EMBEDDINGS AND RELATED TOPICS IN GRAND VARIABLE EXPONENT HAJŁASZ-MORREY-SOBOLEV SPACES

David E. Edmunds, Dali Makharadze* and Alexander Meskhi

(Communicated by J. Pečarić)

Abstract

Embeddings in the framework of grand variable exponent function spaces are studied. In particular, embeddings from grand variable exponent Hajłasz-Sobolev-Morrey spaces to variable exponent Hölder spaces are established. The regularity of a fractional integral operator defined with respect to a non-doubling measure is also investigated. In particular, mapping properties of this operator from a grand variable exponent Morrey space to a grand variable parameter Hölder space are studied. The results are proved under the log-Hölder continuity condition on the exponents. The spaces are defined, generally speaking, on quasi-metric measure spaces, however, the results are new even for Euclidean spaces.

1. Introduction

Our aim is to study problems related to embeddings from grand variable exponent Hajłasz-Morrey-Sobolev spaces $\left(G V E H M S S\right.$ briefly) $(H M)_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(X)$ to variable parameter Hölder spaces $H^{\lambda(\cdot)}(X)$ (VPHS briefly) under the log-Hölder continuity condition on exponents and parameters. We treat also the regularity of a fractional integral operator in appropriate spaces. In particular, mapping properties of fractional-type integral operators defined on an open set Ω in \mathbb{R}^{n} with Ahlfors upper N-regular Borel measure μ on Ω, from grand variable exponent Morrey spaces (GVEMS briefly) to $V P H S$ are also studied.

The study of Hajłasz-Sobolev embeddings in the variable exponent setting was initiated in [1]. Later, a similar problem from the grand variable exponent viewpoint was investigated in [7], where the authors also studied Sobolev-type embeddings in the framework of these spaces defined on open sets in \mathbb{R}^{n}.

In the last two decades it was realized that classical function spaces are no longer adequate for solving a number of contemporary problems arising naturally in various mathematical models of applied sciences. It thus became necessary to introduce and study the new nonstandard function spaces (NSFS) from various viewpoints. We emphasize that in recent years the following function spaces were studied: variable exponent Lebesgue and Sobolev spaces, "grand" function spaces, Morrey-type spaces, etc.

[^0]NSFS s are extensively investigated by many authors nowadays. We emphasize some recent books and surveys published in this area, and recall, for example, the monographs [3], [5], [22], [23], the survey paper [17], etc.

Classical Morrey spaces were introduced by C. Morrey in 1938 and applied to the regularity problems of solutions to partial differential equations. We mention, for example, the recent two-volume monograph [27] for properties of Morrey-type spaces, and related topics.

Classical grand Lebesgue spaces $L^{p_{c}}(\Omega)$, where Ω is a bounded open set in \mathbb{R}^{n}, naturally arise, for example, when studying integrability problems of the Jacobian under minimal hypotheses (see [18]), while $L^{\left.p_{c}\right), \theta}(\Omega), \theta>0$, is related to the investigation of the nonhomogeneous n-harmonic equation $\operatorname{div} A(x, \nabla u)=\mu$ (see [14]). It is known (see, e.g., [12]) that the space $L^{\left.p_{c}\right), \theta}(\Omega)$ is non-reflexive and non-separable.

Grand Morrey spaces were introduced in [25], where the boundedness of integral operators in these spaces was also established. Later, H. Rafeiro [26] considered the space, where the author "grandified" the parameter of the space as well.

Grand variable exponent Lebesgue spaces were introduced in [19] (see also [6] for more precise spaces). These spaces unify two non-standard spaces: variable and grand Lebesgue spaces. In the present paper we are interested in Hajłasz-Sobolev space based on GVEMS defined over quasi-metric measure spaces. The latter spaces were introduced in [21].

Sobolev embeddings in variable exponent Lebesgue spaces were studied in the papers [4], [9], [10] (see also the monograph [5] and references cited therein).

Finally we mention that the results of this paper were announced in [8].

2. Preliminaries

In this section we recall the definition and some properties of a quasi-metric measure space.

Let X be a topological space endowed with a locally finite complete measure μ and quasi-metric $d: X \times X \mapsto \mathbb{R}_{+}$satisfying the following conditions:
(i) $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) there exists a constant $\kappa \geqslant 1$ such that for all $x, y, z \in X$,

$$
d(x, y) \leqslant \kappa[d(x, z)+d(z, y)]
$$

(iv) for every neighborhood V of a point $x \in X$ there exists $r>0$ such that the ball $B(x, r)=\{y \in X: d(x, y)<r\}$ with center x and radius r is contained in V.

It is also assumed that all balls $B(x, r):=\{y \in X: d(x, y)<r\}$ in X are measurable with finite measure, $\mu\{x\}=0$ for all $x \in X$, and that the class of continuous functions with compact supports is dense in the space of integrable functions on X.

In this case we say that (X, d, μ) is a quasi-metric measure space. Further, we say that the measure μ of the quasi-metric measure space (X, d, μ) is Ahlfors upper α-regular (or satisfies the growth condition) if there is a positive constant C such that for all $x \in X$ and $R>0$,

$$
\begin{equation*}
\mu(B(x, R)) \leqslant C R^{\alpha} \tag{1}
\end{equation*}
$$

A quasi-metric measure space with this growth condition is also called a space of non-homogeneous type.

The measure μ on X is said to satisfy a doubling condition $(\mu \in D C(X))$ if there is a constant $D_{\mu}>0$ such that

$$
\begin{equation*}
\mu B(x, 2 r) \leqslant D_{\mu} \cdot \mu B(x, r) \tag{2}
\end{equation*}
$$

for every $x \in X$ and $r>0$. The best possible constant in (2) is called the doubling constant for μ and will be denoted again by D_{μ}.

Denote by d_{X} the diameter of X. Throughout the paper we will assume that $d_{X}<\infty$. In this case μ is a finite measure, i.e. $\mu(X)<\infty$.

