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GENERALIZATION OF EXPANSIVE OPERATORS

MUNEO CHŌ, INJO HUR ∗ AND JI EUN LEE

(Communicated by S. Varošanec)

Abstract. In this paper, we study [m,C] -expansive operators and [m,Ĉ] -expansive operators on
a Banach space. More precisely, after exploring their properties as operators, we examine the
spectral properties of these two operator classes.

1. Introduction and preliminaries

1.1. Introduction

Let L (H ) be the algebra of all bounded linear operators on a separable com-
plex Hilbert space H with the inner product 〈·, ·〉 . In [1], J. Agler and M. Stankus
introduced m-isometric operators T ∈ L (H ) satisfying

m

∑
j=0

(−1) j
(

m
j

)
T ∗ j T j = 0 (1)

(where T ∗ is the adjoint of T ) and examined their properties. After this there are
generalizations of m-isometric operators in two natural ways: being isometric in a
general sense or being expansive, i.e., weakening the equality ‘= ’ in (1) to the inequaliy
‘� ’.

Among them we are interested in the ones which are relevant to a so-called con-
jugation. A conjugation C is an antilinear isometric involution, that is, C : H → H
satisfying C2 = I and 〈Cx,Cy〉 = 〈y,x〉 for all x,y ∈ H . See [13, 14] for more details.
For a given positive integer m , an operator T ∈ L (H ) is called

• m-expansive if T satisfies
m

∑
j=0

(−1) j
(

m
j

)
T ∗ j T j � 0,

• (m,C)-isometric if T satisfies
m

∑
j=0

(−1) j
(

m
j

)
CT ∗ jCT j = 0,
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• (m,C)-expansive if T satisfies
m

∑
j=0

(−1) j
(

m
j

)
CT ∗ jCT j � 0,

• [m,C]-isometric if T satisfies
m

∑
j=0

(−1) j
(

m
j

)
CT jCT j = 0.

For more details see [11] for m-expansive operators, [8] for (m,C)-isometric ones, and
[9] for [m,C]-isometric ones.

In this manuscript we discuss both [m,C]-expansive and [m,Ĉ]-expansive opera-
tors as a natural generalization of [m,C]-isometric ones. See Definition 2.3 and Defini-
tion 3.3 below. Let us emphasize that this generalization will be done on Banach spaces.
After exploring several operator properties, we will examine their spectral properties.

This paper is organized as follows. After reviewing numerical ranges and their
relations to spectra in the next section, we study [m,C]-expansive operators on a Ba-
nach space in Section 2. In particular, if T is an [m,C]-expansive operator on a Banach
space, then so is CTC and T ∗ is an [m,C∗]-expansive operator on the dual Banach
space. Moreover, in this case, T is invertible. In Section 3, we study spectral proper-
ties and the single-valued extension property of [m,Ĉ]-expansive operators under some
condition.

1.2. Preliminaries

In order to deal with positive operators and study spectral properties on a Banach
space, a numerical range is necessary. Here is a brief summary of numerical ranges and
their relation to spectra, which will be used later.

The concept of a numerical range was introduced by O. Toeplitz [26] on a Hilbert
space and then Bauer [2] and Lumer [20] extended his concept to a Banach space. For
T ∈ L (H ) the numerical range W (T ) is the set given by

W (T ) := {〈Tx,x〉 : x ∈ H ,‖x‖ = 1}. (2)

Most importantly, O. Toeplitz and F. Hausdorff [16, 17, 26] discovered the convexity of
W (T ) . See [12, 25] for basic properties and further developments of W (T ) .

For a natural extension of W (T ) to Banach spaces, let X be a Banach space, X ∗
the dual space of X , and T ∗ the adjoint operator of T ∈ L (X ) , where L (X ) is
the algebra of all bounded linear operators on X . Then the (spatial) numerical range
of T denoted by V (T ) is the subset of C ,

V (T ) := {g(Tx) : (x,g) ∈ Π}
where the set Π is

Π = {(x,g) ∈ X ×X ∗ : ‖g‖ = g(x) = ‖x‖ = 1}. (3)

In contrast to the Hilbert setting, V (T ) is, in general, not convex (see [7, Example 1 on
page 98]), but it is connected since the set Π is connected (see [6] and [7, Corollary 5
on page 102]). It is still open if V (T ) is path-connected (see [7, (7) on page 129]).
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To see another way to extend a numerical range to a Banach space X , let I be
the identity operator on X and let

Φ = {g ∈ L (X )∗ : ‖g‖ = g(I) = 1 }.
Then the so-called (algebra) numerical range V

(
T,L (X )

)
is the set given by

V
(
T,L (X )

)
:= {g(T ) : g ∈ Φ}.

