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Abstract. In this paper, using the results of a recent paper by the author, we give a new method
for proving refinements of inequalities related to convex functions on intervals. In many cases,
the proof is simpler and more transparent than using the usual techniques, and the essence of
the refinement is clearer. This is illustrated by two refinements of the Jensen’s inequality and
one refinement of the Lah-Ribarič inequality. As an application we generalize a recent result for
strongly convex functions.

1. Introduction

Let (X ,A ) be a measurable space (A always means a σ -algebra of subsets of
X ). If μ is either a measure or a signed measure on A , then the real vector space
of μ -integrable real functions on X is denoted by L(μ) . The integrable functions are
considered to be measurable.

To start with, we introduce some special function sets: Let C ⊂ R be an interval
with nonempty interior, and let (X ,A ,μ) and (Y,B,ν) be measure spaces, where μ
and ν are finite signed measures.

Let denote FC the set of all convex functions on C . Furthermore, if ϕ : X →C , ψ :
Y →C are functions such that ϕ ∈ L(μ) and ψ ∈ L(ν) , then we define FC (ϕ ,μ ;ψ ,ν)
as the set of all functions f ∈ FC for which f ◦ϕ ∈ L(μ) and f ◦ψ ∈ L(ν) .

If (X ,A ,μ) = (Y,B,ν) and ϕ = ψ , the shorter notation FC (ϕ ,μ) is used.
Let C ⊂ R be an interval with nonempty interior. The following notations are

introduced for some special functions defined on C :

idC (t) := t, pC,w (t) := (t−w)+ , nC,w (t) := (t−w)− t,w ∈C,

where a+ and a− mean the positive and negative parts of a ∈ R , respectively.
The following statement can be found in a more general form in paper [3].
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THEOREM 1. Let (X ,A ,μ) and (Y,B,ν) be measure spaces, where μ and ν
are finite signed measures. Let C ⊂ R be an interval with nonempty interior, and let
ϕ : X →C, ψ :Y →C be functions such that ϕ ∈ L(μ) and ψ ∈ L(ν) . Then for every
f ∈ FC (ϕ ,μ ;ψ ,ν) inequality ∫

X

f ◦ϕdμ �
∫
Y

f ◦ψdν

holds if and only if

μ (X) = ν (Y ) ,
∫
X

ϕdμ =
∫
Y

ψdν

and it is satisfied in the following special cases: the function f is pC,w (w ∈C◦) .

This result suggests a new method for proving refinements of inequalities for con-
vex functions on intervals. We illustrate this with refinements of the integral Jensen
inequality.

THEOREM 2. (Integral Jensen inequality, see [5]) Let (X ,A ,μ) be a probability
space, let C ⊂ R be an interval with nonempty interior, and let ϕ : X → C be a μ -
integrable function. If f ∈ FC (ϕ ,μ) , then

f

⎛
⎝∫

X

ϕdμ

⎞
⎠ �

∫
X

f ◦ϕdμ .

The refinement of the Jensen’s inequality means the following: an expression
R( f ,ϕ ,μ , par) is created satisfying the inequality

f

⎛
⎝∫

X

ϕdμ

⎞
⎠ � R( f ,ϕ ,μ , par) �

∫
X

f ◦ϕdμ , (1)

where par denotes some auxiliary parameters.
There are many different types of refinements of the Jensen’s inequality, but the

essence of proving inequalities in (1) is the same in almost all cases, repeated applica-
tions of the Jensen’s inequality. In this paper we present a new and effective method,
based on Theorem 1, which does not use the Jensen’s inequality and is generally sim-
pler and more transparent. Of course, the expression R( f ,ϕ ,μ , par) still needs to be
found, but the new method of the proof can help to generalize and make it more precise.

To achieve our goal, we first give an extension of Theorem 1 that is more appli-
cable to refinements. We then demonstrate the new technique of proof on three known
results, two refinements of the integral Jensen inequality and one refinement of the Lah–
Ribarič inequality. Not only do we provide completely new proofs of these results, but
we also extend them suggested by our method in all three cases. In the refinement from
paper [1], we increase the number of parameters, while the refinement from paper [9]
is formulated in a more general form that clearly explains the origin of the additional
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measure in the refinement. Finally, we formulate a refinement of the Lah–Ribarič in-
equality from paper [8] in measure spaces and study its sharpness. As an application
we generalize a recent result for strongly convex functions in [7].

2. Preliminary results

We need the next lemma from paper [3].

