COUNTER-EXAMPLES CONCERNING BRECKNER-CONVEXITY

Attila Házy and Judit Makó
(Communicated by K. Nikodem)

Abstract. In this paper, we examine convexity type inequalities. Let D be a nonempty convex subset of a linear space, $c>0$ and $\alpha: D-D \rightarrow \mathbb{R}$ be a given even function. The inequality

$$
f\left(\frac{x+y}{2}\right) \leqslant c f(x)+c f(y)+\alpha(x-y) \quad(x, y \in D)
$$

is the focus of our examinations. We will construct an example to show that for $c=1$, this Jensen type inequality does not imply the convexity of the function. Then, we compare this inequality with Hermite-Hadamard type inequalities.

1. Introduction

Denote by \mathbb{R}, \mathbb{N} and \mathbb{R}_{+}the sets of real numbers, positive integers, and nonnegative real numbers, respectively. Let D be a nonempty convex subset of a linear space X and denote by D^{*} the set $\{x-y: x, y \in D\}$. Let $\alpha: D^{*} \rightarrow \mathbb{R}$ be a nonnegative even error function.

The convexity has many applications and many generalization. In the first step, we consider the following. We say that a function $f: D \rightarrow \mathbb{R}$ is α-Jensen convex, if for all $x, y \in D$,

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2}+\alpha(x-y) . \tag{1}
\end{equation*}
$$

Many authors examined this inequality from many context. For example, Házy and Páles ([8, 10, 11]), Makó and Páles ([15, 17, 18]), Tabor and Tabor ([24, 25]), Tabor, Tabor and Zoldak ([27]). If α is constant zero, we have the notion of classical Jensenconvexity.

In this paper, we will examine the following Jensen type inequality, which is a kind of generalization of the previous notion. Let $c>0$. We say that a function $f: D \rightarrow \mathbb{R}$ is (c, α)-Jensen convex if for all $x, y \in D$,

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leqslant c f(x)+c f(y)+\alpha(x-y) \tag{2}
\end{equation*}
$$

When $c \neq \frac{1}{2}$ this inequality was examined by Breckner $([2,3])$, Breckner and Orbán ([4]), Házy [9], Burai and Házy [5], Burai, Házy and Juhász [6].

The following theorem is the famous Bernstein-Doetsch theorem ([1]).
Mathematics subject classification (2020): 39B22, 39B12.
Keywords and phrases: Approximate convexity, Breckner-convexity, lower and upper Hermite-Hadamard inequalities.

THEOREM A. Let I be a nonvoid interval, $f: I \rightarrow \mathbb{R}$ be locally bounded from above on I and assume that f is Jensen-convex, then f is convex.

In Section 2, we will prove that if $c \geqslant 1$, this connection is not valid between (c, α)-Jensen convexity and convexity type inequality.

Now let us recall the theorem of Nikodem, Riedel, and Sahoo from [22]. They proved that from an approximate convexity on an interval I, that is

$$
f(t x+(1-t) y) \leqslant t f(x)+(1-t) f(y)+\varepsilon \quad(x, y \in I)
$$

we can get Hermite-Hadamard type inequalities, namely,

$$
f\left(\frac{x+y}{2}\right) \leqslant \int_{0}^{1} f(t x+(1-t) y) d t+\varepsilon \quad(x, y \in I)
$$

and

$$
\int_{0}^{1} f(t x+(1-t) y) d t \leqslant \frac{f(x)+f(y)}{2}+\varepsilon \quad(x, y \in I) .
$$

But the converse implications are not true. In fact they constructed some counterexample. In Section 3, we would like to comprise the new generalized Jensen-convexity type inequality $((c, \alpha)$-Jensen convexity) and Hermite-Hadamard type inequalities and we will also construct some counter-examples.