For T ∈ L (X ) , even though they are different, V (T ) and V
(
T,L (X )

)
are both

called the numerical range of T . This is because we do not think there is any ambiguity.
These numerical ranges have several useful relations with spectra and themselves.

Let σ(T ) be the spectrum and let M be the closure of M for any subset M of C . For
T ∈ L (X ) , one of the most basic but crucial relations is

σ(T ) ⊂V (T )

(see [27] or [7, Theorem 1 on page 88]). Since the following relations will be used
several times, we recall the following:

PROPOSITION 1.1. ([7, Theorem 4 in §9]) For T ∈ L (X ) ,

coV (T ) = V
(
T,L (X )

)
,

where coV (T ) is the closed convex hull of V (T ) .

Note that, when X is a complex Hilbert space H , then V (T ) =W (T ) and hence
coW (T ) = V (T,L (X )) .

PROPOSITION 1.2. ([7, Corollary 6 in §9]) For T ∈ L (X ) ,

V (T ) ⊆V (T ∗) ⊆V (T ).

On a Banach space X , a hermitian operator H (i.e., V (H) ⊂ R) is convexoid,
which means that V (H) = coσ(H) (see [7, Corollary 11, page 53]), where co� is the
convex hull of � . It is notable that, even if H is hermitian, H2 may not be hermitian
(see [7, Example 1 on page 58]).

2. [m,C]-expansive operators

In this section we discuss [m,C]-expansive operators. For this let us start with
conjugations.

DEFINITION 2.1. An antilinear isometric involution C on a Banach space X is
called a conjugation on X , i.e., C satisfies

‖C‖ � 1,C2 = I, C(αx+ βy) = α Cx+ β Cy (x,y ∈ X , α,β ∈ C),

where ‖C‖ = sup‖x‖�1{‖Cx‖ : x ∈ X } .
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Note that this is a natural generalization of a conjugation on a Hilbert space, as
shown in [10].

DEFINITION 2.2. For T ∈ L (X ) , we write T � 0 if V
(
T,L (X )

)⊂ (−∞,0] .

Observe that Proposition 1.1 implies that, if V (T ) ⊂ (−∞,0] , then

V (T,L (X )) ⊂ (−∞,0].

Hence T � 0 if and only if V (T ) ⊂ (−∞,0] . Of course, for a complex Hilbert space
H and an operator T ∈ L (H ) , if W (T ) ⊂ (−∞,0], then T � 0.

We are now ready to define an [m,C]-expansive operator on X .

DEFINITION 2.3. Let C be a conjugation on X . For T ∈ L (X ) and m ∈ N ,
an operator T is called [m,C]-expansive if

βm(T,C) :=
m

∑
j=0

(−1) j
(

m
j

)
CT jCT j � 0,

or equivalently, V
(
βm(T,C),L (X )

)⊂ (−∞,0] .

REMARK 2.1. For T ∈ L (H ) , T is called C-symmetric if there exists a con-
jugation C such that CTC = T ∗ . See [15] for details of C -symmetric operators. One
of the motivations to study [m,C]-expansive operators is that, if T is any C -symmetric
operator, then T is m-expansive if and only if it is [m,C]-expansive. However, it is not
(m,C)-expansive in general. For instance, assume that H = C2 and C is a conjugation

on H defined by C
[x
y
]
:=
[ x

y

]
. Then C

[
a b
c d

]
C =

[
a b
c d

]
for any 2×2-matrix

[
a b
c d

]
.

Let T =
[
1+i 0
0 1

]
∈ L (H ) . Then CTC = T ∗ and so T is C -symmetric. By direct

computation, we have

I−CTCT =
[
1 0
0 1

]
−
[
1− i 0

0 1

][
1+ i 0

0 1

]
=
[−1 0

0 0

]
� 0

and

I−CT ∗CT =
[
1 0
0 1

]
−
[
1+ i 0

0 1

][
1+ i 0

0 1

]
=
[
1−2i 0

0 0

]
.

