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Abstract. In this article, we establish new inequalities involving symmetrized convex sequences.
The obtained results involve a new range of applications that contains the set of convex se-
quences. Some applications are given at the end of this paper.

1. Introduction and auxiliary results

Real-valued symmetrized convex sequences and positive sequences that are sym-
metric about a point are two essential classes of sequences that have been extensively
studied in mathematical analysis. Symmetric sequences have numerous applications in
different branches of mathematics, such as number theory, approximation theory, and
signal processing. They have also been used in various applied fields, such as physics,
engineering, and computer science.

The investigation of convex sequences probably started in the book Mitrinovic [8].
In recent years, there has been a growing interest in the study of symmetric sequences,
and several important results have been obtained. For example, in [6], the author stud-
ied the properties of convex sequences and got a characterization of them in terms of
their generating functions. In [1], the author investigated the asymptotic behavior of
symmetric sequences and proved several important results related to their growth rates.
Other results can be found in [3], [4], [9], [10], [11], [12], [13].

In this article, we will extend some of the existing results on real-valued sym-
metrized convex sequences and positive sequences that are symmetric about a point.
We will study the properties of these sequences and investigate their connections to
other important classes of sequences.

Throughout this paper, we denote by I the set {1,2, . . . ,n} , and we denote by σ
the integer part of n+1

2 (or σ =
[

n+1
2

]
). For citing some extension results, we need to

define a new class of real sequences

E (I) =
{

(ak)
n
k=1 :

aσ +an+1−σ
2

� ak +an+1−k

2
� a1 +an

2
for all k = 1,2, . . . ,n

}

Mathematics subject classification (2020): 30C45, 39B72, 39B82.
Keywords and phrases: Convex real sequences, symmetrized convex sequences, symmetrized decreas-

ing sequences.
∗ Corresponding author.

c© � � , Zagreb
Paper MIA-27-13

173

http://dx.doi.org/10.7153/mia-2024-27-13


174 M. A. ABDELLAOUI, H. MEBARKI, Z. DAHMANI AND M. Z. SARIKAYA

where, (ak)
n
k=1 is a real sequence and

E− (I) = {(ak)
n
k=1 : −(ak)

n
k=1 ∈ E (I)} .

DEFINITION 1. [5] Let (ak)
n
k=1 be a sequence of real numbers, a is called a

convex sequence if for all k = 2, . . . ,n−1, we have

ak−1 +ak+1 � 2ak.

If the opposite inequality holds, the sequence a is said to be concave.

We need to define the following type of sequences for proving our results:

DEFINITION 2. A real-valued sequence (ak)
n
k=1 is said to be a symmetrized con-

vex sequence, if Ak =
1
2

(an+1−k +ak) is convex. Conversely, if Ak =
1
2

(an+1−k +ak)

is concave, the sequence (ak)
n
k=1 is said to be symmetrized concave.

We denote respectively by Scon(I) (con− (I)) the set of all symmetrized convex
(concave) sequences for all k ∈ I.

DEFINITION 3. A real-valued sequence (ak)
n
k=1 is said to be symmetrized de-

creasing (increasing) for k ∈ I, if the sequence Ak =
1
2

(an+1−k +ak) is decreasing

(increasing) for all k = 1, . . . ,

[
n+1

2

]
.

We denote by Sd (I) (respectively Sd− (I)) the set of all symmetrized decreasing
(respectively increasing) sequences for all k ∈ I.

EXAMPLE 1. We consider the following sequence:

ak =

⎧⎪⎨
⎪⎩

ek for 1 � k � n+1
2

0 for
n+1

2
< k � n

n is a larger integer.

It is easy to see that the sequence (ak)
n
k=1 is not symmetrized increasing but the se-

quence (Ak)
n
k=1 defined by

Ak =
1
2

(an+1−k +ak) =

⎧⎪⎨
⎪⎩

1
2
ek for 1 � k � n+1

2
1
2
en+1−k for

n+1
2

< k � n

is symmetrized increasing.
We propose to the reader the following proposition. We have:
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PROPOSITION 1. If (ak)
n
k=1 is a convex sequence. Therefore the sequence (Ak)

n
k=1

is convex too. The inverse is false.

