APPROXIMATION BY NÖRLUND MEANS WITH RESPECT TO WALSH SYSTEM IN LEBESGUE SPACES

Nika Areshidze and George Tephnadze*

(Communicated by L. E. Persson)

Abstract

In this paper we improve and complement a result by Móricz and Siddiqi [12]. In particular, we prove that their inequality of the Nörlund means with respect to the Walsh system holds also without their additional condition. Moreover, we prove some new approximation results and inequalities in Lebesgue spaces for any $1 \leqslant p<\infty$.

1. Introduction

Concerning some definitions and notations used in this introduction we refer to Section 2. Fejér's theorem shows that (see e.g. [9] and [10]) if one replaces ordinary summation by Fejér means σ_{n}, defined by

$$
\sigma_{n} f:=\frac{1}{n} \sum_{k=1}^{n} S_{k} f
$$

then, for any $1 \leqslant p \leqslant \infty$, there exists an absolute constant C_{p}, depending only on p such that the inequality

$$
\left\|\sigma_{n} f\right\|_{p} \leqslant C_{p}\|f\|_{p}
$$

holds. Moreover, (see e.g. [16]) let $1 \leqslant p \leqslant \infty, 2^{N} \leqslant n<2^{N+1}, f \in L^{p}(G)$ and $n \in \mathbb{N}$. Then the following inequality holds:

$$
\begin{equation*}
\left\|\sigma_{n} f-f\right\|_{p} \leqslant 3 \sum_{s=0}^{N} \frac{2^{s}}{2^{N}} \omega_{p}\left(1 / 2^{s}, f\right) \tag{1}
\end{equation*}
$$

It follows that if $f \in \operatorname{lip}(\alpha, p)$, i.e.

$$
\omega_{p}\left(1 / 2^{n}, f\right)=O\left(1 / 2^{n \alpha}\right), \text { as } n \rightarrow \infty,
$$

where

$$
\omega_{p}\left(1 / 2^{k}, f\right):=\sup _{0 \leqslant|h| \leqslant 1 / 2^{k}}\|f(x+h)-f(x)\|_{p}
$$

Mathematics subject classification (2020): 42C10, 42B30.
Keywords and phrases: Walsh group, Walsh system, Fejér means, Nörlund means, approximation, inequalities.

The research was supported by Shota Rustaveli National Science Foundation grant FR-21-2844.

* Corresponding author.
then

$$
\left\|\sigma_{n} f-f\right\|_{p}= \begin{cases}O\left(1 / 2^{N}\right), & \text { if } \alpha>1 \\ O\left(N / 2^{N}\right), & \text { if } \alpha=1 \\ O\left(1 / 2^{N \alpha}\right), & \text { if } \alpha<1\end{cases}
$$

Moreover, (see [16]) if $1 \leqslant p<\infty, f \in L^{p}(G)$ and

$$
\left\|\sigma_{2^{n}} f-f\right\|_{p}=o\left(1 / 2^{n}\right), \text { as } n \rightarrow \infty,
$$

then f is a constant function.
Boundedness of maximal operators of Vilenkin-Fejer means and weak- $(1,1)$ type inequality

$$
\mu\left(\sigma^{*} f>\lambda\right) \leqslant \frac{c}{\lambda}\|f\|_{1}, \quad\left(f \in L^{1}(G), \quad \lambda>0\right)
$$

can be found in Zygmund [21] for trigonometric series, in Schipp [17] for Walsh series and in Pál, Simon [14] and Weisz [19, 20] for bounded Vilenkin series.

Convergence and summability of Nörlund means were studied by several authors. We mention Baramidze, Persson and G. Tephnadze [2] (see also [1], [3], [4] and [5]), Fridli, Manchanda, Siddiqi [8], Persson, Tephnadze and Weisz [16] (see also [15]), Blahota and Nagy [6] (see also [7] and [13]). Móricz and Siddiqi [12] investigated the approximation properties of some special Nörlund means of Walsh-Fourier series of L^{p} functions in norm. In particular, they proved that if $f \in L^{p}(G), 1 \leqslant p \leqslant \infty, n=2^{j}+k$, $1 \leqslant k \leqslant 2^{j}\left(n \in \mathbb{N}_{+}\right)$and $\left(q_{k}, k \in \mathbb{N}\right)$ is a sequence of non-negative numbers, such that

$$
\begin{equation*}
\frac{n^{\gamma-1}}{Q_{n}^{\gamma}} \sum_{k=0}^{n-1} q_{k}^{\gamma}=O(1), \text { for some } 1<\gamma \leqslant 2 \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|t_{n} f-f\right\|_{p} \leqslant \frac{C_{p}}{Q_{n}} \sum_{i=0}^{j-1} 2^{i} q_{n-2^{i}} \omega_{p}\left(\frac{1}{2^{i}}, f\right)+C_{p} \omega_{p}\left(\frac{1}{2^{j}}, f\right), \tag{3}
\end{equation*}
$$