Hence we conclude that T is [1,C]-expansive but not (1,C)-expansive.

For an example of an [m,C]-expansive operator on a Banach space, some known
result (which is Lemma 2.1) is needed. For a fixed A ∈ L (X ) the left multiplicative
operator by A on L (X ) is defined by

LA(X) = AX (X ∈ L (X )).
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LEMMA 2.1. ([19, Lemma 2.1]) For A ∈ L (X ) , it holds that

V
(
A,L (X )

)
= V

(
LA,L (L (X ))

)
.

EXAMPLE 2.1. Let T be [m,C]-expansive on a Hilbert space H with

W (βm(T,C)) = W

( m

∑
j=0

(−1) j
(

m
j

)
CT jCT j

)
⊂ (−∞,0].

Note that, for a conjugation C of H , MC defined by MC(T ) = CTC is a a conjuga-
tion on L (H ) . Then Lβm(T,C) is an [m,MC]-expansive operator on the Banach space
L (H ) . Since it is easy to see(

MCLj
T MC Lj

T

)
(S) = CT jCT jS,

we have(
m

∑
j=0

(−1) j
(

m
j

)
MCLj

T MC Lj
T

)
(S) =

(
m

∑
j=0

(−1) j
(

m
j

)
CT jCT j

)
(S),

which implies that
βm(LT ,MC) = Lβm(T,C).

By Lemma 2.1,

V (Lβm(T,C),L (L (H ))) = V
(
βm(T,C),L (H )

)
= coW

(
(βm(T,C)

)⊂ (−∞,0].

Hence Lβm(T,C) is an [m,MC]-expansive operator on L (H ) .

For T ∈ L (X ) , T ∗ denotes the dual operator of T defined by

(T ∗ f )(x) := f (Tx)

for all x ∈ X and f ∈ X ∗. Similarly C∗ on X ∗ is the dual operator of C defined by(
C∗( f )

)
(x) := f (Cx) (x ∈ X , f ∈ X ∗).

Then C∗ is a conjugation on X ∗ (see [10, Theorem 2.6]). Note also that

(x, f ) ∈ Π if and only if (Cx,C∗ f ) ∈ Π (4)

and
V (CTC) = {z : z ∈V (T )} (=: V (T )∗). (5)

See [23, Lemma 2.5 and Theorem 2.6] for more details.

THEOREM 2.1. If T is an [m,C]-expansive operator on a Banach space X , then
CTC is also [m,C]-expansive on X .
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Proof. By Proposition 1.1 it suffices to show that, for any (x, f ) ∈ Π ,

f
(
βm(CTC,C)x

)
� 0.

Observe that

βm(CTC,C) =
m

∑
j=0

(−1) j
(

m
j

)
C(CTC) jC (CTC) j

=
m

∑
j=0

(−1) j
(

m
j

)
T jCT jC

= Cβm(T,C)C.

Choose any (x, f ) ∈ Π . Since (Cx,C∗ f ) ∈ Π and βm(T,C) � 0, it follows that

f
(
βm(CTC,C)x

)
= (C∗ f )

(
βm(T,C)Cx

)
� 0.

Hence V
(
βm(CTC,C)

)⊂ (−∞,0] and then CTC is [m,C]-expansive on X . �

For the next result, recall Proposition 1.2, that is, V (T ) ⊆V (T ∗) ⊆V (T ) .

THEOREM 2.2. If T is an [m,C]-expansive operator on X , then T ∗ is [m,C∗]-
expansive on X ∗ .

Proof. Let us show that V
(
βm(T ∗,C∗)

)⊂ (−∞,0] . Due to the relation

C∗βm(T,C)∗C∗ = βm(T ∗,C∗),

we have V
(
βm(T ∗,C∗)

)
= V

(
C∗βm(T,C)∗C∗) . Since C∗ is a conjugation on X ∗ , (5)

implies that
V
(
C∗βm(T,C)∗C∗)= V

(
βm(T,C)∗

)∗
,

where V
(
βm(T,C)

)∗ = {z : z ∈V
(
βm(T,C)

)}. Proposition 1.2 leads that

V
(
βm(T,C)∗

)⊆V
(
βm(T,C)

)
(where V

(
βm(T,C)

)
is the closure of V

(
βm(T,C)

)
and we therefore have

V
(
βm(T ∗,C∗)

)
= V

(
C∗βm(T,C)∗C∗)

= V
(
βm(T,C)∗

)⊆V
(
βm(T,C)

)⊂ (−∞,0].