2. Counter-examples concerning Bernstein-Doetsh theorem

For the sake of simplicity, assume that $X=\mathbb{R}$ and $D=I$ is a real interval of \mathbb{R} and $\alpha=0$. Then (2) reduces to,

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leqslant c f(x)+c f(y) \quad(x, y \in I) \tag{3}
\end{equation*}
$$

In the following, we will call this inequality c-Jensen inequality. With the substitution $x=y$, we have that $0 \leqslant(2 c-1) f(x)$. This means that if $c>\frac{1}{2}$ then $f(x) \geqslant 0(x \in I)$ and if $c<\frac{1}{2}$ then $f(x) \leqslant 0(x \in I)$. We will consider the first case. We are looking for functions $\varphi:[0,1[\rightarrow \mathbb{R}$ such that, for all $t \in[0,1[$ and $x, y \in I, f$ satisfies the following convexity type inequality:

$$
\begin{equation*}
f(t x+(1-t) y) \leqslant \varphi(t) f(x)+\varphi(1-t) f(y) \tag{4}
\end{equation*}
$$

In the sequel, we will construct an example, which shows, there are no such functions in the case $c \geqslant 1$

Proposition 1. Assume that a function $f: I \rightarrow \mathbb{R}$ is nonnegative and monotone increasing, then it is also 1-Jensen convex.

Proof. Let $x \leqslant y$ be elements of I, then $x \leqslant \frac{x+y}{2} \leqslant y$. Since f is nondecreasing and nonnegative, we have that,

$$
f\left(\frac{x+y}{2}\right) \leqslant f(y) \leqslant f(x)+f(y)
$$

which means that f is 1 -Jensen convex.
The following easy-to-prove propositions will be useful in the sequel.
Proposition 2. Assume that $f: I \rightarrow \mathbb{R}$ is 1 -Jensen convex, then, for all $d>0$, $f+d$ is also 1-Jensen convex.

Proposition 3. Let $\frac{1}{2} \leqslant c \leqslant d$. Assume that $f: I \rightarrow \mathbb{R}$ is c-Jensen convex, then, it is also d-Jensen convex.

Let's consider our first example, namely, for $n \in \mathbb{N}$ and $x \in[0,1[$ let,

$$
\begin{equation*}
f_{n}(x):=\sum_{k=0}^{n}\left(\left[2^{k+1} x\right]-2\left[2^{k} x\right]\right), \quad 0 \leqslant x<1 \tag{5}
\end{equation*}
$$

REMARK. It is easy to see that the function $f_{n}(x)$ is the number of 1 's of the binary form of $\left[2^{n+1} x\right]$.

The following picture will show the graph of f_{n}, when $n=5$.

THEOREM 4. The function $f_{n}:[0,1[\rightarrow \mathbb{R}$ defined by (5) is 1 -Jensen convex, but not convex in the sense of (4), i.e., for all $n \in \mathbb{N}$, there exist $\lambda_{n} \in \mathbb{R}$, with $\lim _{n \rightarrow \infty} \lambda_{n}=$ $\left.\infty, t_{n} \in\right] 0,1\left[\right.$ and $x_{n}, y_{n} \in[0,1[$, such that

$$
\begin{equation*}
f_{n}\left(t_{n} x_{n}+\left(1-t_{n}\right) y_{n}\right)>\lambda_{n} f_{n}\left(x_{n}\right)+\lambda_{n} f_{n}\left(y_{n}\right) \tag{6}
\end{equation*}
$$

Proof. By the definition, it can be seen that

$$
f_{n+1}(x)= \begin{cases}f_{n}(2 x) & \text { if } \quad 0 \leqslant x<\frac{1}{2} \tag{7}\\ f_{n}(2 x-1)+1 & \text { if } \quad \frac{1}{2} \leqslant x<1 .\end{cases}
$$

It is also easy to see that, $f_{n}\left(x+\frac{1}{2}\right)=f_{n}(x)+1$, if $0 \leqslant x<\frac{1}{2}$. We will prove the 1 Jensen convexity of f_{n} by induction. If $n=1$, the function f_{1} is monotone increasing,
thus it is 1 -convex. Now suppose that the statement is true for $n \in \mathbb{N}$ and consider the case $n+1$. If $0 \leqslant x \leqslant y<\frac{1}{2}$, we can get 1 -Jensen convexity of f_{n+1} by the induction assumption. If $\frac{1}{2} \leqslant x \leqslant y<1$, we can get 1 -Jensen convexity of f_{n+1} by the induction assumption and proposition 2 . Now assume that $0 \leqslant x<\frac{1}{2}$ and $\frac{1}{2} \leqslant y<1$. Then there are two cases: $\frac{1}{4} \leqslant \frac{x+y}{2}<\frac{1}{2}$ or $\frac{1}{2} \leqslant \frac{x+y}{2}<\frac{3}{4}$. Consider the case $\frac{1}{4} \leqslant \frac{x+y}{2}<\frac{1}{2}$ (the proof of the other case is very similar). Then, using (7)

$$
\begin{aligned}
f_{n+1}(x)+f_{n+1}(y) & =f_{n}(2 x)+f_{n}(2 y-1)+1 \\
& \geqslant f_{n}\left(\frac{2 x+2 y-1}{2}\right)+1 \\
& =f_{n}\left(x+y-\frac{1}{2}\right)+1=f_{n}(x+y)-1+1 \\
& =f_{n}(x+y) \\
& =f_{n+1}\left(\frac{x+y}{2}\right)
\end{aligned}
$$