LEMMA 1. Let (X ,A ,μ) and (Y,B,ν) be measure spaces, where μ and ν are
finite signed measures with μ (X) = ν (Y ) . Assume ϕ ∈ L(μ) and ψ ∈ L(ν) such that∫
X

ϕdμ =
∫
Y

ψdν . Then for every w ∈ R the following two assertions are equivalent.

(a) ∫
X

pR,w ◦ϕdμ �
∫
Y

pR,w ◦ψdν.

(b) ∫
X

nR,w ◦ϕdμ �
∫
Y

nR,w ◦ψdν.

We also need an approximation result from paper [2].

DEFINITION 1. Let C ⊂ R be an interval with nonempty interior. A function
f : C → R is called piecewise linear if it is continuous and there exists finite points
w1 < w2 < .. . < wk in the interior of C such that the restriction of f to each interval
C

⋂
]−∞,w1] , [w1,w2] , . . . , C

⋂
[wk,∞[ is an affine function.

THEOREM 3. (see [2]) If C ⊂ R be an interval with nonempty interior and f :
C → R is a continuous convex function, then f is the pointwise limit of an increasing
sequence of piecewise linear convex functions on C.

REMARK 1. Let C ⊂ R be an interval with nonempty interior. If a function f :
C → R is piecewise linear, then it has the form

f (t) = αt + β +
k

∑
i=1

γi
(
(t−wi)

+ +(t −wi)
−)

, t ∈C

for suitable points w1 < w2 < .. . < wk in the interior of C , α , β ∈ R and γi > 0
(i = 1, . . . ,k) .

To refine inequalities, the following statement will be useful.

THEOREM 4. Let (X ,A ,μ) , (Y,B,ν) and (Z,C ,ξ ) be measure spaces, where
μ , ν and ξ are finite signed measures and μ (X) = ν (Y ) = ξ (Z) . Let C ⊂ R be
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an interval with nonempty interior, and let ϕ : X →C, ψ : Y → C and χ : Z →C be
functions such that ϕ ∈ L(μ) , ψ ∈ L(ν) and χ ∈ L(ξ ) . Assume inequalities

∫
X

f ◦ϕdμ �
∫
Z

f ◦ χdξ �
∫
Y

f ◦ψdν (2)

are satisfied in the following special cases: the function f is either idC or −idC or
pC,w (w ∈C◦) . Then FC (ϕ ,μ ;ψ ,ν) ⊂ FC (χ ,ξ ) and for every f ∈ FC (ϕ ,μ ;ψ ,ν)
inequalities (2) hold.

Proof. Since ϕ ∈ L(μ) , ψ ∈ L(ν) and χ ∈ L(ξ ) , and μ , ν and ξ are fi-
nite, it follows from Remark 1 that all piecewise linear convex functions belong to
FC (ϕ ,μ ;ψ ,ν)

⋂
FC (χ ,ξ ) .

Since inequalities (2) are satisfied when f is either idC or −idC or pC,w (w ∈C◦) ,
Lemma 1 and Remark 1 show that inequalities (2) also hold for every piecewise linear
convex function on C .

(i) Assume that f is continuous. By Theorem 3, there exists an increasing se-
quence ( fn)

∞
n=1 of piecewise linear convex functions on C such that fn → f pointwise

on C .
Then the sequence ( fn ◦ϕ) is also increasing, and fn ◦ϕ → f ◦ϕ pointwise on

X . Since fn ◦ϕ ∈ L(μ) , B. Levi’s theorem yields that

lim
n→∞

∫
X

fn ◦ϕdμ =
∫
X

f ◦ϕdμ .

Similarly, we can confirm that

lim
n→∞

∫
Y

fn ◦ψdν =
∫
Y

f ◦ψdν, lim
n→∞

∫
Z

fn ◦ χdξ =
∫
Z

f ◦ χdξ .

Since inequalities (2) hold for every piecewise linear convex function on C , we
thus obtain that inequalities also hold for every f ∈ FC (ϕ ,μ ;ψ ,ν) , and this implies
that f ∈ FC (χ ,ξ ) .

(ii) If f is not continuous, then it is not hard to think that there exists a decreasing
sequence ( fn)

∞
n=1 from FC (ϕ ,μ ;ψ ,ν) such that fn is continuous (n ∈ N+) and ( fn)

converges pointwise to f on C , and therefore the result follows from part (i) of the
proof and B. Levi’s theorem.

The proof is complete. �

REMARK 2. Of course, that the inequalities in (2) are satisfied for the functions
idC and −id is equivalent to

∫
X

ϕdμ =
∫
Z

χdξ =
∫
Y

ψdν.
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3. Extensions and new proofs of some refinements

Before formulating our first result, we introduce some further concepts and nota-
tions from measure and integration theory.

