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APPROXIMATION BY NÖRLUND MEANS WITH

RESPECT TO WALSH SYSTEM IN LEBESGUE SPACES

NIKA ARESHIDZE AND GEORGE TEPHNADZE ∗

(Communicated by L. E. Persson)

Abstract. In this paper we improve and complement a result by Móricz and Siddiqi [12]. In
particular, we prove that their inequality of the Nörlund means with respect to the Walsh system
holds also without their additional condition. Moreover, we prove some new approximation
results and inequalities in Lebesgue spaces for any 1 � p < ∞ .

1. Introduction

Concerning some definitions and notations used in this introduction we refer to
Section 2. Fejér’s theorem shows that (see e.g. [9] and [10]) if one replaces ordinary
summation by Fejér means σn, defined by

σn f :=
1
n

n

∑
k=1

Sk f ,

then, for any 1 � p � ∞, there exists an absolute constant Cp, depending only on p
such that the inequality

‖σn f‖p � Cp ‖ f‖p

holds. Moreover, (see e.g. [16]) let 1 � p � ∞ , 2N � n < 2N+1 , f ∈ Lp(G) and n ∈ N.
Then the following inequality holds:

‖σn f − f‖p � 3
N

∑
s=0

2s

2N ωp (1/2s, f ) . (1)

It follows that if f ∈ lip(α, p) , i.e.

ωp (1/2n, f ) = O(1/2nα) , as n → ∞,

where
ωp

(
1/2k, f

)
:= sup

0�|h|�1/2k
‖ f (x+h)− f (x)‖p .
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then

‖σn f − f‖p =

⎧⎪⎪⎨⎪⎪⎩
O
(
1/2N

)
, if α > 1,

O
(
N/2N

)
, if α = 1,

O
(
1/2Nα) , if α < 1.

Moreover, (see [16]) if 1 � p < ∞, f ∈ Lp(G) and

‖σ2n f − f‖p = o(1/2n) , as n → ∞,

then f is a constant function.
Boundedness of maximal operators of Vilenkin-Fejer means and weak-(1,1) type

inequality

μ (σ∗ f > λ ) � c
λ
‖ f‖1 ,

(
f ∈ L1(G), λ > 0

)
can be found in Zygmund [21] for trigonometric series, in Schipp [17] for Walsh series
and in Pál, Simon [14] and Weisz [19, 20] for bounded Vilenkin series.

Convergence and summability of Nörlund means were studied by several authors.
We mention Baramidze, Persson and G. Tephnadze [2] (see also [1], [3], [4] and [5]),
Fridli, Manchanda, Siddiqi [8], Persson, Tephnadze and Weisz [16] (see also [15]),
Blahota and Nagy [6] (see also [7] and [13]). Móricz and Siddiqi [12] investigated the
approximation properties of some special Nörlund means of Walsh-Fourier series of Lp

functions in norm. In particular, they proved that if f ∈ Lp(G), 1 � p � ∞, n = 2 j +k,
1 � k � 2 j (n ∈ N+) and (qk,k ∈ N) is a sequence of non-negative numbers, such that

nγ−1

Qγ
n

n−1

∑
k=0

qγ
k = O(1), for some 1 < γ � 2, (2)

then

‖tn f − f‖p � Cp

Qn

j−1

∑
i=0

2iqn−2iωp

(
1
2i , f

)
+Cpωp

(
1
2 j , f

)
, (3)

when (qk,k ∈ N) is non-decreasing, while

‖tn f − f‖p � Cp

Qn

j−1

∑
i=0

(
Qn−2i+1−Qn−2i+1+1

)
ωp

(
1
2i , f

)
+Cpωp

(
1
2 j , f

)
,

when (qk,k ∈ N) is non-increasing.
In this paper we improve and complement a result by Móricz and Siddiqi [12]. In

particular, we prove that their estimate of the Nörlund means with respect to the Walsh
system holds also without their additional condition. Moreover, we prove a similar
approximation result in Lebesgue spaces for any 1 � p < ∞ .