Further, it can be checked (see also [16], Lemma 14.6) that there is a positive constant C such that whenever $0<r \leqslant \rho<d_{X}, x \in X$ and $y \in B(x, r)$,

$$
\frac{\mu B(x, \rho)}{\mu B(y, r)} \leqslant C\left(\frac{\rho}{r}\right)^{N}
$$

where

$$
\begin{equation*}
N=\log _{2} D_{\mu} \tag{3}
\end{equation*}
$$

and D_{μ} is the doubling constant. Consequently, since $d_{X}<\infty$, there is a positive constant C_{N} such that

$$
\begin{equation*}
\mu(B(x, r)) \geqslant C_{N} r^{N} \tag{4}
\end{equation*}
$$

whenever $x \in X$ and $0<r<d_{X}$, where N is defined by (3).
A quasi-metric measure space (X, d, μ) with doubling measure μ is called a space of homogeneous type (SHT).

Recall that for a quasi-metric measure space (X, d, μ) with condition (1), the doubling condition might be not satisfied.

Examples of SHT are: (a) domain Ω in \mathbb{R}^{d} satisfying the condition: there is a positive constant $C>0$ such that $|\Omega \cap B(x, r)| \geqslant C r^{d}$, where $|E|$ is the Lebesgue measure induced on Ω; here $N=d$; (b) regular curves, i.e. rectifiable curves Γ satisfying the condition: $v(\Gamma \cap D(x, r)) \leqslant C r$, where $D(x, r)$ is the disc with center x and radius $r>0$ and v is the arc-length measure on Γ (in this case $N=1$); (c) nilpotent Lie groups G with appropriate distance and Haar measure, where $N=Q$ is a homogeneous dimension of G. In particular, the Heisenberg group \mathscr{H}^{n} is a special case of such a group with $Q=2 n+2$).

For basic properties and examples of an SHT we refer e.g., to [2].
To introduce grand variable exponent Hajłasz-Morrey spaces we need to recall some auxiliary definitions.

We denote by $\mathbf{P}_{0}(X)$ (resp. $\mathbf{P}(X)$) the family of all real-valued μ-measurable functions $p(\cdot)$ on X such that

$$
0<p_{-} \leqslant p_{+}<\infty, \quad\left(\text { resp. } 1<p_{-} \leqslant p_{+}<\infty,\right)
$$

where

$$
p_{-}:=p_{-}(X):=\inf _{X} p(x), \quad p_{+}:=p_{+}(X):=\sup _{X} p(x) .
$$

It is clear that $\mathbf{P}_{0}(X) \subset \mathbf{P}(X)$.
We say that a function $p(\cdot) \in \mathbf{P}_{0}(X)$ belongs to the class $\mathscr{P}^{\log }(X)$ (or $p(\cdot)$ satisfies the log-Hölder continuity condition) if there is a positive constant ℓ such that for all $x, y \in X$ with $0<d(x, y) \leqslant 1 / 2$,

$$
\begin{equation*}
|p(x)-p(y)| \leqslant \frac{\ell}{-\ln (d(x, y))} \tag{5}
\end{equation*}
$$

The best possible constant in (5) is called the log-Hölder continuity constant and will be denoted again by ℓ.

Let $q(\cdot) \in \mathbf{P}(X)$. The variable exponent Lebesgue space $L^{q(\cdot)}(X)$ (or $L^{q(x)}(X)$) ($V E L S$ briefly) is also called a Nakano space. It is a special case of more general spaces called Musielak-Orlicz spaces. $L^{q(\cdot)}(X)$ is the class of all μ-measurable functions f on X for which

$$
S_{q(\cdot)}(f):=\int_{X}|f(x)|^{q(x)} d \mu(x)<\infty .
$$

$L^{q(\cdot)}(X)$ is a Banach function space when given the norm defined by

$$
\|f\|_{L^{q(\cdot)}(X)}=\inf \left\{\lambda>0: S_{q(\cdot)}(f / \lambda) \leqslant 1\right\}
$$

The class of exponents $\mathscr{P}^{\log }(X)$ plays an important role in the theory mapping properties of integral operators in $L^{q(\cdot)}$ spaces. For example, maximal, fractional and singular integral operators are bounded in $L^{q(\cdot)}$ under the condition $q(\cdot) \in \mathscr{P}^{\log }(X)$ (see, e.g., the monographs [3], [5], [22] and references cited therein).

The following relations hold for VELSs (see, e.g., [24] and p. 3 of [22]):

$$
\begin{aligned}
& \|f\|_{L^{q(\cdot)}}^{q_{+}} \leqslant S_{q(\cdot)}(f) \leqslant\|f\|_{L^{q(\cdot)}}^{q_{-}}, \quad\|f\|_{L^{q(\cdot)}} \leqslant 1, \\
& \|f\|_{L^{q \cdot(\cdot)}}^{q_{-}} \leqslant S_{q(\cdot)}(f) \leqslant\|f\|_{L^{q(\cdot)}}^{q_{+}},\|f\|_{L^{q(\cdot)}} \geqslant 1 .
\end{aligned}
$$

Recall that (see e.g., [24]) Hölder's inequality in $V E L S$ s has the following form:

$$
\begin{equation*}
\|f g\|_{L^{1}} \leqslant C_{q(\cdot)}\|f\|_{L^{q(\cdot)}}\|g\|_{L^{q^{\prime}(\cdot)}}, \tag{6}
\end{equation*}
$$

where

$$
C_{q(\cdot)}=\frac{1}{q_{-}}+\frac{1}{\left(q^{\prime}\right)_{-}}, \quad q^{\prime}(\cdot)=\frac{q(\cdot)}{q(\cdot)-1}
$$

Further, the following statement is valid (see, e.g., [22], p. 9):
Lemma 1. Let $s(\cdot)$ and $r(\cdot)$ be variable exponents on X such that $1<s_{-} \leqslant$ $s(x) \leqslant r(x) \leqslant r_{+}<\infty \mu$-a.e. We set

$$
\frac{1}{p(x)}=\frac{1}{s(x)}-\frac{1}{r(x)}
$$

If $1 \in L^{p(\cdot)}$, then

$$
\|f\|_{L^{(\cdot)}} \leqslant 2^{1 / s_{-}}\|1\|_{L^{p(\cdot)}}\|f\|_{L^{r(\cdot)}}
$$

We say that $\varphi(\cdot) \in A_{q(\cdot)}$, where $1<q_{-} \leqslant q_{+}<\infty$, if $\varphi(\cdot)$ is defined and bounded on $\left(0, q_{-}-1\right)$, is non-decreasing on $(0, \delta)$ for some small positive constant δ, and

$$
\lim _{x \rightarrow 0^{+}} \varphi(x)=0 .
$$

Further, we write that the pair of variable exponents $(p(\cdot), q(\cdot)) \in \widetilde{\mathbf{P}}(X)$ if $1<$ $q_{-} \leqslant q(\cdot) \leqslant p(\cdot) \leqslant p_{+}<\infty$.