For the proof of the above proposition 1, see Lemma 2 below. Note that if we take
the sequence (ak)

n
k=1 defined by

ak = (k−α)3 , for k ∈ {1,2, . . . ,n} with 1 � α � n+1
2

.

It is easy to see that (ak)
n
k=1 is not convex sequence, but (Ak)

n
k=1 , where

Ak =
1
2

(
(k−α)3 +(n+1− k−α)3

)
, for k ∈ {1,2, . . . ,n}

is convex.
In [4], the authors proved the following result:

THEOREM 1. Let a = (ak)
n
k=1 be a convex sequences of real numbers, and p =

(pk)
n
k=1 be a positive sequence symmetric about σ =

[
n+1
2

]
. Then we have

(
aσ +an+1−σ

2

) n

∑
k=1

pk �
n

∑
k=1

pkak �
(

a1 +an

2

) n

∑
k=1

pk. (1)

If a = (ak)
n
k=1 is concave sequence of real numbers, then the inequality (1) is reversed.

It is very natural to ask: Can we obtain the inequality (1) , if (ak)
n
k=1 is not con-

vex sequence and (pk)
n
k=1 is not necessarily positive, and not necessarily symmetric

sequence?

2. Main results

In this paper, we give an answer to the above question, when (ak)
n
k=1 is convex or

symmetrized convex sequence or (ak)
n
k=1 is a real sequence in the set E (I) . So, our

aim is to extend the validity of (1) for the case where (ak)
n
k=1 is an element in E (I) ,

and to extend the result when (pk)
n
k=1 is a real sequence, not necessarily positive and

not necessarily symmetric with respect to σ =
[

n+1
2

]
. We are in measure to prove the

following “several” theorems:

THEOREM 2. Let (ak)
n
k=1 be a real sequence in the set E (I) . Then we have

aσ +an+1−σ
2

� 1
n

n

∑
k=1

ak � a1 +an

2
, where σ =

[
n+1
2

]
. (2)

If (ak)
n
k=1 ∈ E− (I) , then the inequality (2) is reversed.
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THEOREM 3. Let (ak)
n
k=1 be a real sequence in the set E (I) , and let (pk)

n
k=1 be

a positive sequence symmetric about σ =
[

n+1
2

]
(or pk = pn+1−k for all k ∈ I ). Then

we have (
aσ +an+1−σ

2

) n

∑
k=1

pk �
n

∑
k=1

pkak �
(

a1 +an

2

) n

∑
k=1

pk. (3)

If (ak)
n
k=1 ∈ E− (I) , then the inequality (3) is reversed.

COROLLARY 1. Let (ak)
n
k=1 be a real sequences in the set Sd (I) , and let (pk)

n
k=1

be a positive sequence symmetric about σ =
[

n+1
2

]
(or pk = pn+1−k for all k∈ I ). Then

the inequality (3)holds. If (ak)
n
k=1 ∈ Sd− (I) , then the inequality (3) is reversed.

COROLLARY 2. Let (ak)
n
k=1 be a real sequences in the set Scon(I) , and let

(pk)
n
k=1 be a positive sequence symmetric about σ =

[
n+1
2

]
(or pk = pn+1−k for all

k ∈ I ). Then the inequality (3) holds. If (ak)
n
k=1 ∈ Scon− (I) , then the inequality (3)

is reversed.

COROLLARY 3. Let (ak)
n
k=1 be a convex sequence of real numbers and let (pk)

n
k=1

be a positive sequence symmetric about σ =
[

n+1
2

]
(or pk = pn+1−k for all k ∈ I ).

Then the inequality (3) holds. If (ak)
n
k=1 is concave sequence of real numbers, then

the inequality (3) is reversed.

THEOREM 4. Let (ak)
n
k=1 be a convex sequence of real numbers and let (pk)

n
k=1

be a positive sequence symmetric about σ =
[

n+1
2

]
(or pk = pn+1−k for all k ∈ I ).

Then we have

aα +aσ+1−α +aβ +an+2−σ−β

4

(
n

∑
k=1

pk

)
�

n

∑
k=1

(
pk

k

k

∑
i=1

ai

)

� 3a1 +an

4

(
n

∑
k=1

pk

)
, (4)

where, α =
[σ+1

2

]
and β =

[
n+2−σ

2

]
. If (ak)

n
k=1 is a concave sequence of real num-

bers, then the inequality (4) is reversed.