when $\left(q_{k}, k \in \mathbb{N}\right)$ is non-decreasing, while

$$
\left\|t_{n} f-f\right\|_{p} \leqslant \frac{C_{p}}{Q_{n}} \sum_{i=0}^{j-1}\left(Q_{n-2^{i}+1}-Q_{n-2^{i+1}+1}\right) \omega_{p}\left(\frac{1}{2^{i}}, f\right)+C_{p} \omega_{p}\left(\frac{1}{2^{j}}, f\right)
$$

when $\left(q_{k}, k \in \mathbb{N}\right)$ is non-increasing.
In this paper we improve and complement a result by Móricz and Siddiqi [12]. In particular, we prove that their estimate of the Nörlund means with respect to the Walsh system holds also without their additional condition. Moreover, we prove a similar approximation result in Lebesgue spaces for any $1 \leqslant p<\infty$.

The paper is organized as follows: The main results are presented, proved and discussed in Section 3. In particular, Theorems 1, 2 and 3 are parts of this new approach. In order not to disturb the presentations in Section 3, we use Section 2 for some necessary preliminaries.

2. Preliminaries

Let \mathbb{N}_{+}denote the set of the positive integers, $\mathbb{N}:=\mathbb{N}_{+} \cup\{0\}$. Denote by $Z_{2}:=$ $\{0,1\}$ the additive group of integers modulo 2 . Define the group G as the complete direct product of the group Z_{2} with the product of the discrete topologies of Z_{2} 's. The direct product μ of the measures $\mu^{*}(\{j\}):=1 / 2\left(j \in Z_{2}\right)$ is the Haar measure on G with $\mu(G)=1$. The elements of G are represented by the sequences

$$
x:=\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right) \quad\left(x_{k} \in Z_{2}\right)
$$

It is easy to give a base for the neighborhood of G, namely

$$
I_{0}(x):=G, \quad I_{n}(x):=\left\{y \in G \mid y_{0}=x_{0}, \ldots, y_{n-1}=x_{n-1}\right\} \quad(x \in G, n \in \mathbb{N})
$$

Denote $I_{n}(0)$ by I_{n} i.e $I_{n}:=I_{n}(0)$. It is well-known that every $n \in \mathbb{N}$ can be uniquely expressed as

$$
n=\sum_{k=0}^{\infty} n_{j} 2^{j}, \quad \text { where } \quad n_{j} \in Z_{2} \quad(j \in \mathbb{N})
$$

and only a finite number of n_{j} 's differ from zero.
First define the Rademacher functions as

$$
r_{k}(x):=(-1)^{x_{k}}, \quad(k \in \mathbb{N})
$$

Now we define the Walsh system $w:=\left(w_{n}: n \in \mathbb{N}\right)$ on G as

$$
w_{n}(x):=\prod_{k=0}^{\infty} r_{k}^{n_{k}}(x) \quad(n \in \mathbb{N})
$$

The Walsh system is orthonormal and complete in $L^{2}(G)$ (see e.g. [18]).
If $f \in L^{1}(G)$, then we can define the Fourier coefficients, the partial sums of the Fourier series, the Fejér means, the Dirichlet and Fejér kernels with respect to the Walsh system in the usual manner:

$$
\begin{aligned}
\widehat{f}(k) & :=\int_{G} f w_{k} d \mu, \quad(k \in \mathbb{N}), \\
S_{n} f & :=\sum_{k=0}^{n-1} \widehat{f}(k) w_{k}, \quad\left(n \in \mathbb{N}_{+}, S_{0} f:=0\right) \\
\sigma_{n} f & :=\frac{1}{n} \sum_{k=1}^{n} S_{k} f, \quad\left(n \in \mathbb{N}_{+}\right) \\
D_{n} & :=\sum_{k=0}^{n-1} \psi_{k}, \quad\left(n \in \mathbb{N}_{+}\right) \\
K_{n} & :=\frac{1}{n} \sum_{k=1}^{n} D_{k}, \quad\left(n \in \mathbb{N}_{+}\right)
\end{aligned}
$$