Let $(p(\cdot), q(\cdot)) \in \widetilde{\mathbf{P}}(X)$ and let $\varphi(\cdot) \in A_{q(\cdot)}$. We recall the definitions of the spaces $L_{q(\cdot)}^{p(\cdot)}(X)$ and $L_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(X)$ determined by the norms

$$
\|f\|_{L_{q(\cdot)}^{p(\cdot)}(X)}=\sup _{\substack{x \in X \\ 0<r<d_{X}}}(\mu B(x, r))^{\frac{1}{p(x)}-\frac{1}{q(x)}}\|f\|_{L^{q(\cdot)}(B(x, r))}
$$

and

$$
\|f\|_{L_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}}(X)=\sup _{0<c<q_{-}-1} \varphi(c)^{\frac{1}{q_{-}-c}}\|f\|_{L_{q(\cdot)-c}^{p(\cdot)}(X)},
$$

respectively, where \boldsymbol{c} is a constant.
The spaces $L_{q(\cdot)}^{p(\cdot)}(X)$ and $L_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(X)$ are variable exponent Morrey spaces (VEMS briefly) and GVEMS, respectively.

If $p(\cdot)=q(\cdot)$, then $L_{q(\cdot)}^{p(\cdot)}(X)$ is the $V E L S L^{q(\cdot)}(X)$.

DEFINITION 1. Let $(p(\cdot), q(\cdot)) \in \widetilde{\mathbf{P}}(X)$ and let $\varphi(\cdot) \in A_{q(\cdot)}$. We say that a function $f \in L_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(X)$ belongs to the Hajłasz-Morrey space $(H M)_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(X)$ if there is a non-negative $g \in L_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(X)$ such that

$$
|f(x)-f(y)| \leqslant d(x, y)[g(x)+g(y)], \quad \mu-\text { a.e in X. }
$$

In this case $g(\cdot)$ is called a generalized gradient of f.
For $p(\cdot) \equiv q(\cdot)$ this space was introduced and studied in [7].
If $p(\cdot) \equiv q(\cdot) \equiv p_{c}=$ const and formally $\theta=0$, then we have the space $(H S)^{p_{c}}(X)$ which was introduced by P. Hajłasz [15] as a generalization of the classical Sobolev spaces $W^{1, p_{c}}$ to the general setting of quasi-metric measure spaces.

Proposition 1. The space $(H M)_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(X)$ is the Banach space with respect to the norm:

$$
\|f\|_{(H M)_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(X)}=\|f\|_{L_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(X)}+\inf \|g\|_{L_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(X),}
$$

where the infimum is taken over all generalized gradients g of f.

Let $p_{-}>N$. We say that a bounded function f belongs to the variable exponent Hölder space (VEHS briefly) $H^{p(\cdot)}(X)$, if there exists $C>0$ such that

$$
|f(x)-f(y)| \leqslant C d(x, y)^{\max \{1-N / p(x), 1-N / p(y)\}}
$$

for every $x, y \in X$ (see [1] for this definition).
Norms in these spaces are defined as follows:

$$
\|f\|_{H^{p(\cdot)}(X)}=\|f\|_{L^{\infty}(X)}+[f]_{H^{p(\cdot)}(X)}
$$

where

$$
[f]_{H^{p(\cdot)}(X)}:=\sup _{\substack{x, y \in X \\ 0<d(x, y) \leqslant 1}} \frac{|f(x)-f(y)|}{d(x, y)^{\max \{1-N / p(x), 1-N / p(y)\}}}
$$

3. Embeddings

Throughout this section it will be assumed that (X, d, μ) is an $S H T$ and that N is defined by (3).

To prove the main result of this section we need some definitions and auxiliary statements.

Lemma 2. (see [7]) Let $\alpha(\cdot)$ and $\beta(\cdot)$ be μ-measurable functions on X such that $0<\alpha_{-} \leqslant \alpha_{+}<\infty, 0<\beta_{-} \leqslant \beta_{+}<\infty$. Suppose that f is a locally integrable function on X. Then for all $x, y \in X$,

$$
|f(x)-f(y)| \leqslant C(\mu, \alpha(\cdot), \beta(\cdot))\left[d(x, y)^{\alpha(x)} M_{\alpha(\cdot)}^{\#} f(x)+d(x, y)^{\beta(y)} M_{\alpha(\cdot)}^{\#} f(y)\right],
$$

where $C(\mu, \alpha, \beta)$ is the constant defined by

$$
C(\mu, \alpha(\cdot), \beta(\cdot)):=D_{\mu} \max \left\{\frac{1}{2^{\alpha_{-}}-1} ; 2^{\beta_{+}}\left(\frac{1}{2^{\beta_{-}-1}}+D_{\mu}\right)\right\}
$$

and

$$
M_{\alpha(\cdot)}^{\#} f(x)=\sup _{x \in X, r>0} \frac{r^{-\alpha(x)}}{\mu B(x, r)} \int_{B(x, r)}\left|f(y)-f_{B(x, r)}\right| d \mu(y) .
$$

Denote by $M_{\lambda(\cdot)}$ the fractional maximal operator given by the formula:

$$
M_{\lambda(\cdot)} f(x)=\sup _{\substack{x \in X \\ r>0}} \frac{r^{\lambda(x)}}{\mu B(x, r)} \int_{B(x, r)}|f(y)| d \mu(y), 0 \leqslant \lambda(x)<\lambda_{+}<N
$$

Lemma 3. Let $0 \leqslant \lambda_{-} \leqslant \lambda_{+}<1,(p(\cdot), q(\cdot)) \in \widetilde{\boldsymbol{P}}(X), \varphi(\cdot) \in A_{q(\cdot)}$. Suppose that $f \in(H M)_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(X)$ and that g is its gradient. Then

$$
M_{1-\lambda(\cdot)}^{\#} f(x) \leqslant 4 \kappa M_{\lambda(\cdot)} g(x),
$$

where κ is the quasi-metric constant.