Hence T ∗ is an [m,C∗]-expansive operator on X ∗ . �
The following corollary is clear from the previous results.

COROLLARY 2.1. If T is [m,C]-expansive on X , then C∗T ∗C∗ is [m,C∗]-expan-
sive on X ∗ .
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Based on the theorem above, we now show the invertibility of [m,C]-expansive
operators, which is Theorem 2.3. Let σ(T ) , σp(T ) and σap(T ) be the spectrum, the
point spectrum and the approximate point spectrum of T , respectively.

PROPOSITION 2.1. Let T be [m,C]-expansive on X . Then 0 
∈ σap(T ) .

Proof. If 0 ∈ σap(T ) , then there exists a sequence {xn} of unit vectors in X
such that Txn → 0. Then note that, for any g ∈ X ∗ and j ∈ N , g(CT jCT jxn) → 0.
By Hahn-Banach separation theorem, for xn there exists fn ∈ X ∗ such that fn(xn) =
1 = ‖ fn‖ . Since βm(T,C) � 0,

fn
(
βm(T,C)xn

)
� 0. (6)

But

fn
(
βm(T,C)xn

)
= fn(xn)+

m

∑
j=1

(−1) j
(

m
j

)
fn
(
CT jCT jxn

)→ 1,

which contradicts (6). Therefore 0 
∈ σap(T ) . �

For the next result, we need the following lemma.

LEMMA 2.2. ([24, Propostion 1.3.1]) For T ∈L (X ) , σ(T )= σap(T )∪σp(T ∗) .

THEOREM 2.3. If T is [m,C]-expansive on X , then 0 
∈ σ(T ) , i.e., T is invert-
ible.

Proof. By Proposition 2.1, 0 
∈ σap(T ) . By Theorem 2.2, since T ∗ is an [m,C∗]-
expansive operator on X ∗ , similarly 0 
∈ σap(T ∗) and hence 0 
∈ σp(T ∗) . Therefore
Lemma 2.2 implies 0 
∈ σ(T ) . �

REMARK 2.2. It is worthwhile to emphasize the invertibility of [m,C]-expansive
operators. Let S be the unilateral shift on �2 -space. Since I−S∗S = 0 and I−SS∗ � 0,
S is (1, I)-expansive (and S∗ is not), but S is not invertible. However, due to the the-
orem above, any [m,C]-expansive operators are always invertible. This basically de-
pends on perserving ·∗ on the property of operators. Even though S is (1, I)-expansive,
S∗ is not. In contrast, whenever T is [m,C]-expansive, T ∗ is [m,C∗]-expansive due to
Theorem 2.2.

3. [m,Ĉ]-expansive operators

In this section we study [m,Ĉ]-expansive operators on Banach spaces. We first
need the following definitions and results.

DEFINITION 3.1. An operator T on X is called hermitian if V (T ) ⊂ R .
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On a Banch space not every operator T ∈ L (X ) can be represented by T =
H + iK with hermitian operators H and K . Let S ⊂L (X ) be the set of all operators
having an expression T = H + iK with hermitian operators H and K . Note that such
an expression H + iK is unique. For T = H + iK ∈S , the mapping Ĉ on S is defined
by

Ĉ(T ) := H− iK.

Of course, for T = H + iK ∈ S , since the adjoint operator T ∗ of T on X ∗ is T ∗ =
H∗+ iK∗ and H∗,K∗ are hermitian by Proposition 1.2, let us similarly define C̃ on S ∗
by

C̃(T ∗) = C̃(H∗ + iK∗) := H∗ − iK∗.

Then the relation between Ĉ and C̃ is, for any T ∈ S ,

C̃(T ∗) = (Ĉ(T ))∗,

which means that C̃ = ·∗Ĉ·∗ as in the following diagram:

H + iK ∈ S
Ĉ−−−→

world
H − iK ∈ S

↑ ·∗ ↓ ·∗
H∗ + iK∗ ∈ S ∗ C̃−−−→

world
H∗ − iK∗ ∈ S ∗

Even though they are different, the roles of Ĉ and C̃ are essentially the same. Therefore,
from now on, let us denote them only by Ĉ .