Let (X ,A ,μ) be a measure space, and let z be a nonnegative and A -measurable
function on X . Then the measure ν defined on A by

ν(A) :=
∫
A

zdμ

is called the measure having density z with respect to μ . It will be denoted by ν =
zμ . An A -measurable function ψ : X → R is ν -integrable if and only if ψz is μ -
integrable, and the relationship between the ν - and μ -integrals is

∫
X

ψdν =
∫
X

ψzdμ .

Let (X ,A ,μ) and (Y,B,ν) be σ -finite measure spaces. The σ -algebra in X ×Y
generated by the projection mappings pr1 : X ×Y → X and pr2 : X ×Y → Y

pr1 (x,y) := x, pr2 (x,y) := y

is denoted by A ⊗B . The product measure μ ×ν on A ⊗B is defined in the usual
way: this measure is uniquely specified by

(μ ×ν)(A×B) := μ (A)ν (B) , A ∈ A , B ∈ B.

If (X ,A ,μ) = (Y,B,ν) , then the product space will be denoted by
(
X2,A 2,μ2

)
.

The product of finitely many σ -finite measure spaces can be defined in a similar
way, and notations can be generalized in a natural way.

We say that the numbers (pi)k
i=1 represent a (positive) discrete probability distri-

bution if (pi > 0) pi � 0 (i = 1, . . . ,k) and
k
∑
i=1

pi = 1.

Our result below provides an essentially new proof for Theorem 2 in [1], and by
analyzing the proof, we can obtain a new refinement.

THEOREM 5. Let (X ,A ,μ) be a measure space such that 0 < μ(X) < ∞ , and let

z be a positive function on X such that
∫
X

zdμ = 1 . Assume k is a positive integer. Let

(pi)k
i=1 represent a positive discrete probability distribution, and let z1, . . . ,zk be pos-

itive functions on X such that
k
∑
j=1

p jz j = z. If ψ : X → R is a zμ -integrable function

taking values in an interval C⊂R with nonempty interior, then for every f ∈FC (ψ ,zμ)
we have
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(a)

f

⎛
⎝∫

X

ψzdμ

⎞
⎠

� 1
μ(X)k−1

∫
Xk

f

⎛
⎜⎜⎜⎜⎝

k

∑
j=1

p jz j (x j)ψ(x j)

k

∑
j=1

p jz j (x j)

⎞
⎟⎟⎟⎟⎠

k

∑
j=1

p jz j (x j)dμk (x1, . . . ,xk)

�
∫
X

( f ◦ψ)zdμ .

(b) For z j = z and p j = 1
k ( j = 1, . . . ,k)

Nk+1 � Nk, k � 1,

where

Nk :=
1

kμ(X)k−1

∫
Xk

f

⎛
⎜⎜⎜⎜⎝

k

∑
j=1

z(x j)ψ(x j)

k

∑
j=1

z(x j)

⎞
⎟⎟⎟⎟⎠

k

∑
j=1

z(x j)dμk (x1, . . . ,xk) , k � 1.

Proof. (a) Introduce the constant function

ϕ : X → R, ϕ (x) :=
∫
X

ψzdμ (3)

and the other two functions

ψk : Xk → R, ψk (x1, . . . ,xk) :=

k

∑
j=1

p jz j (x j)ψ(x j)

k

∑
j=1

p jz j (x j)

and

zk : Xk → R, zk (x1, . . . ,xk) :=
1

μ(X)k−1 p jz j (x j) .

Obviously, ψ1 = ψ , z1 = z and zk ∈ L
(
μk

)
.

For simplicity, let
ν := zμ , νk := zkμk.

It is easy to think that, ψk ∈ L(νk) , and if f ∈ LC (ψ ,ν) , then f ∈ LC (ψk,νk) .
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With these notations we have to prove that for all k � 1 inequalities
∫
X

f ◦ϕdν �
∫
Xk

f ◦ψkdνk �
∫
X

f ◦ψdν (4)

are satisfied.
By Theorem 1, it is enough to show that

ν (X) = νk

(
Xk

)
, (5)

∫
X

ϕdν =
∫
Xk

ψkdνk =
∫
X

ψdν, (6)

and ∫
X

pC,w ◦ϕdν �
∫
Xk

pC,w ◦ψkdνk �
∫
X

pC,w ◦ψdν, w ∈C◦. (7)

The equalities (5) and (6) can be easily checked.
For every w ∈C◦ let

Aw,k :=

{
(x1, . . . ,xk) ∈ Xk |

k

∑
j=1

p jz j (x j) (ψ(x j)−w) � 0

}

and
Bw,k, j :=

{
(x1, . . . ,xk) ∈ Xk | ψ(x j)−w � 0

}
, j = 1, . . . ,k.

