+(τ) � C inf
τ∈I

max[(1+ kp−1
τ )(1+ k1−p

τ )]
1
p � 4

1
pC.

This gives the left-hand side estimate of (13). Moreover, from (32) we also have the
left-hand side estimate of (14). The proof is complete. �

4. Oscillatory properties of the equation (2)

First we consider the equation (2) for λ = 1:

(v(t)y′′(t))′′ −u(t)y(t) = 0, t ∈ I, (34)

Two points t1 and t2 of the interval I such that t1 �= t2 are called conjugate with
respect to equation (34), if there exists a nonzero solution y of equation (34) having
zeros of multiplicity two y(i)(t1) = y(i)(t2) = 0, i = 0,1, at these points t1 and t2 .

Equation (34) is called oscillatory at zero if for any T > 0 there exist conjugate
points with respect to equation (34) to the left of T . Otherwise, equation (34) is called
non-oscillatory at zero.

The crucial connection between the oscillatory properties of equation (34) and in-
equality (5) stated in Introduction is explained by the following well-known variational
lemma (see [7]).

LEMMA A. If for some T > 0 the inequality

T∫
0

[
v(t)| f ′′(t)|2−u(t)| f (t)|2]dt � 0

holds for all non-zero f ∈C∞
0 (0,T ) , then equation (34) is non-oscillatory at zero.

Let us consider the following second-order Hardy-type inequality

T∫
0

u(t)| f (t)|2dt � CT

T∫
0

v(t)| f ′′(t)|2dt, f ∈ W̊ 2
2,v(0,T ). (35)

As in [11], from Lemma A we can prove the following lemma:
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LEMMA 1. Let CT be the best constant in (35). Then
(i) equation (34) is non-oscillatory at zero if and only if there exists a constant

T > 0 such that 0 < CT � 1 ;
(ii) equation (34) is oscillatory at zero if and only if CT > 1 for any T > 0 .

Let us turn to equation (2) with the parameter λ > 0. Equation (2) is called strong
oscillatory (non-oscillatory) at zero if it is oscillatory (non-oscillatory) at zero for any
λ > 0. From inequality (35) for equation (2) we have the inequality

λ
T∫

0

u(t)| f (t)|2dt � λCT

T∫
0

v(t)| f ′′(t)|2dt, f ∈ W̊ 2
2,v(0,T ), (36)

with the best constant λCT , where CT is the best constant in (35). Again as in [11],
from Lemma 1 we can prove one more useful lemma.

LEMMA 2. Let CT be the best constant in (36). Then
(i) equation (2) is strong non-oscillatory at zero if and only if lim

T→0+
CT = 0 ;

(ii) equation (2) is strong oscillatory at zero if and only if CT = ∞ for any T > 0 .

Now, on the basis of Lemma 2 and Theorem 1 we can establish criteria of strong
non-oscillation and strong oscillation of the equation (2) in the following main theorem
of this Section.

THEOREM 2. Let v−1 /∈ L1(0,1) , t2v−1(t) ∈ L1(0,1) , and t2v−1(t) ∈ L1(1,∞) .
Then

(i) equation (2) is strong non-oscillatory at zero if and only if

lim
τ→0+

sup
0<z<τ

z∫
0

t2u(t)dt

τ∫
z

v−1(s)ds = 0, (37)

lim
τ→0+

sup
0<z<τ

τ∫
z

u(t)dt

z∫
0

s2v−1(s)ds = 0; (38)

(ii) equation (2) is strong oscillatory at zero if and only if

lim
τ→0+

sup
0<z<τ

z∫
0

t2u(t)dt

τ∫
z

v−1(s)ds = ∞ (39)

or

lim
τ→0+

sup
0<z<τ

τ∫
z

u(t)dt

z∫
0

s2v−1(s)ds = ∞. (40)
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Proof. Let F+
1 (τ) and F+

2 (τ) be defined by (11) and (12), respectively. First we
rewrite the squared values F+

1 (τ) and F+
2 (τ) for p = q = 2 in the forms:

(F+
1 (τ))2 = sup

0<z<τ

z∫
0

t2u(t)dt

τ∫
z

(
1− s

τ

)2
v−1(s)ds,

(F+
2 (τ))2 = sup

0<z<τ

τ∫
z

(
1− t

τ

)2
u(t)dt

z∫
0

s2v−1(s)ds,

and define F+(τ) by

(F+(τ))2 = max{(F+
1 (τ))2,(F+

2 (τ))2}.
(i) Suppose that equation (2) is strong non-oscillatory at zero. Then, by Lemma 2,

we have that lim
T→0+

CT = 0. From Theorem 1 (see the left-hand side estimate of (14)) it

follows that
sup

0<τ<T
(1+ kτ)−1(F+(τ))2 � CT ,

which gives that
lim

T→0+
sup

0<τ<T
(1+ kτ)−1(F+(τ))2 = 0.

Hence,
lim

τ→0+
(1+ kτ)−1(F+(τ))2 = lim

τ→0+
(F+(τ))2 = 0,

i.e.,
lim

τ→0+
(F+

1 (τ))2 = lim
τ→0+

(F+
2 (τ))2 = 0.

Thus,

0 = lim
τ→0+

(F+
1 (τ))2 � lim

τ→0+
sup

0<z< τ
2

z∫
0

t2u(t)dt

τ
2∫

z

(
1− s

τ

)2
v−1(s)ds

� 1
4

lim
τ→0+

sup
0<z< τ

2

z∫
0

t2u(t)dt

τ
2∫

z

v−1(s)ds,

i.e., (37) holds. Similarly, we can prove that also (38) holds.
Inversely, let (37) and (38) hold. Since 1− t

τ � 1 for 0 < t < τ , we obtain that

0 = lim
τ→0+

sup
0<z<τ

z∫
0

t2u(t)dt

τ∫
z

v−1(s)ds

� lim
τ→0+

sup
0<z<τ

z∫
0

t2u(t)dt

τ∫
z

(
1− s

τ

)2
v−1(s)ds = lim

τ→0+
(F+

1 (τ))2,
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so we can conclude that lim
τ→0+

(F+
1 (τ))2 = 0. Similarly, we find that lim

τ→0+
(F+

2 (τ))2 = 0.

Hence, lim
τ→0+

(F+(τ))2 = 0. From Theorem 1 (see the right-hand estimate of (14)) it

follows that
CT � 222(F+(τ+))2, 0 < τ+ < T. (41)

Therefore, we get that

0 = 222 lim
T→0+

(F+(τ+))2 = 222 lim
τ→0+

(F+(τ))2 � lim
T→0+

CT .

Thus, lim
T→0+

CT = 0 and, by Lemma 2, the equation (2) is strong non-oscillatory at zero.

(ii) Let the equation (2) be strong oscillatory at zero. Then, by Lemma 2, we have
that CT = ∞ for any T > 0. Therefore, according to (41), we have that

lim
T→0+

F+(τ+) = lim
τ→0+

F+(τ) = ∞.

This means that at least one of the conditions (39) or (40) holds.
Inversely, let (39) hold. Then

∞ = lim
τ
2→0+

sup
0<z< τ

2

z∫
0

t2u(t)dt

τ
2∫

z

v−1(s)ds

= lim
τ
2→0+

sup
0<z< τ

2

z∫
0

t2u(t)dt

τ
2∫

z

4−1v−1(s)ds

� lim
τ
2→0+

sup
0<z< τ

2

z∫
0

t2u(t)dt

τ
2∫

z

(
1− s

τ

)2
v−1(s)ds

= lim
τ
2→0+

(
F+

1

(τ
2

))2
= lim

τ→0+
(F+

1 (τ))2.