DEFINITION 3.2. ([22, Definition 1]) Let H and K be both hermitian. An oper-
ator T = H + iK ∈ S is called ∗ -hyponormal if, for all z ∈ C ,

‖ezĈ(T )e−zT‖ � 1.

Then the ∗ -hyponormality is translation-invariant, i.e., if T is ∗ -hyponormal, then
so is T − z for all z ∈ C . Moreover, the following holds.

LEMMA 3.1. ([22, Theorem 3]) Let T = H + iK ∈S be ∗ -hyponormal. If Tx =
0 , then Hx = Kx = 0 .

In [3] and [4], de Barra constructed a larger space X ◦ of X via a Banach limit
such that X ◦ has the properties on Lemma 3.2. In case of Hilbert spaces, Berberian
showed these properties in [5].

LEMMA 3.2. ([3], [4]) Let X be a Banach space. Then there exists a larger
space, denoted by X ◦ , satisfying the following properties: for T ∈ L (X ) ,

(1) the mapping T �→ T ◦ is an isometric isomorphism of L (X ) onto a closed
subalgebra of L (X ◦) , where T ◦ is an operator on X ◦ ,

(2) σ(T ) = σ(T ◦) and σap(T ) = σap(T ◦) = σp(T ◦) ,
(3) coV (T ) = V (T ◦) .
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The following has been already done in [22]. For completeness we give a proof.

PROPOSITION 3.1. Let T = H + iK ∈ S be ∗ -hyponormal. For z = a+ ib ∈ C
and a sequence {xn} of unit vectors in X , if (T − z)xn → 0, then

(H −a)xn → 0 and (K−b)xn → 0 (as n → ∞).

Hence (Ĉ(T )− z)xn → 0 as n → ∞ .

Proof. Since T − z = H−a+ i(K−b) is ∗ -hyponormal, by (1) and (3) of Lemma
3.2, it holds that (T −z)◦ = (H−a)◦+ i(K−b)◦ = (H◦−a)+ i(K◦−b) is ∗ -hyponormal
on X ◦ . Assume that (H−a)xn 
→ 0. Then there exist ε > 0 and a subsequence {xn j}
such that ‖(H − a)xn j‖ � ε . Let y◦ ∈ X ◦ be the vector derived from {xn j} . Then
y◦ 
= 0 and (H◦ − a)y◦ 
= 0. Over all, (T ◦ − z)y◦ = 0 and (H◦ − a)y◦ 
= 0, which
is a contradiction by Lemma 3.1. Then it holds that (H − a)xn → 0 and similarly
(K−b)xn → 0. �

REMARK 3.1. (1) An operator T ∈ S is called normal if there exist hermitian
operators H and K such that T = H + iK and HK = KH .

(2) An operator T = H + iK ∈ S is called hyponormal if there exist hermitian
operators H and K such that i(HK−KH) � 0.

Obviously it holds that normal =⇒ ∗ -hyponormal =⇒ hyponormal. See more
details in Mattila [21] and [22].

Here we define [m,Ĉ]-expansive operators.

DEFINITION 3.3. For T = H + iK ∈ S with two hermitian operators H and K ,
T is said to be [m,Ĉ]-expansive if

γm(T ;Ĉ) :=
m

∑
j=0

(−1) j
(

m
j

)
Ĉ(T ) j T j � 0.

REMARK 3.2. In the case of operators on a Hilbert space H , S = L (H ) .
Suppose that there exists a conjugation C satisfying Ĉ(T ) = CTC (for example, see

the 2×2-matrix example on Remark 2.1). Then
(
Ĉ(T )

) j
T j =CT jCT j . Let βm(T,C)

be the operator of Definition 2.3. Then it holds that γm(T ;Ĉ) = βm(T,C).

PROPOSITION 3.2. Let T = H + iK ∈ S . Then T is [m,Ĉ]-expansive on X if
and only if Ĉ(T )∗ = H∗ − iK∗ is [m,Ĉ]-expansive on X ∗ .