Then for every w ∈C◦ we have that Aw,k , Bw,k, j ∈ A k ( j = 1, . . . ,k) .
Using the definition of the set Aw,k and Fubini’s theorem, we obtain that

∫
Xk

pC,w ◦ψkdνk

=
1

μ(X)k−1

∫
Aw,k

k

∑
j=1

p jz j (x j)(ψ(x j)−w)dμk (x1, . . . ,xk)

� max

⎛
⎝0,

1
μ(X)k−1

∫
Xk

k

∑
j=1

p jz j (x j) (ψ(x j)−w)dμk (x1, . . . ,xk)

⎞
⎠

= max

⎛
⎝0,

∫
X

(ψ −w)zdμ

⎞
⎠ =

∫
X

pC,w ◦ϕdν,

which yields the first inequality in (7).



92 L. HORVÁTH

To prove the second inequality in (7), an obvious calculation shows that∫
Xk

pC,w ◦ψkdνk

=
1

μ(X)k−1

k

∑
j=1

∫
Aw,k

p jz j (x j)(ψ(x j)−w)dμk (x1, . . . ,xk)

� 1
μ(X)k−1

k

∑
j=1

∫
Aw,k

⋂
Bw,k, j

p jz j (x j)(ψ(x j)−w)dμk (x1, . . . ,xk)

� 1
μ(X)k−1

k

∑
j=1

∫
Bw,k, j

p jz j (x j) (ψ(x j)−w)dμk (x1, . . . ,xk)

=
∫

{ψ�w}
z(ψ −w)dμ =

∫
X

pC,w ◦ψdν, w ∈C◦.

(b) Since z j = z and p j = 1
k ( j = 1, . . . ,k) , the function ψk , the measure νk and

the set Aw,k are defined for all k � 1.
Again using Theorem 1, we can see that it is sufficient to prove inequality∫

Xk+1

pC,w ◦ψk+1dνk+1 �
∫
Xk

pC,w ◦ψkdνk, w ∈C◦. (8)

Let
Ci

w,k+1 :=
{
(x1, . . . ,xk+1) ∈ Xk+1 |

(x1, . . . ,xi−1,xi+1, . . . ,xk+1) ∈ Aw,k
}

, i = 1, . . . ,k+1.

Then Ci
w,k+1 ∈ A k+1 (i = 1, . . . ,k+1) .

By elementary calculation we obtain that∫
Xk+1

pC,w ◦ψk+1dνk+1

=
∫

Aw,k+1

⎛
⎜⎜⎜⎜⎝

k+1

∑
j=1

z(x j)ψ(x j)

k+1

∑
j=1

z(x j)

−w

⎞
⎟⎟⎟⎟⎠dνk+1 (x1, . . . ,xk+1)

=
1

k (k+1)μ(X)k

k+1

∑
i=1

∫
Aw,k+1

⎛
⎜⎝ k

∑
j=1
j �=i

z(x j) (ψ(x j)−w)

⎞
⎟⎠dμk+1 (x1, . . . ,xk+1)
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=
1

k (k+1)μ(X)k

k+1

∑
i=1

⎛
⎜⎝ ∫

Aw,k+1
⋂

Ci
w,k+1

+
∫

Aw,k+1�Ci
w,k+1

⎞
⎟⎠

⎛
⎜⎝ k

∑
j=1
j �=i

z(x j) (ψ(x j)−w)

⎞
⎟⎠dμk+1 (x1, . . . ,xk+1) . (9)

Using the properties of the sets Ci
w,k+1 , and then applying Fubini’s theorem, we

find that the expression (9)

� 1
k (k+1)μ(X)k

k+1

∑
i=1

∫
Ci

w,k+1

⎛
⎜⎝ k

∑
j=1
j �=i

z(x j)(ψ(x j)−w)

⎞
⎟⎠dμk+1 (x1, . . . ,xk+1)

=
1

k (k+1)μ(X)k

k+1

∑
i=1

μ(X)
∫

Aw,k

k

∑
j=1

z(x j) (ψ(x j)−w)dμk (x1, . . . ,xk)

=
1

kμ(X)k−1

∫
Aw,k

k

∑
j=1

z(x j) (ψ(x j)−w)dμk (x1, . . . ,xk)

=
∫
Xk

pC,w ◦ψkdνk, w ∈C◦,

which gives exactly inequality (8).
The proof is complete. �

REMARK 3. Part (a) of the previous statement is a new refinement, and part (b)
has a new proof.