The paper is organized as follows: The main results are presented, proved and
discussed in Section 3. In particular, Theorems 1, 2 and 3 are parts of this new ap-
proach. In order not to disturb the presentations in Section 3, we use Section 2 for some
necessary preliminaries.
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2. Preliminaries

Let N+ denote the set of the positive integers, N := N+ ∪{0}. Denote by Z2 :=
{0,1} the additive group of integers modulo 2. Define the group G as the complete
direct product of the group Z2 with the product of the discrete topologies of Z2’s . The
direct product μ of the measures μ∗ ({ j}) := 1/2 ( j ∈ Z2) is the Haar measure on G
with μ (G) = 1. The elements of G are represented by the sequences

x := (x0,x1, . . . ,xk, . . .) (xk ∈ Z2).

It is easy to give a base for the neighborhood of G , namely

I0 (x) := G, In(x) := {y ∈ G | y0 = x0, . . . ,yn−1 = xn−1} (x ∈ G, n ∈ N).

Denote In(0) by In i.e In := In(0). It is well-known that every n ∈ N can be uniquely
expressed as

n =
∞

∑
k=0

n j2 j, where n j ∈ Z2 ( j ∈ N)

and only a finite number of n j ’s differ from zero.
First define the Rademacher functions as

rk (x) := (−1)xk , (k ∈ N) .

Now we define the Walsh system w := (wn : n ∈ N) on G as

wn (x) :=
∞

∏
k=0

rnk
k (x) (n ∈ N) .

The Walsh system is orthonormal and complete in L2 (G) (see e.g. [18]).
If f ∈ L1 (G) , then we can define the Fourier coefficients, the partial sums of the

Fourier series, the Fejér means, the Dirichlet and Fejér kernels with respect to the Walsh
system in the usual manner:

f̂ (k) : =
∫

G
fwkdμ , (k ∈ N) ,

Sn f : =
n−1

∑
k=0

f̂ (k)wk, (n ∈ N+, S0 f := 0) ,

σn f : =
1
n

n

∑
k=1

Sk f , (n ∈ N+) ,

Dn : =
n−1

∑
k=0

ψk, (n ∈ N+) ,

Kn : =
1
n

n

∑
k=1

Dk, (n ∈ N+) .
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Recall that for Dirichlet and Fejér kernels Dn and Kn we have that (see e.g. [9])

D2n (x) =

{
2n, if x ∈ In,

0, if x /∈ In,
(4)

D2n−m (x) = D2n (x)−w2n−1 (x)Dm (x) , 0 � m < 2n (5)

n |Kn| � 3
|n|
∑
l=0

2l |K2l | , (6)

where |n| =: max{ j ∈ N,n j �= 0} and∫
G

Kn(x)dμ(x) = 1, sup
n∈N

∫
G
|Kn(x)|dμ(x) � 2. (7)

Moreover, if n > t, t,n ∈ N, then

K2n (x) =

⎧⎪⎪⎨⎪⎪⎩
2t−1, x ∈ It\It+1, x− et ∈ In,

2n+1
2 , x ∈ In,

0, otherwise.

(8)

The n -th Nörlund mean tn of the Fourier series of f is defined by

tn f :=
1
Qn

n

∑
k=1

qn−kSk f , where Qn :=
n−1

∑
k=0

qk. (9)

We always assume that {qk : k � 0} is a sequence of nonnegative numbers, where
q0 > 0 and limn→∞ Qn = ∞. Then the summability method (9) generated by {qk : k � 0}
is regular if and only if (see [11])

lim
n→∞

qn−1

Qn
= 0.

The following representation play central roles in the sequel

tn f (x) =
∫
G

f (t)Fn (x− t)dμ (t) , where Fn =:
1
Qn

n

∑
k=1

qn−kDk

is called the kernels of the Nörlund means.
It is well-known (see e.g. [16]) that every Nörlund summability method generated

by non-increasing sequence (qk,k ∈ N) is regular, but Nörlund means generated by
non-decreasing sequence (qk,k ∈ N) is not always regular. In this paper we investigate
regular Nörlund means only.