This means the 1 -Jensen convexity of f_{n}.
Let's see the proof of the nonconvexity of f_{n}. We prove the inequality (6). Let $n \geqslant 3$ be an integer and let $\lambda_{n}=\frac{1}{2^{n-1}}, x_{n}=0$ and $y_{n}=\frac{1}{2}$. Then, using $f_{n}(0)=0$, $f_{n}\left(\frac{1}{2}\right)=1$ and $f_{n}(x) \geqslant 0(x \in[0,1[)$, we get

$$
\begin{aligned}
f_{n}\left(\frac{1}{2^{n-1}} \cdot 0+\left(1-\frac{1}{2^{n-1}}\right) \cdot \frac{1}{2}\right) & =f_{n}\left(\frac{2^{n-1}-1}{2^{n}}\right) \\
& =f_{n}\left(\frac{1+2+2^{2}+\cdots+2^{n-2}}{2^{n}}\right) \\
& =1+1+1+\cdots+1=(n-2) \\
& >\frac{(n-2)}{2} \cdot 0+\frac{(n-2)}{2}
\end{aligned}
$$

which proves (6) holds.

3. Hermite-Hadamard type inequalities and (c, α)-Jensen convexity

In the sequel, we will use the following notion. We say that a function $f: D \rightarrow \mathbb{R}$ has got a radially property, if for all $x, y \in D$, the function $g_{x, y}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
g_{x, y}(t)=f(t x+(1-t) y) \quad t \in[0,1] \tag{8}
\end{equation*}
$$

has got the property. For example, f is radially bounded, if for $x, y \in D$, the function $g_{x, y}$ is bounded. Theorem 5 and theorem 6 show that (c, α)-Jensen convexity implies Hermite-Hadamard type inequalities.

THEOREM 5. Let $c>0$ and $\alpha: D^{*} \rightarrow \mathbb{R}$ be nonnegative even error function, with for all $u \in D^{*}$, the map $s \mapsto \alpha(s u)$ is Lebesgue integrable on $\left[-\frac{1}{2}, \frac{1}{2}\right]$. If $f: D \rightarrow$
\mathbb{R} is radially Lebesgue integrable and (c, α)-Jensen convex, then it also satisfies the following lower Hermite-Hadamard type inequality:

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leqslant 2 c \int_{0}^{1} f(t x+(1-t) y) d t+\int_{0}^{1} \alpha((1-2 t)(x-y)) d t \quad(x, y \in D) \tag{9}
\end{equation*}
$$

Proof. Assume that f is (c, α)-Jensen convex. Substituting x by $t x+(1-t) y$ and y by $(1-t) x+t y$, we have that

$$
f\left(\frac{x+y}{2}\right) \leqslant c f(t x+(1-t) y)+c f((1-t) x+t y)+\alpha((1-2 t)(x-y))
$$

Then, integrating with respect to t on $[0,1]$, we can get the lower Hermite-Hadamard type inequality (9) holds.

THEOREM 6. Let $0<c<1$ and $\alpha: D^{*} \rightarrow \mathbb{R}$ is an error function, with for all $u \in D^{*}$, the map $s \mapsto \alpha(s u)$ is Lebesgue integrable on $[0,1]$. If $f: D \rightarrow \mathbb{R}$ is radially Lebesgue integrable and (c, α)-Jensen convex, then it also satisfies the following upper Hermite-Hadamard type inequality:

$$
\begin{equation*}
\int_{0}^{1} f(t x+(1-t) y) d t \leqslant \frac{c}{1-c} f(x)+\frac{c}{1-c} f(y)+\int_{0}^{1} \alpha(t(x-y)) d t \quad(x, y \in D) \tag{10}
\end{equation*}
$$