In the following theorem, we give a generalization and a new proof of the main
result in paper [9]. Here again, the new technique suggests the possibility of general-
ization.

Suppose that (X ,A ,μ) and (Y,B,ν) are probability spaces. By a (separately)
weight function on X ×Y we mean an A ×B -measurable mapping z : X ×Y → [0,∞[
for which ∫

X

z(x,y)dμ (x) = 1, y ∈ Y (10)

and ∫
Y

z(x,y)dν (y) = 1, x ∈ X .

It follows from the Fubini’s theorem that z ∈ L(μ ×ν) and
∫

X×Y
zdμ ×ν = 1.
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THEOREM 6. Let (X ,A ,μ) and (Y,B,ν) be probability spaces, let z : X ×Y →
[0,∞[ be a weight function, and let C ⊂ R be an interval with nonempty interior. If
ψ : X ×Y →C is z(μ ×ν)-integrable and f ∈ FC (ψ ,z(μ ×ν)) , then

(a) The function

y →
∫
X

ψ (x,y)z(x,y)dμ (x)

is defined ν -almost everywhere on Y . Denoting it with χ , it is ν -integrable.
(b) The function χ takes values in C.
(c) Inequalities

f

⎛
⎝ ∫

X×Y

ψ (x,y) z(x,y)dμ (x)dν (y)

⎞
⎠ �

∫
Y

f

⎛
⎝∫

X

ψ (x,y)z(x,y)dμ (x)

⎞
⎠dν (y) (11)

�
∫

X×Y

f (ψ (x,y))z(x,y)dμ (x)dν (y)

hold.

Proof. (a) It follows immediately from the Fubini’s theorem.
(b) Assume a ∈ R is the left-hand endpoint of C .
If ψ � a , then the definition of χ and (10) imply that χ � a .
Now assume that ψ > a and there exists an y ∈Y such that χ is defined at y and

χ (y) = a . Then

0 = χ (y)−a =
∫
X

(ψ (x,y)−a)z(x,y)dμ (x) .

Since ψ > a and z is nonnegative, this yields that z(·,y) = 0 μ -almost everywhere on
X , which contradicts to (10). Therefore, where χ is defined, it is greater than a .

The other case (C is bounded from above) can be treated similarly.
(c) Let ω := z(μ ×ν) . We have to show that

f

⎛
⎝ ∫

X×Y

ψdω

⎞
⎠ �

∫
Y

f ◦ χdν �
∫

X×Y

f ◦ψdω . (12)

It is obvious that
ω (X ×Y) = ν (Y ) = 1 (13)

and ∫
X×Y

ψdω =
∫
Y

χdν. (14)

The conditions ψ ∈ L(ω) and f ∈ FC (ψ ,ω) , the equality (13), and parts (a) and
(b) show that the conditions of Theorem 4 are satisfied, and therefore, by using (14), it
is enough to prove (12) for f = pC,w (w ∈C◦) .
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Consider the first inequality in (12): for every w ∈C◦ we have

∫
Y

pC,w ◦ χdν =
∫

{χ�w}
(χ −w)dν � max

⎛
⎝0,

∫
Y

(χ −w)dν

⎞
⎠

= max

⎛
⎝0,

∫
Y

⎛
⎝∫

X

(ψ (x,y)−w)z(x,y)dμ (x)

⎞
⎠dν (y)

⎞
⎠

= max

⎛
⎝0,

∫
X×Y

ψdω −w

⎞
⎠ = pC,w

⎛
⎝ ∫

X×Y

ψdω

⎞
⎠ .

Now we prove the second inequality in (12). Fix w ∈C◦ . We obtain by using the
Fubini’s theorem that ∫

Y

pC,w ◦ χdν =
∫

{χ�w}
(χ −w)dν

=
∫
X

⎛
⎜⎝ ∫
{χ�w}

(ψ (x,y)−w)z(x,y)dν (y)

⎞
⎟⎠dμ (x) , (15)

where the function, denoted by ς ,

x →
∫

{χ�w}
(ψ (x,y)−w)z(x,y)dν (y)

is defined μ -almost everywhere on X and it is μ -integrable. Estimating the expression
(15) from above, we have

∫
Y

pC,w ◦ χdν �
∫

{ς�0}

⎛
⎜⎝ ∫
{χ�w}

(ψ (x,y)−w)z(x,y)dν (y)

⎞
⎟⎠dμ (x)

=
∫

{ς�0}×{χ�w}
(ψ (x,y)−w)z(x,y)dμ (x)dν (y)

�
∫

{ψ�w}
(ψ (x,y)−w)z(x,y)dμ (x)dν (y) =

∫
Y

pC,w ◦ψdμ .