Proof. First observe that γm(T ∗;Ĉ) = γm(T ;Ĉ)∗ from

γm(T ∗;Ĉ) =
m

∑
j=0

(−1) j
(

m
j

)
T ∗ j Ĉ(T ∗) j =

m

∑
j=0

(−1) j
(

m
j

)(
Ĉ(T ) jT j)∗ =

(
γm(T ;Ĉ)

)∗
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by T ∗ =
(
Ĉ(Ĉ(T ))

)∗ . If T is [m,Ĉ]-expansive, that is,

γm(T ;Ĉ) =
m

∑
j=0

(−1) j
(

m
j

)
Ĉ(T ) j T j � 0,

then V
(
γm(T ∗;Ĉ)

)
= V

((
γm(T ;Ĉ)

)∗) ⊆ V
(
γm(T ;Ĉ)

) ⊂ (−∞,0] by Proposition 1.1.

Hence Ĉ(T )∗ is an [m,Ĉ]-expansive operator on X ∗ . The converse implication holds
by applying the same argument on Ĉ(T )∗ . �

Let us denote D = {z ∈ C : |z| < 1} and T = {z ∈ C : |z| = 1} .

THEOREM 3.1. Let T ∈S be [m,Ĉ]-expansive and ∗ -hyponormal on X . Then
the following statements hold.

(i) If m is even, then σap(T ) ⊆ T . In this case, σ(T ) ⊆ T or σ(T ) = D.

(ii) If m is odd, then σap(T ) ⊆ C \D . Hence T is injective and R(T ) is closed,
where R(T ) is the range of T .

Proof. Let z ∈ σap(T ) . Then there is a sequence {xn} of unit vectors in X such
that (T − z)xn → 0 as n → ∞ . Then (T j − z j)xn → 0 and by Proposition 3.1 it holds
that (Ĉ(T ) j − z j)xn → 0 for each j ∈ N . Since

Ĉ(T ) jT j = Ĉ(T ) j(T j − z j)+ z j(Ĉ(T ) j − z j)+ |z|2 j,

it follows that
(Ĉ(T ) j T j −|z|2 j)xn → 0 (as n → ∞).

For (xn, fn) ∈ Π ,

fn
(
γm((T ;Ĉ)xn

) → fn

(( m

∑
j=0

(−1) j
(

m
j

)
|z|2 j

)
xn

)
(as n → ∞)

= (1−|z|2)m fn(xn) = (1−|z|2)m.

Since γm(T ;Ĉ) =
m

∑
j=0

(−1) j
(

m
j

)
Ĉ(T ) j T j � 0, it follows that (1−|z|2)m � 0.

For (i), let m be even. Then (1−|z|2)m = 0, and so |z| = 1. Hence σap(T ) ⊆ T .
Since ∂σ(T )⊆ σap(T )⊆T , σ(T )⊆T or σ(T ) = D by a similar method on the proof
of [18, Proposition 3.4].

For (ii), if m is odd and |z|< 1, then 0 < (1−|z|2)m � 0, which is a contradiction.
Hence σap(T ) ⊆ C\D . So T is injective and R(T ) is closed since 0 
∈ σap(T ) . �

A Banach space is called uniformly c-convex if for every ε > 0 there is a number
δ > 0 such that ‖y‖ < ε whenever ‖x‖ = 1 and ‖x+ λy‖ � 1+ δ for all λ ∈ C with
|λ | � 1. See [22] for more details.
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DEFINITION 3.4. For T = H + iK ∈ S , T is called [m,Ĉ]-isometric if

γm(T ;Ĉ) :=
m

∑
j=0

(−1) j
(

m
j

)
Ĉ(T ) j T j = 0.

Since γm+1(T ;Ĉ) = γm(T ;Ĉ)− Ĉ(T )γm(T ;Ĉ)T , it is clear that if T is [m,Ĉ]-
isometric, then T is [n,Ĉ]-isometric for all n � m . Since γm(T ;Ĉ)∗ = γm(T ∗;Ĉ) , it
follows that T is [m,Ĉ]-isometric on X if and only if Ĉ(T )∗ is [m,Ĉ]-isometric on
X ∗ .

The reason to give more geometric structure on X is that Proposition 3.1 may
not hold for hyponormal operators on a general Banach space. With the uniform c-
convexity on X , Mattila showed the following lemma.