Proof. Let $0 \leqslant t \leqslant \frac{1}{2}$, then substituting x by $2 t x+(1-2 t) y$ in the (c, α)-Jensen convex inequality, we have that,

$$
\left.f\left(\frac{(2 t x+(1-2 t) y)}{2}\right) \leqslant c f(2 t x+(1-2 t) y)\right)+c f(y)+\alpha(2 t(x-y))
$$

Integrating the above inequality with respect to t on the interval $\left[0, \frac{1}{2}\right]$, we have that

$$
\left.\int_{0}^{\frac{1}{2}} f(t x+(1-t) y) d t \leqslant c \int_{0}^{\frac{1}{2}} f(2 t x+(1-2 t) y)\right) d t+c f(y)+\int_{0}^{\frac{1}{2}} \alpha(2 t(x-y)) d t
$$

Making some natural integral substitution, we have that,

$$
\begin{equation*}
\left.\int_{0}^{\frac{1}{2}} f(t x+(1-t) y) d t \leqslant \frac{c}{2} \int_{0}^{1} f(t x+(1-t) y)\right) d t+c f(y)+\frac{1}{2} \int_{0}^{1} \alpha(t(x-y)) d t \tag{11}
\end{equation*}
$$

Let $\frac{1}{2} \leqslant t \leqslant 1$, then substituting y by $(2 t-1) x+(2-2 t) y$ in the (c, α)-Jensen convex inequality, we have that,

$$
\left.f\left(\frac{x+((2 t-1) x+(2-2 t) y))}{2}\right) \leqslant c f(x)+c f((2 t-1) x+(2-2 t) y)\right)+\alpha((2-2 t)(x-y))
$$

Integrating the above inequality with respect to t on the interval $\left[\frac{1}{2}, 1\right]$, we have that

$$
\int_{\frac{1}{2}}^{1} f(t x+(1-t) y) d t \leqslant c f(x)+c \int_{\frac{1}{2}}^{1} f((2 t-1) x+(2-2 t) y) d t+\int_{\frac{1}{2}}^{1} \alpha((2-2 t)(x-y)) d t
$$

Making some natural integral substitution and using the symmetry of α, we have that,

$$
\begin{equation*}
\int_{\frac{1}{2}}^{1} f(t x+(1-t) y) d t \leqslant c f(x)+\frac{c}{2} \int_{0}^{1} f(t x+(1-t) y) d t+\frac{1}{2} \int_{0}^{1} \alpha((t(x-y)) d t \tag{12}
\end{equation*}
$$

Adding the inequality (11) and (12), and rearranging the inequality, we got, we have the upper Hermite-Hadamard type inequality (10).

In the following theorem, we construct a function, which satisfies a lower HermiteHadamard type inequality, but, for all $n \in \mathbb{N}$, it is not n-Jensen convex.

THEOREM 7. Let $c \geqslant \frac{3}{2}$. The following function

$$
f(x)=x(1-x), \quad(x \in[0,1])
$$

satisfies the lower Hermite-Hadamard type inequality

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leqslant \frac{c}{y-x} \int_{x}^{y} f(t) d t \quad(x, y \in[0,1]) \tag{13}
\end{equation*}
$$

but it is not n-Jensen convex, that is there exists $x, y \in[0,1]$ such that

$$
f\left(\frac{x+y}{2}\right)>n f(x)+n f(y)
$$

Proof. Computing the right hand side of (13), we have that

$$
\frac{c}{y-x} \int_{x}^{y} t(1-t) d t=\frac{c}{y-x}\left[\frac{t^{2}}{2}-\frac{t^{3}}{3}\right]_{x}^{y}=c\left(\frac{x+y}{2}-\frac{x^{2}+x y+y^{2}}{3}\right) .
$$

Computing the left hand side of (13), we have that

$$
f\left(\frac{x+y}{2}\right)=\frac{x+y}{2}\left(1-\frac{x+y}{2}\right)=\frac{x+y}{2}-\frac{x^{2}+2 x y+y^{2}}{4} .
$$

Combining the two side, we have to prove that,

$$
\frac{x+y}{2}-\frac{x^{2}+2 x y+y^{2}}{4} \leqslant c\left(\frac{x+y}{2}-\frac{x^{2}+x y+y^{2}}{3}\right)
$$

that is

$$
0 \leqslant 3(c-1)(x+y)+(3-2 c) x y+\left(\frac{3}{2}-2 c\right)\left(x^{2}+y^{2}\right)
$$