The proof is complete. �

REMARK 4. In the main result of paper [9] the following special case of inequal-
ities (11) are studied

f

⎛
⎝∫

X

ψdμ

⎞
⎠ �

∫
Y

f

⎛
⎝∫

X

ψ (x)z(x,y)dμ (x)

⎞
⎠dν (y) �

∫
X

f ◦ψdμ .
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Our result is, first, more general than Rooin’s result, second, it gives a new proof,
and third, it explains the role of the probability measure ν in the refinement.

Our last result relates to the integral form of the Lah–Ribarič inequality which is
given in the next theorem.

THEOREM 7. (see [4]) Let [a,b] ⊂ R be an interval, let p : [a,b] → R be a

nonnegative and integrable function such that P :=
b∫
a

p > 0 , let ψ : [a,b] → R be

a measurable function taking values in an interval [m,M] with m < M, and let f :
[m,M] → R be a convex function. If pψ and p( f ◦ψ) are integrable, then

1
P

b∫
a

p( f ◦ψ) �
M− 1

P

b∫
a

pψ

M−m
ψ (m)+

1
P

b∫
a

pψ −M

M−m
ψ (M) .

In paper [8] the authors obtain a refinement of the previous inequality. We first
generalize this result to measure spaces with a new proof.

If (X ,A ) is a measurable space, the unit mass at x ∈ X (the Dirac measure at x )
is denoted by εx .

The set of positive integers will be denoted by N+ .

THEOREM 8. Let (X ,A ,μ) be a probability space. Let the set I denote either
{1, . . . ,n} for some n � 1 or N+ , and assume we are given a sequence (Ai)i∈I of
pairwise disjoint sets Ai ∈A with μ (Ai) > 0 for all i∈ I and

⋃
i∈I

Ai = X . Furthermore,

we assume that ψ ∈ L(μ) , ψ (x) ∈ [mi,Mi] for all x ∈ Ai , where mi < Mi (i ∈ I) , and

m := inf
i∈I

mi ∈ R and M := sup
i∈I

Mi ∈ R.

Then for every f ∈ F[m,M] (ψ ,μ) we have∫
X

f ◦ψdμ

� ∑
i∈I

μ (Ai)

⎛
⎜⎝

Mi − 1
μ(Ai)

∫
Ai

ψdμ

Mi −mi
f (mi)+

1
μ(Ai)

∫
Ai

ψdμ −mi

Mi −mi
f (Mi)

⎞
⎟⎠ (16)

�
M− ∫

X
ψdμ

M−m
f (m)+

∫
X

ψdμ −m

M−m
f (M) . (17)

Proof. If we introduce the discrete probability measures

ν :=
M− ∫

X
ψdμ

M−m
εm +

∫
X

ψdμ −m

M−m
εM,
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and

ξ := ∑
i∈I

Miμ (Ai)−
∫
Ai

ψdμ

Mi −mi
εmi +

∫
Ai

ψdμ −miμ (Ai)

Mi −mi
εMi

on the Borel subsets of [m,M] , then inequalities (16–17) can be written in the following
form ∫

X

f ◦ψdμ �
∫

[m,M]

f dξ �
∫

[m,M]

f dν. (18)

By Theorem 1, it is enough to prove (18) for f = p[m,M],w (w ∈ ]m,M[) . In this
case (18) is equivalent to

∫
{ψ�w}

(ψ −w)dμ � ∑
{i∈I|mi�w}

(mi −w)

Miμ (Ai)−
∫
Ai

ψdμ

Mi −mi

+ ∑
{i∈I|Mi�w}

(Mi −w)

∫
Ai

ψdμ −miμ (Ai)

Mi −mi
� (M−w)

∫
X

ψdμ −m

M−m
. (19)

To prove the first inequality in (19), we show that for every i ∈ I

∫
Ai

⋂{ψ�w}
(ψ −w)dμ � (Mi −w)

∫
Ai

ψdμ −miμ (Ai)

Mi −mi
. (20)

By some easy calculations, this inequality can be rewritten as

∫
Ai

⋂{ψ�w}
(ψ −w)dμ � Mi −w

w−mi

⎛
⎜⎝ ∫

Ai
⋂{ψ<w}

(ψ −w)dμ +(w−mi)μ (Ai)

⎞
⎟⎠ .