Proof. Let g be the gradient of f. Then for $B:=B(x, r)$,

$$
\begin{aligned}
& \int_{B}\left|f(y)-f_{B}\right| d \mu(y) \\
\leqslant & \frac{1}{\mu(B)} \int_{B} \int_{B}|f(y)-f(z)| d \mu(y) d \mu(z) \\
\leqslant & \frac{1}{\mu(B)} \int_{B} \int_{B} d(y, z)[g(y)+g(z)] d \mu(y) d \mu(z) \\
\leqslant & \frac{2 \kappa r}{\mu(B)} \int_{B} \int_{B}[g(y)+g(z)] d \mu(y) d \mu(z) \\
\leqslant & \frac{4 \kappa r}{\mu(B)} \int_{B} \int_{B} g(y) d \mu(y) d \mu(z)=4 \kappa r \int_{B} g(y) d \mu(y)
\end{aligned}
$$

Now the conclusion follows.
Lemmas 2 and 3 imply the next statement.

Lemma 4. Let $\alpha(\cdot)$ and $\beta(\cdot)$ be μ-measurable functions on X such that $0 \leqslant$ $\alpha_{-} \leqslant \alpha_{+}<1, \quad 0 \leqslant \beta_{-} \leqslant \beta_{+}<1$. Suppose that $(p(\cdot), q(\cdot)) \in \widetilde{\boldsymbol{P}}(X), \varphi(\cdot) \in A_{q(\cdot)}$. Assume that $f \in(H M)_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(X)$ and that g is its gradient. Then for all $x, y \in X$,

$$
|f(x)-f(y)| \leqslant \bar{C}(\mu, \alpha(\cdot), \beta(\cdot))\left[d(x, y)^{1-\alpha(x)} M_{\alpha(\cdot)} g(x)+d(x, y)^{1-\beta(y)} M_{\beta(\cdot)} g(y)\right]
$$

where

$$
\bar{C}(\mu, \alpha(\cdot), \beta(\cdot)):=8 C(\mu, 1-\alpha(\cdot), 1-\beta(\cdot))
$$

and

$$
C(\mu, 1-\alpha(\cdot), 1-\beta(\cdot))=D_{\mu} \max \left\{\frac{1}{2^{1-\alpha_{+}}-1} ; 2^{1-\beta-}\left(\frac{1}{2^{1-\beta_{+}-1}}+D_{\mu}\right)\right\} .
$$

Lemma 5. Let $(r(\cdot), s(\cdot)) \in \widetilde{\boldsymbol{P}}(X)$ and let, in addition, $r(\cdot) \in \mathscr{P}^{\log }(X)$. Then for $f \in L_{r(\cdot)}^{s(\cdot)}$

$$
M_{N / s(\cdot)} f(x) \leqslant C_{s(\cdot), r(\cdot)}\|f\|_{L_{r(\cdot)}^{s(\cdot)}}
$$

where $C_{s(\cdot), r(\cdot)}$ is such that

$$
\begin{equation*}
\sup _{0<c<\sigma} C_{s(\cdot), r(\cdot)-c}<\infty \tag{7}
\end{equation*}
$$

for some small positive constant σ.

Proof. We have

$$
\begin{aligned}
\frac{R^{\frac{N}{s(x)}}}{\mu B(x, R)} \int_{B(x, R)}|f| d \mu & \leqslant \frac{2 R^{\frac{N}{s(x)}}}{\mu B(x, R)}\|f\|_{L^{r(\cdot)}(B(x, R))}\|1\|_{L^{\prime}(\cdot)(B(x, R))} \\
& \leqslant \frac{C_{r(\cdot)} R^{\frac{N}{s(x)}} R^{\frac{N}{J^{(\cdot \cdot)}}}}{R^{N}}\|f\|_{L^{r(\cdot)}(B(x, R))} \\
& \leqslant \frac{C_{s(\cdot), r(\cdot)} R^{\frac{N}{s(x)}} R^{\frac{N}{J(x)}} R^{\frac{N}{r(x)}-\frac{N}{s(x)}}}{R^{N}}\|f\|_{L_{r(\cdot)}^{s(\cdot)}(X)} \\
& =C_{s(\cdot), r(\cdot)}\|f\|_{L_{r(\cdot)}^{s(\cdot)}(X)} .
\end{aligned}
$$

It remains to observe that condition (7) holds for the constant $C_{S(\cdot), r(\cdot)}$.
LEMMA 6. Let $p(\cdot)$ and $q(\cdot)$ are the variable exponents such that $p_{-}>N$ and $q(\cdot) \in \mathscr{P}^{\log }(X)$. Suppose that $f \in(H M)_{q(\cdot)}^{p(\cdot)}(X)$. Let g be a generalized gradient of f. Then

$$
|f(x)-f(y)| \leqslant \widetilde{C}_{p(\cdot), q(\cdot)}\|g\|_{L_{q(\cdot)}^{p(\cdot)}} d(x, y)^{1-N / \max \{p(x), p(y)\}}
$$

where $\widetilde{C}_{p(\cdot), q(\cdot)}$ is a constant satisfying the condition

$$
\begin{equation*}
\sup _{0<c<\sigma} \widetilde{C}_{p(\cdot), q(\cdot)-c}<\infty \tag{8}
\end{equation*}
$$

for some small positive constant σ.
Proof. Applying Lemmas 4 and 5 we have

$$
\begin{aligned}
|f(x)-f(y)| & \leqslant C_{p(\cdot), q(\cdot)}\left[d(x, y)^{1-N / p(x)} M_{N / p(x)} g(x)+d(x, y)^{1-N / p(y)} M_{N / p(y)} g(y)\right] \\
& \leqslant C_{p(\cdot), q(\cdot)}\|g\|_{L_{q(\cdot)}^{p(\cdot)}(X)}\left[d(x, y)^{1-N / p(x)}+d(x, y)^{1-N / p(y)}\right] \\
& \leqslant \widetilde{C}_{p(\cdot), q(\cdot)}\|g\|_{L_{q(\cdot)}^{p(\cdot)}(X)} d(x, y)^{\max \{1-N / p(x) ; 1-N / p(y)\}} .
\end{aligned}
$$