Thus, lim
τ→0+

(F+
1 (τ))2 = ∞ . Since sup

0<τ<T
(1+ kτ)−1(F+

1 (τ))2 � CT and

lim
T→0+

sup
0<τ<T

(1+ kτ)−1(F+
1 (τ))2 � lim

τ→0+
(1+ kτ)−1(F+

1 (τ))2

= lim
τ→0+

(F+
1 (τ))2 = ∞,

we get that CT = ∞ for any T > 0. Therefore, by Lemma 2, we can conclude that
equation (2) is strong oscillatory at zero. Moreover, by arguing similarly, if (40) holds,
then equation (2) is strong oscillatory at zero. The proof is complete. �

Now, we assume that the function u together with the function v is twice con-
tinuously differentiable on the interval I . In the theory of oscillatory properties of
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differential equations, there is a well known reciprocity principle (see [4]), from which
it follows that equation (2) and its reciprocal equation

(u−1(t)y′′(t))′′ −λv−1(t)y(t) = 0, t ∈ I, (42)

are simultaneously oscillatory or non-oscillatory.
On the basis of this reciprocity principle, from our new second-order Hardy-type

inequality (Theorem 1) and Theorem 2 it follows the next main result in this Section:

THEOREM 3. Let u /∈ L1(0,1) , t2u(t) ∈ L1(0,1) , and t2u(t) ∈ L1(1,∞) . Then
(i) equation (42) is strong non-oscillatory at zero if and only if (37) and (38) hold;
(ii) equation (42) is strong oscillatory at zero if and only if (39) or (40) holds.

5. Spectral characteristics of the differential operator L

Here L is the differential operator defined by (3). Let the minimal differential
operator Lmin be generated by the differential expression (3), i.e., Lmin is an operator
with the domain D(Lmin) = C∞

0 (I) . It is known that all self-adjoint extensions of the
minimal differential operator Lmin have the same spectrum (see [7]).

In this Section we find conditions under which any self-adjoint extension L of the
operator Lmin has a spectrum which is discrete and bounded from below. Motivations
to study these spectral properties are completely revealed in [8].

The relationship between the oscillatory properties of equation (2) and the spectral
properties of the operator L gives the following statement (see [7]).

LEMMA C. The operator L has a spectrum, which is discrete and bounded from
below, if and only if equation (2) is strong non-oscillatory.

On the basis of Lemma C, our Theorem 2 implies the following statement.

THEOREM 4. Let the conditions of Theorem 2 hold. Then the operator L has a
spectrum, which is discrete and bounded from below, if and only if (37) and (38) hold.

The operator Lmin is nonnegative. Therefore, it has the Friedrich’s extension LF

(see, e.g., [16] and [19]). By Theorem 4, the operator LF has a discrete spectrum if and
only if (37) and (38) hold.

Since for p = q = 2, inequality (5) can be rewritten as ( f , f )2C−2 � (LF f , f )2,u ,
then, in view of Theorem 1, we have the following statement, where B−(τ) and F+(τ)
are taken for p = q = 2.

THEOREM 5. Let the conditions of Theorem 2 hold. Then the operator LF is
positive definite if and only if B−F+(τ) = inf

τ∈I
max{B−(τ),F+(τ)} < ∞ . Moreover,

from (13) it follows that the estimate 1
2B−F+(τ) � λ− 1

2
1 � 22B−F+(τ) holds for the

smallest eigenvalue λ1 of the operator LF .
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According to Rellih’s lemma (see [16]), the operator L−1
F has a spectrum, which

is discrete and bounded from below in L2,u , if and only if the space with the norm

(LF f , f )
1
2
2,u is compactly embedded into the space L2,u . Hence, according to Theorem

4, we have one more statement.

THEOREM 6. Let the conditions of Theorem 2 hold. Then the embedding W̊ 2
2,v(I) ↪→

L2,u is compact and the operator L−1
F is uniformly continuous on L2,u if and only if (37)

and (38) hold.

The following statement can be found in [2]:

LEMMA D. Let H = H(I) be a certain Hilbert function space and C[0,∞)
⋂

H
be dense in it. For any point t ∈ I , we introduce the operator Et f = f (t) defined on
C[0,∞)

⋂
H , which acts in the space of complex numbers. Moreover, assume that Et is

a closure operator. Then, the norm of this operator is equal to the value
( ∞

∑
k=1

|ϕk(t)|2
) 1

2

(finite or infinite), where {ϕk(·)}∞
k=1 is any complete orthonormal system of continuous

functions in H .