Recall that for Dirichlet and Fejér kernels D_{n} and K_{n} we have that (see e.g. [9])

$$
\begin{gather*}
D_{2^{n}}(x)= \begin{cases}2^{n}, & \text { if } x \in I_{n}, \\
0, & \text { if } x \notin I_{n},\end{cases} \tag{4}\\
D_{2^{n}-m}(x)=D_{2^{n}}(x)-w_{2^{n}-1}(x) D_{m}(x), 0 \leqslant m<2^{n} \tag{5}\\
n\left|K_{n}\right| \leqslant 3 \sum_{l=0}^{|n|} 2^{l}\left|K_{2^{l}}\right|, \tag{6}
\end{gather*}
$$

where $|n|=: \max \left\{j \in \mathbb{N}, n_{j} \neq 0\right\}$ and

$$
\begin{equation*}
\int_{G} K_{n}(x) d \mu(x)=1, \quad \sup _{n \in \mathbb{N}} \int_{G}\left|K_{n}(x)\right| d \mu(x) \leqslant 2 \tag{7}
\end{equation*}
$$

Moreover, if $n>t, t, n \in \mathbb{N}$, then

$$
K_{2^{n}}(x)= \begin{cases}2^{t-1}, & x \in I_{t} \backslash I_{t+1}, \quad x-e_{t} \in I_{n} \tag{8}\\ \frac{2^{n}+1}{2}, & x \in I_{n} \\ 0, & \text { otherwise }\end{cases}
$$

The n-th Nörlund mean t_{n} of the Fourier series of f is defined by

$$
\begin{equation*}
t_{n} f:=\frac{1}{Q_{n}} \sum_{k=1}^{n} q_{n-k} S_{k} f, \quad \text { where } \quad Q_{n}:=\sum_{k=0}^{n-1} q_{k} . \tag{9}
\end{equation*}
$$

We always assume that $\left\{q_{k}: k \geqslant 0\right\}$ is a sequence of nonnegative numbers, where $q_{0}>0$ and $\lim _{n \rightarrow \infty} Q_{n}=\infty$. Then the summability method (9) generated by $\left\{q_{k}: k \geqslant 0\right\}$ is regular if and only if (see [11])

$$
\lim _{n \rightarrow \infty} \frac{q_{n-1}}{Q_{n}}=0
$$

The following representation play central roles in the sequel

$$
t_{n} f(x)=\int_{G} f(t) F_{n}(x-t) d \mu(t), \quad \text { where } \quad F_{n}=: \frac{1}{Q_{n}} \sum_{k=1}^{n} q_{n-k} D_{k}
$$

is called the kernels of the Nörlund means.
It is well-known (see e.g. [16]) that every Nörlund summability method generated by non-increasing sequence $\left(q_{k}, k \in \mathbb{N}\right)$ is regular, but Nörlund means generated by non-decreasing sequence $\left(q_{k}, k \in \mathbb{N}\right)$ is not always regular. In this paper we investigate regular Nörlund means only.

If we invoke Abel transformation we get the following identities:

$$
\begin{equation*}
Q_{n}:=\sum_{j=0}^{n-1} q_{j}=\sum_{j=1}^{n} q_{n-j} \cdot 1=\sum_{j=1}^{n-1}\left(q_{n-j}-q_{n-j-1}\right) j+q_{0} n \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{n} f=\frac{1}{Q_{n}}\left(\sum_{j=1}^{n-1}\left(q_{n-j}-q_{n-j-1}\right) j \sigma_{j} f+q_{0} n \sigma_{n} f\right) \tag{11}
\end{equation*}
$$

3. Main results

Based on estimate (1) we can prove our first main results:

THEOREM 1. Let $2^{N} \leqslant n<2^{N+1}$ and t_{n} be a regular Nörlund mean generated by non-decreasing sequence $\left\{q_{k}: k \in \mathbb{N}\right\}$, in sign $q_{k} \uparrow$. Then, for any $f \in L^{p}(G)$, where $1 \leqslant p<\infty$, the following inequality holds:

$$
\left\|t_{n} f-f\right\|_{p} \leqslant \frac{18}{Q_{n}} \sum_{i=0}^{N-1} 2^{i} q_{n-2^{i}} \omega_{p}\left(\frac{1}{2^{i}}, f\right)+12 \omega_{p}\left(\frac{1}{2^{N}}, f\right) .
$$

Proof. Let $2^{N} \leqslant n<2^{N+1}$. Since t_{n} are regular Nörlund means, generated by sequences of non-decreasing numbers $\left\{q_{k}: k \in \mathbb{N}\right\}$ by combining (10) and (11), we can conclude that

$$
\begin{aligned}
& \left\|t_{n} f(x)-f(x)\right\|_{p} \\
\leqslant & \frac{1}{Q_{n}}\left(\sum_{j=1}^{n-1}\left(q_{n-j}-q_{n-j-1}\right) j\left\|\sigma_{j} f(x)-f(x)\right\|_{p}+q_{0} n\left\|\sigma_{n} f(x)-f(x)\right\|_{p}\right) \\
:= & I+I I
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
I= & \frac{1}{Q_{n}} \sum_{j=1}^{2^{N}-1}\left(q_{n-j}-q_{n-j-1}\right) j\left\|\sigma_{j} f(x)-f(x)\right\|_{p} \\
& +\frac{1}{Q_{n}} \sum_{j=2^{N}}^{n-1}\left(q_{n-j}-q_{n-j-1}\right) j\left\|\sigma_{j} f(x)-f(x)\right\|_{p}:=I_{1}+I_{2}
\end{aligned}
$$