Since condition (8) holds for the constant $\widetilde{C}_{p(\cdot), q(\cdot)}$, we are done.
We will need some more auxiliary statements
Lemma 7. ([23], p. 834) Let (X, d, μ) be an $\operatorname{SHT}, r(\cdot) \in \boldsymbol{P}(X) \cap \mathscr{P}^{\log }(X)$. Then the followng estimate holds for all balls $B, \mu(B) \leqslant 1$:

$$
\mu(B)^{r_{-}(B)-r_{+}(B)} \leqslant C_{r(\cdot)}
$$

where $C_{r(\cdot)}$ is a constant such that

$$
\sup _{0<c<\sigma} C_{r(\cdot)-c}<\infty
$$

for some small positive constant σ.

Lemma 8. Let (X, d, μ) be an SHT and let σ be a small positive constant. Suppose that $q(\cdot) \in \boldsymbol{P}(X) \cap \mathscr{P}^{\log }(X)$ and $\varphi(\cdot) \in A_{q(\cdot)}$. Then there is a positive constant $C_{q(\cdot), \sigma, \varphi(\cdot)}$ such that

$$
\|f\|_{L_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(X)} \leqslant C_{q(\cdot), \sigma, \varphi(\cdot)} \sup _{0<c \leqslant \sigma} \varphi^{1 /\left(q_{-}-c\right)}\|f\|_{L_{q(\cdot)}^{p(\cdot)}(X)} .
$$

Proof. Without loss of generality we can assume that $\mu(X) \leqslant 1$. Let $\sigma<c<$ $q_{-}-1$. Then by Lemmas 1,7 , and the fact that $q(\cdot) \in \mathscr{P}^{\log }(X)$ we find that for a ball $B:=B(x, r)$,

$$
\begin{aligned}
\varphi(c)^{\frac{1}{q_{-}-c}} \mu(B)^{\frac{1}{p(x)}-\frac{1}{q(x)-c}}\|f\|_{L^{q(\cdot)-c}(B)} & \leqslant 2 \varphi(c)^{\frac{1}{q-c c}} \mu(B)^{\frac{1}{p(x)}-\frac{1}{q(x)-c}}\|1\|_{L^{l(\cdot)}(B)}\|f\|_{L^{q(\cdot)-\sigma}(B)} \\
& \leqslant C_{q(\cdot), \sigma, \varphi(\cdot)} \varphi(\sigma)^{\frac{1}{q--\sigma}} \mu(B)^{\frac{1}{p(x)}-\frac{1}{q(x)-\sigma}}\|f\|_{L^{q(\cdot)-\sigma}(B)}
\end{aligned}
$$

where $l(\cdot)=\frac{(q(\cdot)-c)(q(\cdot)-\sigma)}{c-\sigma}$.
Since

$$
\|f\|_{L_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(X)}=\max \left\{\sup _{0<c \leqslant \sigma} \varphi(c)^{\frac{1}{q--c}}\|f\|_{L_{q(\cdot)-c}^{p(\cdot)}(X)}, \sup _{\sigma<c<q_{-}-1} \varphi(c)^{\frac{1}{q-c}}\|f\|_{L_{q(\cdot)-c}^{p(\cdot)}(X)}\right\}
$$

we have the desired result.
A similar relation for grand Lebesgue spaces with constant exponents was first observed in [11].

THEOREM 1. Let (X, d, μ) be an SHT with $\mu(X)<\infty$, and let N be determined by (3). Let $p(\cdot)$ and $q(\cdot)$ be variable exponents such that $p_{-}>N$ and $(p(\cdot), q(\cdot)) \in$ $\widetilde{\boldsymbol{P}}(X)$. Let $q(\cdot) \in \mathscr{P}^{\log }(X), \varphi(\cdot) \in A_{q(\cdot)}$. Then

$$
(H M)_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(X) \hookrightarrow H^{p(\cdot)}(X)
$$

Proof. Taking Lemma 8 into account, we deal with small positive c. Let $0<c<$ $\sigma<q_{-}-1$. Then applying Lemma 5, we have that for $x \in X, R_{0}>0$,

$$
\begin{aligned}
\left|f(x)-f_{B\left(x, R_{0}\right)}\right| & \leqslant D_{\mu} R_{0}^{1-N / p(x)} M_{1-N / p(\cdot)}^{\#} f(x) \\
& \leqslant C R_{0}^{1-N / p(x)} M_{N / p(\cdot)} g(x) \\
& \leqslant \bar{C} R_{0}^{1-N / p(x)}\|g\|_{L_{q(\cdot)-c}^{p(\cdot)}(X)} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left|f_{B\left(x, R_{0}\right)}\right| & \leqslant 2 \mu\left(B\left(x, R_{0}\right)\right)^{-1}\|f\|_{L^{q(\cdot)-c}\left(B\left(x, R_{0}\right)\right)}\|1\|_{L^{(q \cdot)-c)^{\prime}}\left(B\left(x, R_{0}\right)\right)} \\
& \leqslant 2 R_{0}^{-N /(q(x)-c)}\|f\|_{L^{q(\cdot)-c}(X)} \leqslant 2 R_{0}^{-N / p(x)}\|f\|_{L_{q(\cdot)-c}^{p(\cdot)}(X)}
\end{aligned}
$$

Thus, taking $R_{0}=\min \{1, \mu(X)\}$, we find that

$$
\begin{aligned}
|f(x)| & \leqslant C\left[R_{0}^{1-N / p(x)}+R_{0}^{-N / p(x)}\right]\|f\|_{L_{q(\cdot)-c}^{p(\cdot)}(X)} \\
& \leqslant C\|f\|_{L_{q(\cdot)-c}^{p(\cdot)}(X)} .
\end{aligned}
$$

Thus, $f \in L^{\infty}(X)$.
Further, observe that

$$
\begin{equation*}
|f(x)-f(y)| \leqslant \widetilde{C}_{p(\cdot), q(\cdot)-c}\|g\|_{L_{q(\cdot)-c}^{p(\cdot)}(X)} d(x, y)^{\max \{1-N / p(x) ; 1-N / p(y)\}} \tag{9}
\end{equation*}
$$

where the constant $\widetilde{C}_{p(\cdot), q(\cdot)-c}$ is such that

$$
\sup _{0<c<\sigma} \widetilde{C}_{p(\cdot), q(\cdot)-c}<\infty .
$$

Finally, multiplying both sides of inequality (9) by $\varphi(c)^{\frac{1}{q_{-}-c}}$ and taking the supremum with respect to $c, 0<c<\sigma$ (observe that the left-hand side of (9) does not depend on c) we have the desired result.