Using the classical identity beetween the arithemitc and geometric means, and the fact $3-2 c \leqslant 0$, then $x, y \in[0,1]$, we have that

$$
\begin{aligned}
& 3(c-1)(x+y)+(3-2 c) x y+\left(\frac{3}{2}-2 c\right)\left(x^{2}+y^{2}\right) \\
\geqslant & 3(c-1)(x+y)+(3-2 c) \cdot \frac{x^{2}+y^{2}}{2}+\left(\frac{3}{2}-2 c\right)\left(x^{2}+y^{2}\right) \\
= & 3(c-1)(x+y)-3(c-1)\left(x^{2}+y^{2}\right) \\
= & =3(c-1)(x(1-x)+y(1-y)) \geqslant 0
\end{aligned}
$$

which proves that (13) holds. On the other hand, for all $n \in \mathbb{N}$, the function f is not n-Jensen convex, since

$$
0=n f(1)+n f(0)<f\left(\frac{x+y}{2}\right)=f\left(\frac{1}{2}\right)=\frac{1}{4} .
$$

In the following theorem, for all $n \in \mathbb{N}$, we construct a function, which satisfies an upper Hermite-Hadamard type inequality, but, for all it is not n-Jensen convex. Similarly, than in [22], but it is also useable in our case.

Theorem 8. For $n \in \mathbb{N}$, let

$$
f_{n}(x):=-\ln \left(|x|+e^{-2 n}\right)+1, \quad \text { if } \quad|x| \leqslant 1-e^{-2 n}
$$

Then, for $n \in \mathbb{N}, f_{n}$ is a continuous function which satisfies the following upper Her-mite-Hadamard type inequality,

$$
\begin{equation*}
\frac{1}{y-x} \int_{x}^{y} f(t) d t \leqslant f(x)+f(y) \quad x<y \tag{14}
\end{equation*}
$$

but it is not n-Jensen convex, i.e. there exists x, y such that

$$
f\left(\frac{x+y}{2}\right)>n f(x)+n f(y)
$$

Proof. Substituting f_{n} in (13), we have that for all $-\left(1-e^{-n}\right)<x<y<1-e^{-n}$

$$
\frac{1}{y-x} \int_{x}^{y}\left(-\ln \left(|t|+e^{-2 n}\right)+1\right) d t \leqslant-\ln \left(|x|+e^{-2 n}\right)+1-\ln \left(|y|+e^{-2 n}\right)+1
$$

This inequality is equivalent to

$$
\begin{equation*}
\frac{1}{y-x} \int_{x}^{y}\left(-\ln \left(|t|+e^{-2 n}\right) d t \leqslant-\ln \left(|x|+e^{-2 n}\right)-\ln \left(|y|+e^{-2 n}\right)+1\right. \tag{15}
\end{equation*}
$$

which is not else than the inequality, which was proved by Nikodem, Riedel and Sahoo in [22]. Since the function $x \mapsto-\ln \left(|x|+e^{-2 n}\right)$ is nonnegative on $\left[-\left(1-e^{-2 n}\right), 1-\right.$ $\left.e^{-2 n}\right]$, (15) implies (14). On the other hand,
$n f\left(-\left(1-e^{-2 n}\right)\right)+n f\left(1-e^{-2 n}\right)=2 n<f\left(\frac{-\left(1-e^{-2 n}\right)+1-e^{-2 n}}{2}\right)=f(0)=2 n+1$,
which shows that our counter-example is correct.

Open problem. Investigating the Hermite-Hadamard type inequalities,

$$
f\left(\frac{x+y}{2}\right) \leqslant \frac{c_{1}}{y-x} \int_{x}^{y} f(t) d t \quad(x<y, x, y \in I)
$$

and

$$
\frac{1}{y-x} \int_{x}^{y} f(t) d t \leqslant c_{2} f(x)+c_{2} f(y) \quad(x<y, x, y \in I)
$$

The case $1<c_{1}<\frac{3}{2}$ and $\frac{1}{2}<c_{2}<1$ are open problems. We suspect that, counterexamples can be constructed in also these cases.