Now we estimate each terms separately. By using (1) for I_{1} we obtain that

$$
\begin{align*}
I_{1} & \leqslant \frac{3}{Q_{n}} \sum_{k=0}^{N-12^{k+1}-1} \sum_{j=2^{k}}\left(q_{n-j}-q_{n-j-1}\right) j \sum_{s=0}^{k} \frac{2^{s}}{2^{k}} \omega_{p}\left(1 / 2^{s}, f\right) \tag{12}\\
& \leqslant \frac{3}{Q_{n}} \sum_{k=0}^{N-1} 2^{k+1} \sum_{j=2^{k}}^{2^{k+1}-1}\left(q_{n-j}-q_{n-j-1}\right) \sum_{s=0}^{k} \frac{2^{s}}{2^{k}} \omega_{p}\left(1 / 2^{s}, f\right) \\
& \leqslant \frac{6}{Q_{n}} \sum_{k=0}^{N-1}\left(q_{n-2^{k}}-q_{n-2^{k+1}}\right) \sum_{s=0}^{k} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) \\
& \leqslant \frac{6}{Q_{n}} \sum_{s=0}^{N-1} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) \sum_{k=s}^{N-1}\left(q_{n-2^{k}}-q_{n-2^{k+1}}\right) \\
& \leqslant \frac{6}{Q_{n}} \sum_{s=0}^{N-1} 2^{s} q_{n-2^{s}} \omega_{p}\left(1 / 2^{s}, f\right)
\end{align*}
$$

It is evident that

$$
\begin{align*}
I_{2} & \leqslant \frac{3}{Q_{n}} \sum_{j=2^{N}}^{n-1}\left(q_{n-j}-q_{n-j-1}\right) j \sum_{s=0}^{N} \frac{2^{s}}{2^{N}} \omega_{p}\left(1 / 2^{s}, f\right) \tag{13}\\
& \leqslant \frac{3 \cdot 2^{N+1}}{Q_{n}} \sum_{j=2^{N}}^{n-1}\left(q_{n-j}-q_{n-j-1}\right) \sum_{s=0}^{N} \frac{2^{s}}{2^{N}} \omega_{p}\left(1 / 2^{s}, f\right) \\
& \leqslant \frac{6 q_{n-2^{N}}}{Q_{n}} \sum_{s=0}^{N} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) \\
& \leqslant \frac{6}{Q_{n}} \sum_{s=0}^{N} 2^{s} q_{n-2^{s}} \omega_{p}\left(1 / 2^{s}, f\right) \\
& \leqslant \frac{6}{Q_{n}} \sum_{s=0}^{N-1} 2^{s} q_{n-2^{s}} \omega_{p}\left(1 / 2^{s}, f\right)+6 \omega_{p}\left(1 / 2^{N}, f\right)
\end{align*}
$$

For $I I$ we have that

$$
I I \leqslant \frac{3 q_{0} 2^{N+1}}{Q_{n}} \sum_{s=0}^{N} \frac{2^{s}}{2^{N}} \omega_{p}\left(1 / 2^{s}, f\right) \leqslant \frac{6}{Q_{n}} \sum_{s=0}^{N-1} 2^{s} q_{n-2^{s}} \omega_{p}\left(1 / 2^{s}, f\right)+6 \omega_{p}\left(1 / 2^{N}, f\right)
$$

The proof is complete.
Our next main result reads:
THEOREM 2. Let t_{n} be Nörlund mean generated by a non-increasing sequence $\left\{q_{k}: k \in \mathbb{N}\right\}$, in sign $q_{k} \downarrow$. Then, for any $f \in L^{p}(G)$, where $1 \leqslant p<\infty$, the inequality

$$
\left\|t_{2^{n}} f-f\right\|_{p} \leqslant \sum_{s=0}^{n-1} \frac{2^{s}}{2^{n}} \omega_{p}\left(1 / 2^{s}, f\right)+3 \sum_{s=0}^{n-1} \frac{n-s}{2^{n-s}} \frac{q_{2^{s}}}{q_{2^{n}}} \omega_{p}\left(1 / 2^{s}, f\right)+3 \omega_{p}\left(1 / 2^{n}, f\right)
$$

holds.
Proof. By using (5) we find that

$$
\begin{equation*}
t_{2^{n}} f=D_{2^{n}} * f-\frac{1}{Q_{2^{n}}} \sum_{k=0}^{2^{n}-1} q_{k}\left(\left(w_{2^{n}-1} D_{k}\right) * f\right) \tag{14}
\end{equation*}
$$