If we invoke Abel transformation we get the following identities:

Qn :=
n−1

∑
j=0

q j =
n

∑
j=1

qn− j ·1 =
n−1

∑
j=1

(
qn− j −qn− j−1

)
j +q0n (10)

and

tn f =
1
Qn

(
n−1

∑
j=1

(
qn− j −qn− j−1

)
jσ j f +q0nσn f

)
. (11)
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3. Main results

Based on estimate (1) we can prove our first main results:

THEOREM 1. Let 2N � n < 2N+1 and tn be a regular Nörlund mean generated by
non-decreasing sequence {qk : k ∈ N}, in sign qk ↑ . Then, for any f ∈ Lp(G), where
1 � p < ∞, the following inequality holds:

‖tn f − f‖p � 18
Qn

N−1

∑
i=0

2iqn−2iωp

(
1
2i , f

)
+12ωp

(
1
2N , f

)
.

Proof. Let 2N � n < 2N+1. Since tn are regular Nörlund means, generated by
sequences of non-decreasing numbers {qk : k ∈ N} by combining (10) and (11), we
can conclude that

‖tn f (x)− f (x)‖p

� 1
Qn

(
n−1

∑
j=1

(
qn− j −qn− j−1

)
j‖σ j f (x)− f (x)‖p +q0n‖σn f (x)− f (x)‖p

)
:= I + II,

Furthermore,

I =
1
Qn

2N−1

∑
j=1

(
qn− j −qn− j−1

)
j‖σ j f (x)− f (x)‖p

+
1
Qn

n−1

∑
j=2N

(
qn− j −qn− j−1

)
j‖σ j f (x)− f (x)‖p := I1 + I2.

Now we estimate each terms separately. By using (1) for I1 we obtain that

I1 � 3
Qn

N−1

∑
k=0

2k+1−1

∑
j=2k

(
qn− j −qn− j−1

)
j

k

∑
s=0

2s

2k ωp (1/2s, f ) (12)

� 3
Qn

N−1

∑
k=0

2k+1
2k+1−1

∑
j=2k

(
qn− j −qn− j−1

) k

∑
s=0

2s

2k ωp (1/2s, f )

� 6
Qn

N−1

∑
k=0

(
qn−2k −qn−2k+1

) k

∑
s=0

2sωp (1/2s, f )

� 6
Qn

N−1

∑
s=0

2sωp (1/2s, f )
N−1

∑
k=s

(
qn−2k −qn−2k+1

)
� 6

Qn

N−1

∑
s=0

2sqn−2sωp (1/2s, f ) .
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It is evident that

I2 � 3
Qn

n−1

∑
j=2N

(
qn− j −qn− j−1

)
j

N

∑
s=0

2s

2N ωp (1/2s, f ) (13)

� 3 ·2N+1

Qn

n−1

∑
j=2N

(
qn− j −qn− j−1

) N

∑
s=0

2s

2N ωp (1/2s, f )

� 6qn−2N

Qn

N

∑
s=0

2sωp (1/2s, f )

� 6
Qn

N

∑
s=0

2sqn−2sωp (1/2s, f )

� 6
Qn

N−1

∑
s=0

2sqn−2sωp (1/2s, f )+6ωp
(
1/2N, f

)
.

For II we have that

II � 3q02N+1

Qn

N

∑
s=0

2s

2N ωp (1/2s, f ) � 6
Qn

N−1

∑
s=0

2sqn−2sωp (1/2s, f )+6ωp
(
1/2N , f

)
.

The proof is complete. �
Our next main result reads:

THEOREM 2. Let tn be Nörlund mean generated by a non-increasing sequence
{qk : k ∈ N} , in sign qk ↓ . Then, for any f ∈ Lp(G), where 1 � p < ∞, the inequality

‖t2n f − f‖p �
n−1

∑
s=0

2s

2n ωp (1/2s, f )+3
n−1

∑
s=0

n− s
2n−s

q2s

q2n
ωp (1/2s, f )+3ωp (1/2n, f )

holds.