4. Regularity of potentials

Let Ω be an open set in \mathbb{R}^{d} and let μ be a Borel measure on Ω. In this section we investigate the regularity of fractional integrals

$$
J_{\Omega}^{\gamma} f(x)=\int_{\Omega} \frac{f(y)}{|x-y|^{n-\gamma}} d \mu(y), 0<\gamma<n, x \in \Omega
$$

for $f \in L_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(\Omega)$, where the measure μ on Ω satisfies the condition: there are positive constants c_{0} and n such that for all $x \in \Omega$ and $R>0$,

$$
\begin{equation*}
\mu(D(x, R)) \leqslant c_{0} R^{n}, \quad D(x, R):=B(x, R) \cap \Omega \tag{10}
\end{equation*}
$$

In this section we will need the following class of exponents on Ω.

DEFINITION 2. We say that $p(\cdot) \in \mathscr{P}(X)$ if there is a positive constant ℓ_{1} such that

$$
\mu(B(x, R))^{p_{-}}(D(x, R))-p_{+}(D(x, R)) \leqslant \ell_{1}
$$

for all $x \in X$ and small positive R.
It is known that (see, e.g., [23], p. 834) that if (X, d, μ) is an $S H T$, then $\mathscr{P}^{\log }(\Omega) \subset$ $\mathscr{P}(\Omega)$.

DEFINITION 3. Let γ be a constant such that $0<\gamma<n$ and let ε be a constant such that $0<\varepsilon \leqslant 1$. A function $k_{\gamma}: \Omega \times \Omega \rightarrow \mathbb{C}$ is said to be a fractional kernel of order γ if there exists a positive constant C_{k} such that

$$
\begin{gather*}
\text { (a) }\left|k_{\gamma}(x, y)\right| \leqslant \frac{C_{k_{\gamma}}}{|x-y|^{n-\gamma}}, \quad x \neq y \tag{11}\\
\text { (b) }\left|k_{\gamma}(x, y)-k_{\gamma}\left(x^{\prime}, y\right)\right| \leqslant \frac{C_{k_{\gamma}}\left|x-x^{\prime}\right|^{\varepsilon}}{|x-y|^{n-\gamma+\varepsilon}}, \quad|x-y| \geqslant 2\left|x^{\prime}-x\right| . \tag{12}
\end{gather*}
$$

For k_{γ}, let

$$
K^{\gamma} f(x)=\int_{\Omega} k_{\gamma}(x, y) f(y) d \mu(y), \quad x \in \Omega
$$

Lemma 9. [13], [28]. Let (X, d, μ) be a metric measure space and let $x, y, z \in X$ be such that $2 d(x, y) \leqslant d(x, z)$. Then the following estimate holds:

$$
\left|d(x, z)^{\gamma-n}-d(y, z)^{\gamma-n}\right| \leqslant C \frac{d(x, y)}{d(x, z)^{n-\gamma+1}}
$$

for $0<\gamma<n$, where the positive constant C depends only on n and γ. Consequently conditions (a) and (b) are satisfied for $k_{\gamma}(x, y)=|x-y|^{\gamma-n}$ and $\varepsilon=1$ with the constant $C_{k \gamma}$.

Let $\lambda: \Omega \rightarrow(0,1]$ be a measurable function satisfying the condition $0<\lambda_{-} \leqslant$ $\lambda_{+} \leqslant 1$. We say that a function f on Ω is in the space $H^{\lambda(\cdot)}(\Omega)$ if

$$
[f]_{\lambda(\cdot)}=\sup _{\substack{x, x+h \in \Omega \\ 0<|h| \leqslant 1}} \frac{|f(x+h)-f(x)|}{|h|^{\lambda(x)}}
$$

is finite. In particular, we denote

$$
[f]_{\gamma-\eta / p(\cdot)}:=[f]_{\widetilde{H}_{\gamma, \eta}^{p(\cdot)}(\Omega)} .
$$

Lemma 10. Let $p(\cdot)$ be an exponent on Ω such that $p(\cdot) \in \mathscr{P}^{\log }(\Omega)$. Then there is a positive constant C depending on the log-Hölder continuity constant ℓ for $p(\cdot)$ such that

$$
\frac{1}{C}|h|^{p(x+h)} \leqslant|h|^{p(x)} \leqslant C|h|^{p(x+h)}, \quad|h| \leqslant 1 ; x, x+h \in \Omega .
$$

Proof. Since $p(\cdot) \in \mathscr{P}^{\log }(\Omega)$ we have that for all x and h such that if $x, x+h \in \Omega$, $|h| \leqslant 1$,

$$
|p(x+h)-p(x)| \leqslant \frac{\ell}{-\ln |h|}
$$

holds. Hence,

$$
|h|^{|p(x+h)-p(x)|} \leqslant e^{-\ell}
$$

from which the desired relation follows.

Lemma 11. Let $q(\cdot)$ be an exponent such that $q(\cdot) \in \mathscr{P}(\Omega)$ with appropriate constant ℓ_{1}. Then $\frac{1}{q^{\prime}(\cdot)} \in \mathscr{P}(\Omega)$ with constant $\left(\max \left\{1, \ell_{1}\right\}\right)^{\frac{1}{\left(q_{-}-1\right)^{2}}}$.