Let

D+(t) =
t∫

0

z2v−1(z)dz+ t2
∞∫

t

v−1(z)dz, t ∈ I. (43)

Next, we state the following Lemma, which is crucial for the proof of our next main
result (Theorem 7) but also of independent interest:

LEMMA 3. Let the conditions of Theorem 2 hold. Then

sup
τ∈I

D+(t,τ) � sup
f∈W̊ 2

2,v

| f (t)|
‖ f ′′‖2,v

�
√

2 inf
τ∈I

D+(t,τ), t ∈ I, (44)

where

D+(t,τ) =

⎛
⎝χ(0,τ)(t)t

2

∞∫
τ

v−1(s)ds + χ(τ,∞)(t)
∞∫

t

(s− t)2v−1(s)ds

+ χ(0,τ)(t)t
2

τ∫
t

v−1(s)ds +χ(0,τ)(t)
t∫

0

s2v−1(s)ds

⎞
⎠

1
2

.

Proof. From (16) and (20) for the function f ∈ W̊ 2
2,v it follows that

f (t) = χ(0,τ)

⎡
⎣− t∫

0

s f ′′(s)ds− t

τ∫
t

f ′′(s)ds− t

∞∫
τ

f ′′(s)ds

⎤
⎦

+χ(τ,∞)(t)
∞∫

t

(s− t) f ′′(s)ds. (45)
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Moreover, by applying Hölder’s inequality, we obtain that

| f (t)| �

⎡
⎢⎣χ(0,τ)(t)

⎛
⎝t2

∞∫
τ

v−1(s)ds

⎞
⎠

1
2

+ χ(τ,∞)(t)

⎛
⎝ ∞∫

t

(s− t)2v−1(s)ds

⎞
⎠

1
2
⎤
⎥⎦

×
⎛
⎝ ∞∫

τ

v(s)| f ′′(s)|2ds

⎞
⎠

1
2

+χ(0,τ)(t)

⎡
⎢⎣
⎛
⎝t2

τ∫
t

v−1(s)ds

⎞
⎠

1
2

+

⎛
⎝ t∫

0

s2v−1(s)ds

⎞
⎠

1
2
⎤
⎥⎦

×
⎛
⎝ τ∫

0

v(s)| f ′′(s)|2ds

⎞
⎠

1
2

�

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎣χ(0,τ)(t)

⎛
⎝t2

∞∫
τ

v−1(s)ds

⎞
⎠

1
2

+ χ(τ,∞)(t)

⎛
⎝ ∞∫

t

(s− t)2v−1(s)ds

⎞
⎠

1
2
⎤
⎥⎦

2

+ χ(0,τ)(t)

⎡
⎢⎣
⎛
⎝t2

τ∫
t

v−1(s)ds

⎞
⎠

1
2

+

⎛
⎝ t∫

0

s2v−1(s)ds

⎞
⎠

1
2
⎤
⎥⎦

2
⎫⎪⎪⎬
⎪⎪⎭

1
2

‖ f ′′‖2,v

�

⎛
⎝χ(0,τ)(t)t

2

∞∫
τ

v−1(s)ds+ χ(τ,∞)(t)
∞∫

t

(s− t)2v−1(s)ds

+ 2χ(0,τ)(t)t
2

τ∫
t

v−1(s)ds+2χ(0,τ)(t)
t∫

0

s2v−1(s)ds

⎞
⎠

1
2

‖ f ′′‖2,v

�
√

2 inf
τ∈I

D+(t,τ)‖ f ′′‖2,v.