Since Mi −w � ψ −w � mi −w on Ai , we have that

Mi −w
w−mi

⎛
⎜⎝ ∫

Ai
⋂{ψ<w}

(ψ −w)dμ +(w−mi)μ (Ai)

⎞
⎟⎠

� Mi −w
w−mi

(
(mi −w)μ

(
Ai

⋂
{ψ < w}

)
+(w−mi)μ (Ai)

)

= (Mi −w)μ
(
Ai

⋂
{ψ � w}

)
�

∫
Ai

⋂{ψ�w}
(ψ −w)dμ .
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Now, by applying (20), we have that

∑
{i∈I|mi�w}

(mi−w)

Miμ (Ai)−
∫
Ai

ψdμ

Mi −mi
+ ∑

{i∈I|Mi�w}
(Mi −w)

∫
Ai

ψdμ −miμ (Ai)

Mi −mi

� ∑
{i∈I|Mi�w}

∫
Ai

⋂{ψ�w}
(ψ −w)dμ

=
∫

{ψ�w}
(ψ −w)dμ .

Now we prove the second inequality in (19). Using the easily verifiable inequali-
ties

mi −w � M−w
M−m

(mi −m) , Mi −w � M−w
M−m

(Mi −m) , i ∈ I

and equality

(mi−m)

Miμ (Ai)−
∫
Ai

ψdμ

Mi −mi
+(Mi −m)

∫
Ai

ψdμ −miμ (Ai)

Mi −mi

=
∫
Ai

ψdμ −mμ (Ai) , i ∈ I,

we obtain that

∑
{i∈I|mi�w}

(mi−w)

Miμ (Ai)−
∫
Ai

ψdμ

Mi −mi
+ ∑

{i∈I|Mi�w}
(Mi −w)

∫
Ai

ψdμ −miμ (Ai)

Mi −mi

� M−w
M−m ∑

{i∈I|Mi�w}

⎛
⎝∫

Ai

ψdμ −mμ (Ai)

⎞
⎠

� (M−w)

∫
X

ψdμ −m

M−m
.

The proof is complete. �

REMARK 5. Our result contains Theorem 2.1 in paper [8] as a special case, the
proof uses a different method, and extends Theorem 2.1 to countably infinite index set
I .

In the next result, we investigate how the Lah–Ribarič inequality changes for more
precise bounds on the function ψ .
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THEOREM 9. Let (X ,A ,μ) be a probability space. Furthermore, we assume that
ψ ∈ L(μ) , ψ (x) ∈ [k,K] for all x ∈ X , where k < K , and m � k < K � M.

Then for every f ∈ F[m,M] (ψ ,μ) we have

∫
X

f ◦ψdμ �
K− ∫

X
ψdμ

K− k
f (k)+

∫
X

ψdμ − k

K− k
f (K)

�
M− ∫

X
ψdμ

M− k
f (k)+

∫
X

ψdμ − k

M− k
f (M)

�
M− ∫

X
ψdμ

M−m
f (m)+

∫
X

ψdμ −m

M−m
f (M) .

Proof. We have to prove only the second and the third inequalities.
The third inequality will be shown, the second inequality can be handled in a

similar way.
By introducing the discrete probability measures

μ :=
M− ∫

X
ψdμ

M− k
εk +

∫
X

ψdμ − k

M− k
εM

and

ν :=
M− ∫

X
ψdμ

M−m
εm +

∫
X

ψdμ −m

M−m
εM

on the Borel subsets of [m,M] , the third inequality can be written in the form

∫
[m,M]

f dμ �
∫

[m,M]

f dν. (21)

By Theorem 1, it is enough to prove inequality (21) for f = p[m,M],w (w ∈ ]m,M[) .
Therefore, we have to show that

M− ∫
X

ψdμ

M−m
(w−m) �

⎧⎪⎨
⎪⎩

0, if m < w < k

M−∫
X

ψdμ

M−k (w− k) , if k � w < M

,

and this can be verified by elementary calculation.
The proof is complete. �
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4. Application

The applicability of our results is illustrated by generalizing a recent result for
strongly convex functions.

DEFINITION 2. Let C ⊂ R be an interval. A function f : C → R is called a
strongly convex function with modulus c > 0 if

f (αs+(1−α)t) � α f (s)+ (1−α) f (t)− cα (1−α)(s− t)2

for all s , t ∈C and α ∈ [0,1] .

It is known (see [6]) that a function f : C → R is strongly convex with modulus
c > 0 if and only if the function g : C → R , g(t) = f (t)− ct2 is convex.