Proof. It is enough to observe that for a set $D:=B \cap \Omega, \mu(D) \leqslant 1$, where B is a ball with center in Ω, we have

$$
\mu(D)^{\left(\frac{1}{q^{\prime}}\right)_{-}(D)-\left(\frac{1}{q^{\prime}}\right)_{+}(D)}=\left(\mu(D)^{q_{-}(D)-q_{+}(D)}\right)^{\frac{1}{\left(q_{-}-1\right)^{2}}} \leqslant \ell_{1}^{\frac{1}{\left(q_{-}-1\right)^{2}}} .
$$

Lemma 11 implies the next statement:

LEmmA 12. Let $q(\cdot)$ be an exponent such that $q(\cdot) \in \mathscr{P}(\Omega)$. Then there is a positive constant $\bar{C}_{q(\cdot)}$ such that for all $x \in \Omega$ and $r>0$,

$$
\left\|\chi_{D(x, r)}\right\|_{L^{q^{\prime}(\cdot)}} \leqslant \bar{C}_{q(\cdot)} \mu(D(x, r))^{\frac{1}{q^{\prime}(x)}}
$$

Moreover, the constant $\bar{C}_{q(\cdot)}$ is such that

$$
\sup _{0<\varepsilon<\eta} \bar{C}_{q(\cdot)-\varepsilon}<\infty
$$

for some small positive constant η.
The following statement is a quantitative version of Theorem 4.6 in [20].

Proposition 2. Let $\mu(\Omega)<\infty$ and let μ satisfy (10). Let k_{γ} satisfy (a) and (b) of Definition 3. Let γ and ε be constants such that $0<\varepsilon \leqslant \gamma<n$. Assume that $(p(\cdot), q(\cdot)) \in \widetilde{\boldsymbol{P}}(\Omega), \frac{n}{\gamma}<p_{-} \leqslant p_{+}<\frac{n}{\gamma-\varepsilon}$. If $q(\cdot) \in \mathscr{P}(\Omega)$ and $p(\cdot) \in \mathscr{P}^{\log }(\Omega)$ then there exists a constant $C=C_{k \gamma, n, q(\cdot), p(\cdot), \varepsilon}$ such that

$$
\left[K^{\gamma} f\right]_{\tilde{H}_{r, \eta}^{p(\cdot)}(\Omega)} \leqslant C\|f\|_{L_{q()}^{p(\cdot)}(\Omega)},
$$

where C satisfies the condition

$$
\sup _{0<\lambda<\eta} C_{k_{\gamma}, n, q(\cdot)-\lambda, p(\cdot), \varepsilon}<\infty
$$

with a small positive constant η.

Proof. By conditions (a) and (b) of Definition 3 we find that

$$
\begin{aligned}
\left|K^{\gamma} f(x+h)-K^{\gamma} f(x)\right| \leqslant & \int_{\Omega}\left|k_{\gamma}(x+h, y)-k_{\gamma}(x, y)\right||f(y)| d \mu(y) \\
\leqslant & \int_{D(x, 2|h|)}\left|k_{\gamma}(x+h, y)\right||f(y)| d \mu(y) \\
& +\int_{D(x, 2|h|)}\left|k_{\gamma}(x, y)\right||f(y)| d \mu(y) \\
& +\int_{\Omega \backslash D(x, 2|h|)}\left|k_{\gamma}(x+h, y)-k_{\gamma}(x, y)\right||f(y)| d \mu(y) \\
\leqslant & C_{k_{\gamma}} \int_{D(x, 2|h|)} \frac{|f(y)|}{|x+h-y|^{n-\gamma}} d \mu(y) \\
& +C_{k_{\gamma}} \int_{D(x, 2|h|)} \frac{|f(y)|}{|x-y|^{n-\gamma}} d \mu(y) \\
& +C_{k_{\gamma}}|h|^{\varepsilon} \int_{\Omega \backslash D(x, 2|h|)} \frac{|f(y)|}{|x+h-y|^{n-\gamma+\varepsilon}} d \mu(y) \\
= & I_{1}+I_{2}+I_{3},
\end{aligned}
$$

where $|h|$ is small and $x+h \in \Omega$.
Further, by using the representation $|x+h-y|^{\gamma-n}=\frac{n-\gamma}{1-2^{\gamma-n}} \int_{|x+h-y|}^{2|x+h-y|} t^{\gamma-n-1} d t$, and Fubini's theorem, we see that

$$
I_{1} \leqslant C_{k_{\gamma}, n} \int_{0}^{6|h|} f_{t}(x+h) t^{\gamma-1} d t
$$

where $f_{t}(x):=\frac{1}{t^{n}} \int_{D(x, t)}|f(y)| d \mu(y)$ and the positive constant $C_{k_{\gamma}, n}$ depends only k_{γ}, n.
Applying now the Hölder inequality in the space $L^{q(\cdot)}(\Omega)$, the growth condition for μ, the assumptions $1 / q^{\prime}(\cdot) \in \mathscr{P}(\Omega), p(\cdot) \in \mathscr{P}^{\log }(\Omega)$, and observing that

$$
\frac{1}{c}|h|^{\gamma-n / p(x+h)} \leqslant|h|^{\gamma-n / p(x)} \leqslant c|h|^{\gamma-n / p(x+h)}
$$

for some constant $c>1$, we find that

$$
\begin{aligned}
f_{t}(x+h) & \leqslant C_{q(\cdot)} t^{-n}\left\|\chi_{D(x+h, t)} f\right\|_{L^{q(\cdot)}(\Omega)}\left\|\chi_{D(x+h, t)}\right\|_{L^{q^{\prime}(\cdot)}(\Omega)} \\
& \leqslant C_{q(\cdot)} \bar{C}_{q(\cdot)} t^{-n} \mu(D(x+h, t))^{1 / q^{\prime}(x+h)}\left\|\chi_{D(x+h, t)} f\right\|_{L^{q(\cdot)}(\Omega)} \\
& \leqslant C_{q(\cdot)} \bar{C}_{q(\cdot)} C_{0} t^{-n / q(x+h)}\left\|\chi_{D(x+h, t)} f\right\|_{L^{q(\cdot)}(\Omega)} \\
& =C_{q(\cdot)} \bar{C}_{q(\cdot)} C_{0} t^{-n / p(x+h)} t^{n / p(x+h)-n / q(x+h)}\left\|\chi_{D(x+h, t)} f\right\|_{L^{q(\cdot)}(\Omega)} \\
& \leqslant C_{q(\cdot)} \bar{C}_{q(\cdot)} C_{0}^{2} t^{-n / p(x+h)} \mu(D(x+h, t))^{1 / p(x+h)-1 / q(x+h)}\left\|\chi_{D(x+h, t)} f\right\|_{L^{q(\cdot)}(\Omega)} \\
& \leqslant D\|f\|_{L_{q(\cdot)}^{p(\cdot)}(\Omega)} t^{-n / p(x+h)},
\end{aligned}
$$