Taking pk = 1 for all k ∈ I, in Theorem 4, we get the following result:

THEOREM 5. Let (ak)
n
k=1 be a convex sequence of real numbers. Then we have

aα +aσ+1−α +aβ +an+2−σ−β

4
� 1

n

n

∑
k=1

(
∑k

i=1

ai

k

)
� 3a1 +an

4
(5)

where, α =
[σ+1

2

]
and β =

[
n+2−σ

2

]
. If (ak)

n
k=1 is a concave sequence of real num-

bers, then the inequality (5) is reversed.

In the next part, taking pk = 1 for all k ∈ I, in Theorem 3, we obtain the following
corollaries:
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COROLLARY 4. Let (ak)
n
k=1 be a real sequence in the set E (I) , then the inequal-

ity (2) holds. If (ak)
n
k=1 ∈ E− (I) , then the inequality (2.1) is reversed.

COROLLARY 5. Let (ak)
n
k=1 be a real sequence in the set Sd (I) , then the in-

equality (2) holds. If (ak)
n
k=1 ∈ Sd− (I) , then the inequality (2) is reversed.

COROLLARY 6. Let (ak)
n
k=1 be a real sequence in the set Scon(I) , then the in-

equality (2) holds. If (ak)
n
k=1 ∈ Scon− (I) , then the inequality (2) is reversed.

COROLLARY 7. Let (ak)
n
k=1 be a convex sequence of real numbers, then the in-

equality (2) holds. If (ak)
n
k=1 be a concave sequence of real numbers, then the inequal-

ity (2) is reversed.

A QUESTION. Is it possible to obtain analog results in the case where (pk)
n
k=1 is

not symmetric about σ , and not necessarily positive?

In this part, we give an answer to the above question. So, we propose to the reader
the following theorems.

THEOREM 6. Let (ak)
n
k=1 be a real sequence in the set E (I) , let (pk)

n
k=1 be a

real sequence such that pk + pn+1−k � 0 for all k ∈ I , and

n

∑
k=1

akpk =
n

∑
k=1

akpn+1−k (6)

then, the inequality (3) holds. If (ak)
n
k=1 ∈ E− (I) , then the inequality (3) is reversed.

THEOREM 7. Let (ak)
n
k=1 be a real sequence in the set E (I) , let (pk)

n
k=1 be a

real sequence such that pk + pn+1−k � 0 for all k ∈ I ), and

n

∑
k=1

akpk �
n

∑
k=1

akpn+1−k (7)

then we have
n

∑
k=1

pkak �
(

a1 +an

2

) n

∑
k=1

pk. (8)

If (ak)
n
k=1 ∈ E− (I) , then the inequality (8) is reversed.

THEOREM 8. Let (ak)
n
k=1 be a real sequence in the set E (I) , let (pk)

n
k=1 be a

real sequence such that pk + pn+1−k � 0 for all k ∈ I , and

n

∑
k=1

akpn+1−k �
n

∑
k=1

akpk (9)

then we have (
aσ +an+1−σ

2

) n

∑
k=1

pk �
n

∑
k=1

pkak. (10)

If (ak)
n
k=1 ∈ E− (I) , then the inequality (10) is reversed.
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In Theorem 6, if (pk)
n
k=1 be a symmetric sequence about σ =

[
n+1
2

]
, then the

condition (6) holds, but the inverse is false, in general.

EXAMPLE 2. We take ak = k for k ∈ {1, . . . ,5} and p1 = 1, p2 = p5 = 2, p3 =
p4 = 0. Clearly (pk)

5
k=1 is not symmetric with respect to 3 but the condition (6) is

holds.

REMARK 1. In Theorem 6, if pk � 0 for k ∈ {1, . . . ,n} , then pk + pn+1−k � 0
for k ∈ {1, . . . ,n} , but the inverse is false in general.

EXAMPLE 3. We take pk = k2 − 4 for k ∈ {0,1, . . . ,10} , then it is easy to see
that pk is not positive sequence for k ∈ {0,1,2} , but pk + pn+1−k = 2k2−20k+92 =
2
(
(k−5)2 +21

)
� 0 for all k ∈ {1, . . . ,10} .