By using Abel transformation we get that

$$
\begin{align*}
t_{2^{n}} f= & D_{2^{n}} * f-\frac{1}{Q_{2^{n}}} \sum_{j=0}^{2^{n}-2}\left(q_{j}-q_{j+1}\right) j\left(\left(w_{2^{n}-1} K_{j}\right) * f\right) \tag{15}\\
& -\frac{1}{Q_{2^{n}}} q_{2^{n}-1}\left(2^{n}-1\right)\left(w_{2^{n}-1} K_{2^{n}-1} * f\right) \\
= & D_{2^{n}} * f-\frac{1}{Q_{2^{n}}} \sum_{j=0}^{2^{n}-2}\left(q_{j}-q_{j+1}\right) j\left(\left(w_{2^{n}-1} K_{j}\right) * f\right) \\
& -\frac{1}{Q_{2^{n}}} q_{2^{n}-1} 2^{n}\left(w_{2^{n}-1} K_{2^{n}} * f\right)+\frac{q_{2^{n}-1}}{Q_{2^{n}}}\left(w_{2^{n}-1} D_{2^{n}} * f\right)
\end{align*}
$$

and

$$
\begin{align*}
t_{2^{n}} f(x)-f(x)= & \int_{G}(f(x+t)-f(x)) D_{2^{n}}(t) d t \tag{16}\\
& -\frac{1}{Q_{2^{n}}} \sum_{j=0}^{2^{n}-2}\left(q_{j}-q_{j+1}\right) j \int_{G}(f(x+t)-f(x)) w_{2^{n}-1}(t) K_{j}(t) d t \\
& -\frac{1}{Q_{2^{n}}} q_{2^{n}-1} 2^{n} \int_{G}(f(x+t)-f(x)) w_{2^{n}-1}(t) K_{2^{n}}(t) d t \\
& +\frac{q_{2^{n}-1}}{Q_{2^{n}}} \int_{G}(f(x+t)-f(x)) w_{2^{n}-1}(t) D_{2^{n}}(t) d t \\
:= & I+I I+I I I+I V
\end{align*}
$$

By combining generalized Minkowski's inequality and equality (4) we find that

$$
\|I\|_{p} \leqslant \int_{I_{n}}\|f(x+t)-f(x)\|_{p} D_{2^{n}}(t) d t \leqslant \omega_{p}\left(1 / 2^{n}, f\right)
$$

and

$$
\|I V\|_{p} \leqslant \int_{I_{n}}\|f(x+t)-f(x)\|_{p} D_{2^{n}}(t) d t \leqslant \omega_{p}\left(1 / 2^{n}, f\right)
$$

Since

$$
\begin{equation*}
2^{n} q_{2^{n}-1} \leqslant Q_{2^{n}}, n \in \mathbb{N} \tag{17}
\end{equation*}
$$

If we combine (8), (17) and generalized Minkowski's inequality, then we get that

$$
\begin{aligned}
\|I I I\|_{p} \leqslant & \int_{G}\|f(x+t)-f(x)\|_{p} K_{2^{n}}(t) d \mu(t) \\
= & \int_{I_{n}}\|f(x+t)-f(x)\|_{p} K_{2^{n}}(t) d \mu(t) \\
& +\sum_{s=0}^{n-1} \int_{I_{n}\left(e_{s}\right)}\|f(x+t)-f(x)\|_{p} K_{2^{n}}(t) d \mu(t) \\
\leqslant & \int_{I_{n}}\|f(x+t)-f(x)\|_{p} \frac{2^{n}+1}{2} d \mu(t) \\
& +\sum_{s=0}^{n-1} 2^{s} \int_{I_{n}\left(e_{s}\right)}\|f(x+t)-f(x)\|_{p} d \mu(t) \\
\leqslant & \omega_{p}\left(1 / 2^{n}, f\right) \int_{I_{n}} \frac{2^{n}+1}{2} d \mu(t)+\sum_{s=0}^{n-1} 2^{s} \int_{I_{n}\left(e_{s}\right)} \omega_{p}\left(1 / 2^{s}, f\right) d \mu(t) \\
\leqslant & \omega_{p}\left(1 / 2^{n}, f\right)+\sum_{s=0}^{n-1} \frac{2^{s}}{2^{n}} \omega_{p}\left(1 / 2^{s}, f\right) \\
\leqslant & \sum_{s=0}^{n} \frac{2^{s}}{2^{n}} \omega_{p}\left(1 / 2^{s}, f\right) .
\end{aligned}
$$