LEMMA 3.3. ([21, Theorem 2.7]) Let T = H + iK ∈ S be hyponormal on uni-
formly c-convex X . If {xn} is a bounded sequence in X and Txn → 0 , then Hxn → 0
and Kxn → 0 .

THEOREM 3.2. Let X be uniformly c-convex. If T = H + iK ∈ S is [m,Ĉ]-
isometric and hyponormal on X , then σap(T ) ⊆ T .

Proof. Let z = a+ ib∈σap(T ) and let {xn} be a sequence of unit vectors such that
(T − z)xn → 0. Since T − z = (H −a)+ i(K−b) is hyponormal and X is uniformly
c-convex, Lemma 3.3 says that (H − a)xn → 0, (K − b)xn → 0 and hence (Ĉ(T )−
z)xn → 0 as n → ∞ . Moreover, (T j − z j)xn → 0 and (Ĉ(T ) j − z j)xn → 0 for any
j ∈ N∪{0} . Since(

Ĉ(T ) jT j −|z|2 j
)

xn =
(
Ĉ(T ) j(T j − z j)+ z j(Ĉ(T ) j − z j)

)
xn → 0,

we have that, as n → ∞ ,(
γm(T ;Ĉ)− (1−|z|2)m

)
xn =

m

∑
j=0

(−1) j
(

m
j

)(
Ĉ(T ) j T j −|z|2 j

)
xn → 0. (7)

Since T is [m,Ĉ]-isometric, i.e., γm(T ;Ĉ) = 0, it holds that (1− |z|2)m = 0 and so
|z| = 1. Hence σap(T ) ⊆ T . �

EXAMPLE 3.1. Let C1(H ) be the trace class of operators on a complex Hilbert
space H . Then C1(H ) is uniformly c-convex by Theorem 3 ·2 of Mattila [21].
For T ∈ L (H ) , define an operator LT on C1(H ) by LT (X) := TX (X ∈ C1 ). Let
T = H + iK be a hyponormal operator on H with hermitian operators H and K .
Then LT = LH + iLK is a hyponormal operator on C1(H ) (by Corollary 4 ·5 in [21])
and Ĉ(LT ) = LH − iLK . If T is isometric, then LT is [1,Ĉ]-isometric on the uniformly
c-convex space C1(H ) . Then Theorem 3.2 implies that σap(LT ) ⊆ T . For example,
the operator LS (where S is the unilateral shift) is [1,Ĉ]-isometric and hyponormal on
the uniformly c-convex space C1(�2) .
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DEFINITION 3.5. An operator T ∈ L (X ) has the single-valued extension prop-
erty at z0 ∈C if for every neighborhood U of z0 and any analytic function f :U → X ,
f (z) ≡ 0 whenever (T − z) f (z) ≡ 0. An operator T on X has the single-valued ex-
tension property if it has the single-valued extension property at all z ∈ C .

Next we define the property (NP): for all z ∈ C and all non-zero vectors x ∈ X ,
(T − z)x = 0 implies (Ĉ(T )− z)x = 0. The property (NP) means “a normal point”. An
operator T = H + iK ∈ S with two hermitian operators H and K is said to have (NP)
if T satisfies the property (NP).

THEOREM 3.3. Let T = H + iK ∈ S be [m,Ĉ]-isometric on X . If T has (NP),
then T has the single-valued extension property on C\T .

Proof. For any z0 ∈ C and for every neighborhood G of z0 , let (T − z) f (z) ≡ 0
for z ∈ G . Then by the condition (NP), we have (T j − z j) f (z) ≡ 0 and so (Ĉ(T ) j −
z j) f (z) ≡ 0. Since γm(T ;Ĉ) = 0, it follows from the computation similar to (7) that
(1−|z|2)m f (z) ≡ 0 and hence f (z) ≡ 0 for z 
∈ T . Therefore, T has the single-valued
extension property on C\T . �

By Proposition 3.1 and the above, if T is ∗ -hyponormal on a Banach space, then
T has (NP). Hence we have the following corollary.

COROLLARY 3.1. Let T be ∗ -hyponormal on X . If T is [m,Ĉ]-isometric, then
T has the single-valued extension property on C\T .
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