From Theorem 6, and Remark 1, we can deduce the following corollaries:

COROLLARY 8. Let (ak)
n
k=1 be a real sequence in the set Sd (I) , let (pk)

n
k=1 be

real sequence such that pk + pn+1−k � 0 for all k ∈ I ), if the condition (6) holds, then
the inequality (3) holds. If (ak)

n
k=1 ∈ Sd− (I) , then the inequality (3) is reversed.

COROLLARY 9. Let (ak)
n
k=1 be a real sequence in the set Scon(I) , let (pk)

n
k=1

be a real sequence such that pk + pn+1−k � 0 for all k ∈ I . If the condition (2.5)
holds, then the inequality (3) holds. If (ak)

n
k=1 ∈ Scon− (I) , then the inequality (3) is

reversed.

COROLLARY 10. Let (ak)
n
k=1 be a convex sequence of real numbers, let (pk)

n
k=1

be a real sequence such that pk + pn+1−k � 0 for all k ∈ I . If the condition (6) holds,
then the inequality (3) holds. If (ak)

n
k=1 be a real concave sequence, then the inequality

(3) is reversed.

3. Proof of main results

Let us present the following lemmas.

LEMMA 1. [4] Suppose that the sequence (ak)
n
k=1 is convex (or concave) of real

numbers, then the sequence (ck)
n
k=1 , where,

ck =
ak +an+1−k

2

is decreasing (increasing) for all k = 1,2, . . . ,
[

n+1
2

]
, and increasing (decreasing) for

all k =
[

n+1
2

]
, . . . ,n.

The following lemma is necessary to prove our theorems:
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LEMMA 2. Suppose that the sequence (ak)
n
k=1 is convex (concave) of real num-

bers, then the sequence (ck)
n
k=1 , where,

ck =
ak +an+1−k

2
, k = 2,3, . . . ,n−1,

is convex (concave).

Proof. Assume that (ak)
n
k=1 is convex sequence, then we have for all k = 2,3, . . . ,

n−1

2(ck−1 + ck+1) = ak−1 +an+1−(k−1) +ak+1 +an+1−(k+1)

� 2(ak +an+1−k) = 4ck

this equivalent to ck−1 +ck+1 � 2ck for all k = 2,3, . . . ,n−1. Hence, (ck)
n
k=1 is convex

sequence. If (ak)
n
k=1 is a concave sequence, then by using a similar proof as before, we

obtain the result. �

LEMMA 3. [13] Assume that (ak)
n
k=1 is convex sequence, then the sequence

(Ak)
n
k=1 , where

Ak =
1
k

k

∑
i=1

ai, k ∈ {1,2, . . . ,n}

is convex.

LEMMA 4. Let I = {1,2, . . . ,n} .

(a :) Let Con(I) be the set of all convex sequences, then we have

Con(I) ⊂ Scon(I) ⊂ Sd (I) ⊂ E (I) .

(b :) Let Con− (I) be the set of all concave sequences, then we have

Con− (I) ⊂ Scon− (I) ⊂ Sd− (I) ⊂ E− (I) .

Proof. (a :) First, we prove that Con(I) ⊂ Scon(I) . Let (ak)
n
k=1 be a convex

sequence. Then by Lemma 2, we deduce that (ak)
n
k=1 is symmetrized convex sequence.

Second, we prove that Scon(I) ⊂ Sd (I) . Assume that (ak)
n
k=1 be a symmetrized

convex sequence, by definition the sequence (ck)
n
k=1 where

ck =
ak +an+1−k

2
, k ∈ I = {1,2, . . . ,n}

is convex, then by Lemma 1 the sequence (ck)
n
k=1 is decreasing for all k = 1,2, . . . ,

[
n+1
2

]
,

and increasing for all k =
[

n+1
2

]
, . . . ,n. Hence, (ak)

n
k=1 ∈ Sd (I) .
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Finally, we will show that Sd (I) ⊂ E (I) . Assume that (ak)
n
k=1 ∈ Sd (I) , then by

definition the sequence ck =
ak +an+1−k

2
is decreasing for all k = 1,2, . . . ,

[
n+1
2

]
, then

we have
aσ +an+1−σ

2
� ak +an+1−k

2
� a1 +an

2

and for all k =
[

n+1
2

]
, . . . ,n, the sequence ck =

ak +an+1−k

2
is increasing, then we have

aσ +an+1−σ
2

� ak +an+1−k

2
� a1 +an

2

which implies that for all k ∈ I, we have

aσ +an+1−σ
2

� ak +an+1−k

2
� a1 +an

2
,

hence, (ak)
n
k=1 ∈ E (I) .