From this estimate also it follows that

$$
\begin{equation*}
2^{n} \int_{G}\|f(x+t)-f(x)\|_{p} K_{2^{n}}(t) d \mu(t) \leqslant \sum_{s=0}^{n} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) \tag{18}
\end{equation*}
$$

Let $2^{k} \leqslant j \leqslant 2^{k+1}-1$. By applying (6) and (18) we find that

$$
\begin{align*}
& \left\|j \int_{G}|f(x+t)-f(x)| K_{j}(t) d \mu(t)\right\|_{p} \tag{19}\\
\leqslant & 3 \sum_{s=0}^{k} 2^{s} \int_{G}\|f(x+t)-f(x)\|_{p} K_{2^{s}}(t) d \mu(t) \\
\leqslant & 3 \sum_{l=0}^{k} \sum_{s=0}^{l} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) \tag{20}
\end{align*}
$$

Hence, by applying (6) and (19) we find that

$$
\begin{aligned}
\|I I\|_{p} & \leqslant \frac{1}{Q_{2^{n}}} \sum_{j=0}^{2^{n}-1}\left(q_{j}-q_{j+1}\right) j \int_{G}\|f(x+t)-f(x)\|_{p}\left|K_{j}(t)\right| d t \\
& \leqslant \frac{1}{Q_{2^{n}}} \sum_{k=0}^{n-12^{k+1}-1} \sum_{j=2^{k}}\left(q_{j}-q_{j+1}\right) j \int_{G}\|f(x+t)-f(x)\|_{p}\left|K_{j}(t)\right| d t \\
& \leqslant \frac{3}{Q_{2^{n}}} \sum_{k=0}^{n-12^{k+1}-1} \sum_{j=2^{k}}\left(q_{j}-q_{j+1}\right) \sum_{l=0}^{k} \sum_{s=0}^{l} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) \\
& \leqslant \frac{3}{Q_{2^{n}}} \sum_{k=0}^{n-1}\left(q_{2^{k}}-q_{2^{k+1}}\right) \sum_{l=0}^{k} \sum_{s=0}^{l} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) \\
& \leqslant \frac{3}{Q_{2^{n}}} \sum_{l=0}^{n-1} \sum_{k=l}^{n-1}\left(q_{2^{k}}-q_{2^{k+1}}\right) \sum_{s=0}^{l} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) \\
& \leqslant \frac{3}{Q_{2^{n}}} \sum_{l=0}^{n-1} q_{2^{l}} \sum_{s=0}^{l} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) \\
& \leqslant \frac{3}{Q_{2^{n}}} \sum_{s=0}^{n-1} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) \sum_{l=s}^{n-1} q_{2^{l}} \\
& \leqslant \frac{3}{Q_{2^{n}}} \sum_{s=0}^{n-1} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) q_{2^{s}}(n-s) \\
& \leqslant 3 \sum_{s=0}^{n-1} \frac{n-s}{2^{n-s}} \frac{q_{2^{s}}}{q_{2^{n}}} \omega_{p}\left(1 / 2^{s}, f\right)
\end{aligned}
$$

The proof is complete.
Finally, we state and prove the third main result.

THEOREM 3. Let $2^{N} \leqslant n<2^{N+1}$ and t_{n} be Nörlund mean generated by nonincreasing sequence $\left\{q_{k}: k \in \mathbb{N}\right\}$ (in sign $q_{k} \downarrow$) satisfying the condition

$$
\begin{equation*}
\frac{1}{Q_{n}}=O\left(\frac{1}{n}\right), \text { as } n \rightarrow \infty \tag{21}
\end{equation*}
$$

Then, for any $f \in L^{p}(G)$, where $1 \leqslant p<\infty$, we have the following inequality

$$
\left\|t_{n} f-f\right\|_{p} \leqslant C \sum_{j=0}^{N} \frac{2^{j}}{2^{N}} \omega_{p}\left(1 / 2^{j}, f\right)
$$

where C is a constant only depending on p.
Proof. Let $2^{N} \leqslant n<2^{N+1}$. Since t_{n} is a regular Nörlund means, generated by a sequence of non-increasing numbers $\left\{q_{k}: k \in \mathbb{N}\right\}$ by combining (10) and (11), we can conclude that

$$
\begin{aligned}
& \left\|t_{n} f(x)-f(x)\right\|_{p} \\
\leqslant & \frac{1}{Q_{n}}\left(\sum_{j=1}^{n-1}\left(q_{n-j-1}-q_{n-j}\right) j\left\|\sigma_{j} f(x)-f(x)\right\|_{p}+q_{0} n\left\|\sigma_{n} f(x)-f(x)\right\|_{p}\right) \\
:= & I+I I
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
I= & \frac{1}{Q_{n}} \sum_{j=1}^{2^{N}-1}\left(q_{n-j-1}-q_{n-j}\right) j\left\|\sigma_{j} f(x)-f(x)\right\|_{p} \\
& +\frac{1}{Q_{n}} \sum_{j=2^{N}}^{n-1}\left(q_{n-j-1}-q_{n-j}\right) j\left\|\sigma_{j} f(x)-f(x)\right\|_{p} \\
:= & I_{1}+I_{2}
\end{aligned}
$$