Proof. By using (5) we find that

t2n f = D2n ∗ f − 1
Q2n

2n−1

∑
k=0

qk ((w2n−1Dk)∗ f ) . (14)

By using Abel transformation we get that

t2n f = D2n ∗ f − 1
Q2n

2n−2

∑
j=0

(
q j −q j+1

)
j((w2n−1Kj)∗ f ) (15)

− 1
Q2n

q2n−1(2n−1)(w2n−1K2n−1 ∗ f )

= D2n ∗ f − 1
Q2n

2n−2

∑
j=0

(
q j −q j+1

)
j((w2n−1Kj)∗ f )

− 1
Q2n

q2n−12
n(w2n−1K2n ∗ f )+

q2n−1

Q2n
(w2n−1D2n ∗ f )
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and

t2n f (x)− f (x) =
∫

G
( f (x+ t)− f (x))D2n(t)dt (16)

− 1
Q2n

2n−2

∑
j=0

(
q j −q j+1

)
j
∫

G
( f (x+ t)− f (x))w2n−1(t)Kj(t)dt

− 1
Q2n

q2n−12
n
∫

G
( f (x+ t)− f (x))w2n−1(t)K2n(t)dt

+
q2n−1

Q2n

∫
G
( f (x+ t)− f (x))w2n−1(t)D2n(t)dt

:= I + II + III + IV.

By combining generalized Minkowski’s inequality and equality (4) we find that

‖I‖p �
∫

In
‖ f (x+ t)− f (x)‖pD2n(t)dt � ωp (1/2n, f ) .

and

‖IV‖p �
∫

In
‖ f (x+ t)− f (x)‖pD2n(t)dt � ωp (1/2n, f ) .

Since

2nq2n−1 � Q2n , n ∈ N, (17)

If we combine (8), (17) and generalized Minkowski’s inequality, then we get that

‖III‖p �
∫

G
‖ f (x+ t)− f (x)‖p K2n (t)dμ(t)

=
∫

In
‖ f (x+ t)− f (x)‖p K2n (t)dμ(t)

+
n−1

∑
s=0

∫
In(es)

‖ f (x+ t)− f (x)‖p K2n (t)dμ(t)

�
∫

In
‖ f (x+ t)− f (x)‖p

2n +1
2

dμ(t)

+
n−1

∑
s=0

2s
∫

In(es)
‖ f (x+ t)− f (x)‖p dμ(t)

� ωp (1/2n, f )
∫

In

2n +1
2

dμ(t)+
n−1

∑
s=0

2s
∫

In(es)
ωp (1/2s, f )dμ(t)

� ωp (1/2n, f )+
n−1

∑
s=0

2s

2n ωp (1/2s, f )

�
n

∑
s=0

2s

2n ωp (1/2s, f ) .



144 N. ARESHIDZE AND G. TEPHNADZE

From this estimate also it follows that

2n
∫

G
‖ f (x+ t)− f (x)‖p K2n (t)dμ(t) �

n

∑
s=0

2sωp (1/2s, f ) . (18)

Let 2k � j � 2k+1−1. By applying (6) and (18) we find that∥∥∥∥ j
∫

G
| f (x+ t)− f (x)|Kj (t)dμ(t)

∥∥∥∥
p

(19)

� 3
k

∑
s=0

2s
∫

G
‖ f (x+ t)− f (x)‖p K2s (t)dμ(t)

� 3
k

∑
l=0

l

∑
s=0

2sωp (1/2s, f ) . (20)

Hence, by applying (6) and (19) we find that

‖II‖p � 1
Q2n

2n−1

∑
j=0

(
q j −q j+1

)
j
∫

G
‖ f (x+ t)− f (x)‖p|Kj(t)|dt

� 1
Q2n

n−1

∑
k=0

2k+1−1

∑
j=2k

(
q j −q j+1

)
j
∫

G
‖ f (x+ t)− f (x)‖p|Kj(t)|dt

� 3
Q2n

n−1

∑
k=0

2k+1−1

∑
j=2k

(
q j −q j+1

) k

∑
l=0

l

∑
s=0

2sωp (1/2s, f )

� 3
Q2n

n−1

∑
k=0

(q2k −q2k+1)
k

∑
l=0

l

∑
s=0

2sωp (1/2s, f )

� 3
Q2n

n−1

∑
l=0

n−1

∑
k=l

(q2k −q2k+1)
l

∑
s=0

2sωp (1/2s, f )

� 3
Q2n

n−1

∑
l=0

q2l

l

∑
s=0

2sωp (1/2s, f )

� 3
Q2n

n−1

∑
s=0

2sωp (1/2s, f )
n−1

∑
l=s

q2l

� 3
Q2n

n−1

∑
s=0

2sωp (1/2s, f )q2s(n− s)

� 3
n−1

∑
s=0

n− s
2n−s

q2s

q2n
ωp (1/2s, f ) .