Therefore, the right-hand side estimate in (44) holds.
Let us prove the left estimate in (44). We fix t ∈ I in (45) and select a test function

f (n) depending on t as follows:

f ′′t (s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

χ(0,t)(s)sv−1(s) if 0 < t < τ,

χ(t,τ)(s)t v−1(s) if 0 < t < τ,

χ(τ,∞)(s)t v−1(s) if 0 < t < τ,

−χ(t,∞)(s)(s− t)v−1(s) if t > τ.
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By putting this function into (45), we get that

ft (t) = χ(0,τ)(t)

⎛
⎝t2

∞∫
τ

v−1(s)ds+ t2
τ∫

t

v−1(s)ds+
t∫

0

s2v−1(s)ds

⎞
⎠

+χ(τ,∞)(t)
∞∫

t

(s− t)2v−1(s)ds =
(
D+(t,τ)

)2
. (46)

Next, we calculate ‖ f ′′t ‖2,v :⎛
⎝ ∞∫

0

v(s)| f ′′t (s)|2ds

⎞
⎠

1
2

=

⎛
⎝ τ∫

0

v(s)| f ′′t (s)|2ds+
∞∫

τ

v(s)| f ′′t (s)|2ds

⎞
⎠

1
2

=

⎧⎨
⎩χ(0,τ)(t)t

2

∞∫
τ

v−1(s)ds+ χ(0,τ)(t)t
2

τ∫
t

v−1(s)ds

+χ(0,τ)(t)
t∫

0

s2v−1(s)ds +χ(τ,∞)(t)
∞∫

t

(s− t)2v−1(s)ds

⎫⎬
⎭

1
2

= D+(t,τ). (47)

By combining (46) and (47), we obtain that

sup
f∈W̊ 2

2,v

| f (t)|
‖ f ′′‖2,v

� | ft(t)|
‖ f ′′t ‖2,v

= D+(t,τ)

for any τ ∈ I . This relation proves the validity of the left-hand side estimate in (44).
The proof is complete. �

Let the operator L−1
F be uniformly continuous on L2,u . Let {λk}∞

k=1 be eigenval-
ues and {ϕk}∞

k=1 be a corresponding complete orthonormal system of eigenfunctions
of the operator L−1

F .

THEOREM 7. Let the conditions of Theorem 2 and (37) and (38) hold. If D+(t)
is defined by (43), then

(i) the following two-sided estimates hold:

D+(t) �
∞

∑
k=1

|ϕk(t)|2
λk

� 2D+(t), t ∈ I; (48)

(ii) the operator L−1
F is nuclear if and only if

∞∫
0

u(t)D+(t)dt < ∞ and for the

nuclear norm ‖L−1
F ‖σ1 of the operator L−1

F we have the precise two-sided estimates
∞∫

0

u(t)D+(t)dt � ‖L−1
F ‖σ1 =

∞

∑
k=1

1
λk

� 2

∞∫
0

u(t)D+(t)dt. (49)
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Proof. Since the operator L−1
F is uniformly continuous on L2,u , we can consider

W̊ 2
2,v(I) with the norm ‖ f ′′‖2,v as the space H(I) of Lemma D. Since the system of

functions {λ− 1
2

k ϕk}∞
k=1 is a complete orthonormal system in the space W̊ 2

2,v(I) , then,
by Lemma D, we have that

‖Et‖2 =

⎛
⎝ sup

f∈W̊ 2
2,v

| f (t)|
‖ f ′′‖2,v

⎞
⎠

2

=
∞

∑
k=1

|ϕk(t)|2
λk

,

where Et f = f (t) . By using this fact and (44) in Lemma 3 we obtain that

sup
τ∈I

(
D+(t,τ)

)2 �
∞

∑
k=1

|ϕk(t)|2
λk

� 2 inf
τ∈I

(
D+(t,τ)

)2
. (50)

Since
inf
τ∈I

(
D+(t,τ)

)2 � lim
τ→∞

(
D+(t,τ)

)2 = D+(t) � sup
τ∈I

(
D+(t,τ)

)2
,

from (50) we have (48), so (i) is proved. Moreover, by multiplying both sides of (48)
by u and integrating them from zero to infinity, we get (49), so also (ii) is proved. The
proof is complete. �
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