Analogously to (12) we get that

$$
\begin{aligned}
I_{1} & \leqslant \frac{2}{Q_{n}} \sum_{k=0}^{N-1}\left(q_{n-2^{k+1}}-q_{n-2^{k}}\right) \sum_{s=0}^{k} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) \\
& \leqslant \frac{2}{Q_{n}} \sum_{s=0}^{N-1} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) \sum_{k=s}^{N-1}\left(q_{n-2^{k+1}}-q_{n-2^{k}}\right) \\
& =\frac{2}{Q_{n}} \sum_{s=0}^{N-1} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right)\left(q_{n-2^{N}}-q_{n-2^{s}}\right) \\
& \leqslant \frac{2 q_{n-2^{N}}}{Q_{n}} \sum_{s=0}^{N-1} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) \\
& \leqslant \frac{2 q_{0}}{Q_{n}} \sum_{s=0}^{N-1} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) .
\end{aligned}
$$

Moreover, analogously to (13) we find that

$$
\begin{aligned}
I_{2} & \leqslant \frac{2}{Q_{n}} \sum_{j=1}^{n-1}\left(q_{n-j-1}-q_{n-j}\right) j \sum_{s=0}^{N} \frac{2^{s}}{2^{N}} \omega_{p}\left(1 / 2^{s}, f\right) \\
& =\frac{2}{Q_{n}}\left(n q_{0}-Q_{n}\right) \sum_{s=0}^{N} \frac{2^{s}}{2^{N}} \omega_{p}\left(1 / 2^{s}, f\right) \\
& \leqslant \frac{2 n q_{0}}{Q_{n} 2^{N}} \sum_{s=0}^{N} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right) \\
& \leqslant \frac{2 q_{0}}{Q_{n}} \sum_{s=0}^{N} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right)
\end{aligned}
$$

For $I I$ we have that

$$
I I \leqslant \frac{q_{0} 2^{N+1}}{Q_{n}} \sum_{s=0}^{N} \frac{2^{s}}{2^{N}} \omega_{p}\left(1 / 2^{s}, f\right) \leqslant \frac{2 q_{0}}{Q_{n}} \sum_{s=0}^{N} 2^{s} \omega_{p}\left(1 / 2^{s}, f\right)
$$

Hence, by using (21) we obtain the required inequality above so the proof is complete.

As a consequence we obtain the following similar result proved in Móricz and Siddiqi [12]:

Corollary 1. Let $\left\{q_{k}: k \geqslant 0\right\}$ be a sequence of non-negative numbers such that in the case $q_{k} \uparrow$ condition

$$
\begin{equation*}
\frac{q_{n-1}}{Q_{n}}=O\left(\frac{1}{n}\right), \text { as } n \rightarrow \infty \tag{22}
\end{equation*}
$$

is satisfied, while in case $q_{k} \downarrow$ condition (21) is satisfied. If $f \in \operatorname{lip}(\alpha, p)$ for some $\alpha>0$ and $1 \leqslant p<\infty$, then

$$
\left\|t_{n} f-f\right\|_{p}= \begin{cases}O\left(n^{-\alpha}\right), & \text { if } \tag{23}\\ O\left(n^{-1} \log n\right), & \text { if } \quad \alpha=1 \\ O\left(n^{-1}\right), & \text { if } \quad \alpha>1\end{cases}
$$

As a consequence we obtain the following similar result proved in Móricz and Siddiqi [12]:

COROLLARY 2. a) Let t_{n} be Nörlund means generated by non-decreasing sequence $\left\{q_{k}: k \in \mathbb{N}\right\}$ satisfying regularity condition (22). Then for any $f \in L^{p}(G)$, where $1 \leqslant p<\infty$,

$$
\lim _{n \rightarrow \infty}\left\|t_{n} f-f\right\|_{p} \rightarrow 0, \text { as } n \rightarrow \infty
$$

b) Let t_{n} be Nörlund mean generated by non-increasing sequence $\left\{q_{k}: k \in \mathbb{N}\right\}$ satisfying condition (21). Then for any $f \in L^{p}(G)$, where $1 \leqslant p<\infty$,

$$
\lim _{n \rightarrow \infty}\left\|t_{n} f-f\right\|_{p} \rightarrow 0, \text { as } n \rightarrow \infty
$$