One of the main results in paper [7] is the next:

THEOREM 10. Let (X ,A ,μ) and (Y,B,ν) be probability spaces, let z : X×Y →
[0,∞[ be a weight function, and let C ⊂ R be an interval with nonempty interior. If
f : C → R is a strongly convex function with modulus c > 0 and ψ : X → C is a
function such that ψ , ψ2 ∈ L(μ) , then

f

⎛
⎝∫

X

ψdμ

⎞
⎠ �

∫
Y

f

⎛
⎝∫

X

ψ (x) z(x,y)dμ (x)

⎞
⎠dν (y)

−c
∫
Y

⎛
⎝∫

X

ψ (x)z(x,y)dμ (x)−
∫
X

ψdμ

⎞
⎠

2

dν (y)

�
∫
X

f ◦ψdμ − c
∫
X

⎛
⎝ψ −

∫
X

ψdμ

⎞
⎠

2

dμ .

The proof is based on Rooin’s result in [9]. We have extended this result in Theo-
rem 6 (c) and this gives the possibility to generalize Theorem 10.

THEOREM 11. Let (X ,A ,μ) and (Y,B,ν) be probability spaces, let z : X×Y →
[0,∞[ be a weight function, and let C ⊂ R be an interval with nonempty interior. If
f : C → R is a strongly convex function with modulus c > 0 and ψ : X ×Y →C is a
function such that ψ , ψ2 , f ◦ψ ∈ L(z(μ ×ν)) , then

f

⎛
⎝ ∫

X×Y

ψ (x,y) z(x,y)dμ (x)dν (y)

⎞
⎠ �

∫
Y

f

⎛
⎝∫

X

ψ (x,y)z(x,y)dμ (x)

⎞
⎠dν (y) (22)

− c
∫
Y

⎛
⎝ ∫

X×Y

ψ (x,y)z(x,y)dμ (x)dν (y)−
∫
X

ψ (x,y)z(x,y)dμ (x)

⎞
⎠

2

dν (y) (23)
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�
∫

X×Y

f (ψ (x,y))z(x,y)dμ (x)dν (y) (24)

− c
∫

X×Y

⎛
⎝ψ (x,y)−

∫
X×Y

ψ (u,v)z(u,v)dμ (u)dν (v)

⎞
⎠

2

z(x,y)dμ (x)dν (y) . (25)

Proof. Since the function t → f (t)− ct2 (t ∈C) is convex, Theorem 6 implies
that

f

⎛
⎝ ∫

X×Y

ψ (x,y) z(x,y)dμ (x)dν (y)

⎞
⎠− c

⎛
⎝ ∫

X×Y

ψ (x,y)z(x,y)dμ (x)dν (y)

⎞
⎠

2

�
∫
Y

f

⎛
⎝∫

X

ψ (x,y)z(x,y)dμ (x)

⎞
⎠dν (y)− c

∫
Y

⎛
⎝∫

X

ψ (x,y)z(x,y)dμ (x)

⎞
⎠

2

dν (y)

�
∫

X×Y

f (ψ (x,y))z(x,y)dμ (x)dν (y)− c
∫

X×Y

ψ2 (x,y)z(x,y)dμ (x)dν (y) .

Note that there is no integrability problem, since the functions f and t → t2

(t ∈C) are convex.
Now some easy considerations show that

⎛
⎝ ∫

X×Y

ψ (x,y) z(x,y)dμ (x)dν (y)

⎞
⎠

2

−
∫
Y

⎛
⎝∫

X

ψ (x,y) z(x,y)dμ (x)

⎞
⎠

2

dν (y)

= −
∫
Y

⎛
⎝ ∫

X×Y

ψ (x,y) z(x,y)dμ (x)dν (y)−
∫
X

ψ (x,y) z(x,y)dμ (x)

⎞
⎠

2

dν (y)

and ⎛
⎝ ∫

X×Y

ψ (x,y) z(x,y)dμ (x)dν (y)

⎞
⎠

2

−
∫

X×Y

ψ2 (x,y)z(x,y)dμ (x)dν (y)

= −
∫

X×Y

⎛
⎝ψ (x,y)−

∫
X×Y

ψ (u,v)z(u,v)dμ (u)dν (v)

⎞
⎠

2

z(x,y)dμ (x)dν (y) ,

which give the result.
The proof is complete. �
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REMARK 6. (a) Theorem 10 is a special case of the previous result.
(b) Since f is strongly convex, it is also convex, and therefore inequalities in (22–

25) obviously refine the Jensen’s inequality

f

⎛
⎝ ∫

X×Y

ψ (x,y)z(x,y)dμ (x)dν (y)

⎞
⎠ �

∫
X×Y

f (ψ (x,y))z(x,y)dμ (x)dν (y) .
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