The first part of Lemma 4 is thus proved. To prove (b :) , we use the same argu-
ments as in the proof of (a) . �

REMARK 2. The following inclusion is strict.

Con(I)� Scon(I)� Sd (I)� E (I)

and
Con− (I)� Scon− (I)� Sd− (I)� E− (I) .

(1) Let I = {1,2, . . . ,7} . It sufficient to take ak = (k−2)3 for k ∈ I is not convex

sequence, but Ak =
1
2

(
(k−2)3 +(5− k)3

)
is convex sequence for k ∈ I .

(2) We consider the sequence ak =
√|k−4|, for k ∈ I, then we have (ak) /∈

Scon(I) but (ak) ∈ Sd (I) .

(3) If we take ak = cos(kπ −π) for all k ∈ I, then we have

−1 � cos(kπ −π)+ cos(7π − kπ)
2

� 1

then (ak)
7
k=1 ∈ E (I) but (ak)

7
k=1 /∈ Sd (I) .

Proof of Theorem 2. Suppose that (ak)
n
k=1 ∈E (I) , then for any k∈ I = {1,2, . . . ,n} ,

we have:
aσ +an+1−σ

2
� ak +an+1−k

2
� a1 +an

2
(11)

Summing both sides of inequalities (11) with respect to k ∈ I , we obtain

n

∑
k=1

aσ +an+1−σ
2

�
n

∑
k=1

ak +an+1−k

2
�

n

∑
k=1

a1 +an

2
(12)
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which is equivalent to

aσ +an+1−σ
2

� 1
n

n

∑
k=1

ak � a1 +an

2
.

If (ak)
n
k=1 ∈ E− (I) , then by using a similar proof, we obtain the result. �

Then the proof of Theorem 2 is thus completed.

Proof of Theorem 3. Assume that (ak)
n
k=1 ∈ E (I) , then we have (11) . Multiply-

ing inequality (11) by positive sequence pk, we obtain

aσ +an+1−σ
2

pk � ak +an+1−k

2
pk � a1 +an

2
pk (1 � k � n) . (13)

Summing both sides of (13) with respect to (1 � k � n) , we obtain

aσ +an+1−σ
2

n

∑
k=1

pk �
n

∑
k=1

ak +an+1−k

2
pk � a1 +an

2

n

∑
k=1

pk,

and then using the symmetry of the sequence (pk)
n
k=1 (or pk = pn+1−k) with respect

to
[

n+1
2

]
, yields

aσ +an+1−σ
2

n

∑
k=1

pk �
n

∑
k=1

akpk � a1 +an

2

n

∑
k=1

pk.

If (ak)
n
k=1 ∈ E− (I) , we use a similar proof as above. �

Proof of Corollaries 1, 2 and 3. This can be concluded by using lemma 4 and
theorem 3. �

Proof of Theorem 4. Assume that (ak)
n
k=1 be a convex sequence, and let (pk)

n
k=1

be a positive sequence and symmetric about σ , then by Lemma 3, the sequence (Ak)
n
k=1

is convex. Thanks to Theorem 3 for the sequences (Ak)
n
k=1 and (pk)

n
k=1 , we obtain the

following inequalities

Aσ +An+1−σ
2

n

∑
k=1

pk �
n

∑
k=1

Akpk � A1 +An

2

n

∑
k=1

pk (14)