The proof is complete. �

Finally, we state and prove the third main result.
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THEOREM 3. Let 2N � n < 2N+1 and tn be Nörlund mean generated by non-
increasing sequence {qk : k ∈ N} (in sign qk ↓ ) satisfying the condition

1
Qn

= O

(
1
n

)
, as n → ∞ (21)

Then, for any f ∈ Lp(G), where 1 � p < ∞, we have the following inequality

‖tn f − f‖p � C
N

∑
j=0

2 j

2N ωp
(
1/2 j, f

)
,

where C is a constant only depending on p.

Proof. Let 2N � n < 2N+1. Since tn is a regular Nörlund means, generated by a
sequence of non-increasing numbers {qk : k ∈ N} by combining (10) and (11), we can
conclude that

‖tn f (x)− f (x)‖p

� 1
Qn

(
n−1

∑
j=1

(
qn− j−1−qn− j

)
j‖σ j f (x)− f (x)‖p +q0n‖σn f (x)− f (x)‖p

)
:= I + II.

Furthermore,

I =
1
Qn

2N−1

∑
j=1

(
qn− j−1−qn− j

)
j‖σ j f (x)− f (x)‖p

+
1
Qn

n−1

∑
j=2N

(
qn− j−1−qn− j

)
j‖σ j f (x)− f (x)‖p

:= I1 + I2.

Analogously to (12) we get that

I1 � 2
Qn

N−1

∑
k=0

(
qn−2k+1 −qn−2k

) k

∑
s=0

2sωp (1/2s, f )

� 2
Qn

N−1

∑
s=0

2sωp (1/2s, f )
N−1

∑
k=s

(
qn−2k+1 −qn−2k

)
=

2
Qn

N−1

∑
s=0

2sωp (1/2s, f ) (qn−2N −qn−2s)

� 2qn−2N

Qn

N−1

∑
s=0

2sωp (1/2s, f )

� 2q0

Qn

N−1

∑
s=0

2sωp (1/2s, f ) .
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Moreover, analogously to (13) we find that

I2 � 2
Qn

n−1

∑
j=1

(
qn− j−1−qn− j

)
j

N

∑
s=0

2s

2N ωp (1/2s, f )

=
2
Qn

(nq0−Qn)
N

∑
s=0

2s

2N ωp (1/2s, f )

� 2nq0

Qn2N

N

∑
s=0

2sωp (1/2s, f )

� 2q0

Qn

N

∑
s=0

2sωp (1/2s, f ) .

For II we have that

II � q02N+1

Qn

N

∑
s=0

2s

2N ωp (1/2s, f ) � 2q0

Qn

N

∑
s=0

2sωp (1/2s, f ) .

Hence, by using (21) we obtain the required inequality above so the proof is com-
plete. �

As a consequence we obtain the following similar result proved in Móricz and
Siddiqi [12]:

COROLLARY 1. Let {qk : k � 0} be a sequence of non-negative numbers such
that in the case qk ↑ condition

qn−1

Qn
= O

(
1
n

)
, as n → ∞. (22)

is satisfied, while in case qk ↓ condition (21) is satisfied. If f ∈ lip(α, p) for some
α > 0 and 1 � p < ∞, then

‖tn f − f‖p =

⎧⎪⎪⎨⎪⎪⎩
O(n−α), if 0 < α < 1,

O(n−1 logn), if α = 1,

O(n−1), if α > 1,

(23)

As a consequence we obtain the following similar result proved in Móricz and
Siddiqi [12]:

COROLLARY 2. a) Let tn be Nörlund means generated by non-decreasing se-
quence {qk : k ∈ N} satisfying regularity condition (22). Then for any f ∈ Lp(G),
where 1 � p < ∞,

lim
n→∞

‖tn f − f‖p → 0, as n → ∞.

b) Let tn be Nörlund mean generated by non-increasing sequence {qk : k ∈ N}
satisfying condition (21). Then for any f ∈ Lp(G), where 1 � p < ∞,

lim
n→∞

‖tn f − f‖p → 0, as n → ∞.
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