REFERENCES

[1] F. Bernstein and G. Doetsch, Zur Theorie der konvexen Funktionen, Math. Ann., 76 (4): 514526, 1915.
[2] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen, Publ. Inst. Math. (Beograd) 23 (1978), 13-20.
[3] W. W. Breckner, Rational s-convexity, a generalized Jensen-convexity, Cluj University Press, 2011, p. 165
[4] W. W. BRECKNER AND G. OrbÁN, Continuity properties of rationally s-convex mappings with values in ordered topological liner space, "Babes-Bolyai" University, Kolozsvár, 1978.
[5] P. Burai and A. Házy, On approximately h-convex functions, J. Convex Anal., 18 (2): 447-454, 2011.
[6] P. Burai, A. Házy and T. Juhász, On approximately Breckner s-convex functions, J. Convex Anal., 40 (1): 91-99, 2011.
[7] A. HÁzy, On approximate t-convexity, Math. Inequal. Appl., 8 (3): 389-402, 2005.
[8] A. HÁzy, On the stability of t-convex functions, Aequationes Math., 74 (3): 210-218, 2007.
[9] A. HÁzy, Bernstein-Doetsch type results for (k, h)-convex functions, Miskolc Math. Notes, 13 (2): 325-336, 2012.
[10] A. HÁZY and Zs. PÁLES, On approximately midconvex functions, Bull. London Math. Soc., 36 (3): 339-350, 2004.
[11] A. HÁZy and Zs. PÁles, On approximately t-convex functions, Publ. Math. Debrecen, 66: 489501, 2005.
[12] A. HÁzy and Zs. PÁLes, On a certain stability of the Hermite-Hadamard inequality, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2102): 571-583, 2009.
[13] D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc., 3: 821828, 1952.
[14] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, vol. 489 of Prace Naukowe Uniwersytetu Ślaskiego w Katowicach, Państwowe Wydawnictwo Naukowe - Uniwersytet Śla̧ski, Warszawa-Kraków-Katowice, 1985.
[15] J. MAKÓ AND ZS. PÁLES, Approximate convexity of Takagi type functions, J. Math. Anal. Appl., 369: 545-554, 2010.
[16] J. MAKÓ and Zs. PÁLES, Strengthening of strong and approximate convexity, Acta Math. Hungar., 132 (1-2): 78-91, 2011.
[17] J. MaKó and Zs. PÁLes, On φ-convexity, Publ. Math. Debrecen, 80: 107-126, 2012.
[18] J. Makó and Zs. PÁLes, On approximately convex Takagi type functions, Proc. Amer. Math. Soc., 141: 2069-2080, 2013.
[19] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math., 28: 229-232, 1985.
[20] A. Mureńko, Ja. Tabor, and Jó. Tabor, Applications of de Rham Theorem in approximate midconvexity, J. Diff. Equat. Appl., 18: 335-344, 2012.
[21] C. T. Ng and K. Nikodem, On approximately convex functions, Proc. Amer. Math. Soc., 118 (1): 103-108, 1993.
[22] K. Nikodem, T. Riedel, and P. K. Sahoo, The stability problem of the Hermite-Hadamard inequality, Math. Inequal. Appl., 10 (2): 359-363, 2007
[23] Zs. PÁLes, On approximately convex functions, Proc. Amer. Math. Soc., 131 (1): 243-252, 2003.
[24] JA. TABOR AND JÓ. TABOR, Generalized approximate midconvexity, Control Cybernet., 38 (3): 655669, 2009.
[25] JA. TABOR AND Jó. TABOR, Takagi functions and approximate midconvexity, J. Math. Anal. Appl., 356 (2): 729-737, 2009.
[26] JA. TABOR, JÓ. TABOR, AND M. ŻOŁDAK, Approximately convex functions on topological vector spaces, Publ. Math. Debrecen, 77: 115-123, 2010.
[27] JA. TABOR, JÓ. TABOR, AND M. ŻOŁDAK, Optimality estimations for approximately midconvex functions, Aequationes Math., 80: 227-237, 2010.
(Received March 29, 2023)

Attila Házy
Institute of Mathematics
University of Miskolc
H3515 Miskolc-Egyetemváros, Hungary
e-mail: attila.hazy@uni-miskolc.hu
Judit Makó
Institute of Mathematics
University of Miskolc
H3515 Miskolc-Egyetemváros, Hungary
e-mail: judit.mako@uni-miskolc.hu