REFERENCES

[1] D. Baramidze, L. Baramidze, L.-E. Persson and G. Tephnadze, Some now restricted maximal operators of Fejér means of Walsh-Fourier series, Banach J. Math. Anal., 17, 4 (2023), 75.
[2] D. Baramidze, L.-E. Persson and G. Tephnadze, Some new $\left(H_{p}-L_{p}\right)$ type inequalities for weighted maximal operators of partial sums of Walsh-Fourier series, Positivity, 27, 3 (2023) 38.
[3] D. Baramidze, L.-E. Persson, K. Tangrand and G. Tephnadze, $\left(H_{p}-L_{p}\right)$ type inequalities for subsequences of Nörlund means of Walsh-Fourier series, J. Inequal. Appl., (2023), paper no. 52, 13 pp .
[4] D. Baramidze, N. Nadirashvili, L.-E. Persson and G. Tephnadze, Some weak-type inequalities and almost Everywhere convergence of Vilenkin-Nörlund means, J. Inequal. Appl., (2023), paper no. 66, 17 pp .
[5] D. Baramidze, L.-E. Persson, H. Singh, G. Tephnadze, Some new results and inequalities for subsequences of Nörlund logarithmic means of Walsh-Fourier series, J. Inequal. Appl., (2022), paper no. $\mathbf{3 0}, 13 \mathrm{pp}$.
[6] I. Blahota and K. Nagy, Approximation by Θ-means of Walsh-Fourier series, Anal. Math., 44, 1 (2018), 57-71.
[7] I. Blahota, K. Nagy and G. Tephnadze, Approximation by Marcinkiewicz Θ-means of double Walsh-Fourier series, Math. Inequal. Appl., 22, 3 (2019), 837-853.
[8] S. Fridli, P. Manchanda and A. Siddiqi, Approximation by Walsh-Nörlund means, Acta Sci. Math., 74, 3-4 (2008), 593-608.
[9] G. GÁT, Cesàro means of integrable functions with respect to unbounded Vilenkin systems, J. Approx. Theory, 124, 1 (2003), 25-43.
[10] B. I. Golubov, A. V. Efimov and V. A. Skvortsov, Walsh series and transforms, Kluwer Academic Publishers Group, Dordrecht, 1991.
[11] C. N. Moore, Summable series and convergence factors, Dover Publications, Inc., New York, 1966.
[12] F. MóricZ and A. Siddiqi, Approximation by Nörlund means of Walsh-Fourier series, J. Approx. Theory, 70, 3 (1992), 375-389.
[13] K. NAGY, Approximation by Nörlund means of double Walsh-Fourier series for Lipschitz functions, Math. Inequal. Appl., 15, 2 (2012), 301-322.
[14] J. PÁL And P. Simon, On a generalization of the concept of derivative, Acta Math. Hung., 29 (1977), 155-164.
[15] L.-E. Persson, F. Schipp, G. Tephnadze and F. Weisz, An analogy of the Carleson-Hunt theorem with respect to Vilenkin systems, J. Fourier Anal. Appl., 28, 48 (2022), 1-29.
[16] L. E. Persson, G. Tephnadze and F. Weisz, Martingale Hardy Spaces and Summability of Vilenkin-Fourier Series, Springer, Birkhäuser/Springer, 2022.
[17] F. SCHIPP, Certain rearranngements of series in the Walsh series, Mat. Zametki, 18 (1975), 193-201.
[18] F. Schipp, W. R. WADE, P. Simon and J. PÁL, Walsh series: An introduction to dyadic harmonic analysis, Adam Hilger, Ltd., Bristol, 1990.
[19] F. Weisz, Martingale Hardy Spaces and their Applications in Fourier Analysis, Springer, Berlin-Heideiberg-New York, 1994.
[20] F. Weisz, Hardy spaces and Cesàro means of two-dimensional Fourier series, Bolyai Soc. Math. Studies, (1996), 353-367.
[21] A. Zygmund, Trigonometric Series 1, Cambridge Univ. Press, 1959.
(Received May 9, 2023)
Nika Areshidze
Tbilisi State University
Faculty of Exact and Natural Sciences, Department of Mathematics Chavchavadze str: 1, Tbilisi 0128, Georgia e-mail: nika.areshidze15@gmail.com

George Tephnadze
The University of Georgia
School of Science and Technology
77a Merab Kostava St, Tbilisi, 0128, Georgia
e-mail: g.tephnadze@ug.edu.ge

[^0]
[^0]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