Substituting these inequalities in (14) , we have

Aσ =
1
σ

σ

∑
i=1

ai �
aα +aσ+1−α

2
,

An+1−σ =
1

n+1−σ

n+1−σ

∑
i=1

ai �
aβ +an+2−σ−β

2
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and

An =
1
n

n

∑
i=1

ai �
a1 +an

2

where, α =
[σ+1

2

]
and β =

[
n+2−σ

2

]
. Since A1 = a1, then we obtain (6) . �

Proof of Theorem 6. Assume that (ak)
n
k=1 ∈ E (I) , then we have (11) . Multiply-

ing (11) by positive sequence (pk + pn+1−k) , for all (1 � k � n) , we obtain

(aσ +an+1−σ)(pk + pn+1−k) � (ak +an+1−k)(pk + pn+1−k) (15)

� (a1 +an)(pk + pn+1−k)

Summing both sides of inequalities (15) with respect to (1 � k � n) , we obtain

aσ +an+1−σ
2

n

∑
k=1

pk � 1
2

n

∑
k=1

(akpk +an+1−kpk) � a1 +an

2

n

∑
k=1

pk. (16)

Thanks to the identity of (4) , yields the following inequality

aσ +an+1−σ
2

n

∑
k=1

pk �
n

∑
k=1

akpk � a1 +an

2

n

∑
k=1

pk.

If (ak)
n
k=1 ∈ E− (I) , we use the same arguments as in the above proof. �

Proof of Theorem 7. We use inequality (16) and condition (7) , we obtain the
result. �

Proof of Theorem 8. It is sufficient to apply (16) and condition (9) . �

4. Applications

Let us first recall that in 1979, S. Haber [3] proved the following inequality:

THEOREM 9. Let a and b be non negative real numbers. Then, for every integer
n � 0 , we have

1
n+1

(
an +an−1b+ . . .+bn)� an +bn

2
.

Many authors have been interested in this inequality, see for instance [1, 2, 3, 4].
It is easy to show that for all a � 0,b � 0, the sequence

xk = an−kbk, (k = 0,1, . . . ,n)

is convex.
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As an application, by applying Theorem 2, we get

1
n+1

n

∑
k=0

xk � x0 + xn

2
,

which is equivalent to state that

1
n+1

(
an +an−1b+ . . .+bn)� an +bn

2
.

This is the upper bound of Haber inequality.

Another application can be seen by taking ak = e−(k−1)2 , for k∈ I = {1,2, . . . ,100} .
One can state that (ak) is not convex. But, we have (ak) ∈ E (I) . Therefore, we get

(
e−(49)2 + e−(50)2

)
� 1

50

100

∑
k=1

e−(k−1)2 �
(
1+ e−(99)2

)
.

AN OPEN PROBLEM. Is it possible to prove that there exists an estimation better
than (2.1) and (2.2)?
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[9] G. M. MOLNÁR AND Z. PÁLES, On convex and concave sequences and their applications, (2021),
arXiv preprint arXiv:2112.10197.

[10] M. NIEZGODA, Inequalities for convex sequences and nondecreasing convex functions, Aequationes
Mathematicae, 91 (1), 1–20, (2017).

[11] M. NIEZGODA, Sherman, Hermite-Hadamard and Fejér like inequalities for convex sequences and
nondecreasing convex functions, Filomat, 31 (8), 2321–2335, (2017).



184 M. A. ABDELLAOUI, H. MEBARKI, Z. DAHMANI AND M. Z. SARIKAYA

[12] I. STANKOVIC, I. MELOVANOVIC, E. MELOVANOVIC AND T. MERKOVIC, A note on Chebyshev
inequality for ( p,q)-convex sequences, Metalurgia International, 18 (6), 116, (2013).

[13] S. WU, L. DEBNATH, Inequalities for convex sequences and their applications, Computers & Math-
ematics with Applications, 54 (4), 525–534.

(Received June 8, 2023) Mohamed Amin Abdellaoui
Department of Mathematics

University of Bechar
8000, Algeria

e-mail: abdellaouiamine13@yahoo.fr

Houda Mebarki
Department of Mathematics

University of Bechar
8000, Algeria

e-mail: houda.mebarki@yahoo.fr

Zoubir Dahmani
Laboratory of Pure and Applied Mathematics

Faculty of Exact Sciences and Informatics, University of Mostaganem
27000, Algeria

e-mail: zzdahmani@yahoo.fr

Mehmet Zeki Sarikaya
Department of Mathematics

Faculty of Science and Arts, Düzce University
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