where

$$
\begin{equation*}
D=C_{0}^{2} C_{q(\cdot)} \bar{C}_{q(\cdot)} \tag{13}
\end{equation*}
$$

Consequently, since $1 / p(\cdot) \in \mathscr{P}^{\log }(\Omega)$ and $\gamma>\frac{n}{p_{-}}$, we have

$$
\begin{aligned}
I_{1} & \leqslant C_{k_{\gamma}} D \frac{6^{n}}{\gamma-\frac{n}{p-}}\|f\|_{L_{q(\cdot)}^{p(\cdot)}(\Omega)}|h|^{\gamma-n / p(x+h)} \\
& \leqslant C\|f\|_{L_{q \cdot(\cdot)}^{p(\cdot)}(\Omega)}|h|^{\gamma-n / p(x)},
\end{aligned}
$$

where

$$
\begin{equation*}
C=c C_{k_{\gamma}} D \frac{6^{n}}{\gamma-\frac{n}{p_{-}}} \tag{14}
\end{equation*}
$$

Further, similar arguments yield

$$
I_{2} \leqslant C\|f\|_{L_{q(\cdot)}^{p(\cdot)}(\Omega)}|h|^{\gamma-n / p(x)}
$$

To estimate I_{3} we observe that if $|x-y| \geqslant 2|h|$, then $|x-y+h| \geqslant|x-y|-|h| \geqslant$ $|h|$. Therefore

$$
\begin{aligned}
I_{3} & \leqslant C_{k_{\gamma}}|h|^{\varepsilon} \int_{\Omega \backslash D(x, 2|h|)} \frac{|f(y)|}{|x-y+h|^{n-\gamma+\varepsilon}} d \mu(y) \\
& \leqslant C_{k_{\gamma}}|h|^{\varepsilon} \int_{\Omega \backslash D(x, 2|h|)}|f(y)|\left(\int_{|x-y+h|}^{2|x-y+h|} t^{\gamma-n-\varepsilon-1} d t\right) d \mu(y) \\
& \leqslant C_{k_{\gamma}}|h|^{\varepsilon} \int_{|h|}^{\infty} t^{\gamma-n-\varepsilon-1}\left(\int_{D(x+h, t)}|f(y)| d \mu(y)\right) d t \\
& =C_{k_{\gamma}}|h|^{\varepsilon} \int_{|h|}^{\infty} t^{\gamma-\varepsilon-1} f_{t}(x+h) d t .
\end{aligned}
$$

Repeating the arguments used to estimate I_{1} we see that

$$
f_{t}(x+h) \leqslant D t^{-n / p(x+h)}\|f\|_{L_{q(\cdot)}^{p(\cdot)}(\Omega)} .
$$

Since we assumed that $\gamma<\varepsilon+n / p_{+}$and $1 / p(\cdot) \in \mathscr{P}^{\log }(\Omega)$, we obtain

$$
\begin{aligned}
I_{3} & \leqslant C\|f\|_{L_{q(\cdot)}^{p(\cdot)}(\Omega)}|h|^{\varepsilon} \int_{|h|}^{\infty} t^{\gamma-n / p(x+h)-\varepsilon-1} d t \\
& \leqslant C\|f\|_{L_{q(\cdot)}^{p(\cdot)}(\Omega)}|h|^{\gamma-n / p(x)},
\end{aligned}
$$

where $C \equiv C_{k_{\gamma}, n, q(\cdot), p(\cdot), \varepsilon}$ is a positive constant.
Combining the estimates for I_{1}, I_{2} and I_{3} we finally obtain that

$$
\left\|K^{\gamma} f\right\|_{H^{\gamma-\frac{n}{p(\cdot)}(\Omega)}} \leqslant C_{k \gamma, n, q(\cdot), p(\cdot), \varepsilon}\|f\|_{L_{q(\cdot)}^{p(\cdot)}(\Omega)},
$$

where the constant $C_{k \gamma, n, q(\cdot), p(\cdot), \varepsilon}$ satisfies

$$
\sup _{0<c<\sigma} C_{k \gamma, n, q(\cdot)-c, p(\cdot), \varepsilon}<\infty
$$

for some small positive constant σ.
Finally, taking into account Proposition 2 and Lemma 9 we have
THEOREM 2. Let Ω be an open set in \mathbb{R}^{d} and let μ be a Borel measure on Ω satisfying condition (10). Suppose that $\mu(\Omega)<\infty$. Further, let $p(\cdot)$ and $q(\cdot)$ be variable exponents on Ω such that $(p(\cdot), q(\cdot)) \in \widetilde{\boldsymbol{P}}(\Omega)$. Assume that $\varphi(\cdot) \in A_{q(\cdot)}$. Suppose that γ and ε are positive constants such that $\frac{n}{\gamma}<p_{-} \leqslant p_{+}<\frac{n}{\gamma-\varepsilon}$. Let $q(\cdot) \in$ $\mathscr{P}(\Omega)$ and let $p(\cdot) \in \mathscr{P}^{\log }(\Omega)$. Then the operator J_{Ω}^{γ} is bounded from $L_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(\Omega)$ to $\widetilde{H}_{\gamma, n}^{p(\cdot)}(\Omega)$, i.e. there is a positive constant c_{0} such that for all $f \in L_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(\Omega)$,

$$
\begin{equation*}
\left[J_{\Omega}^{\gamma} f\right]_{\tilde{H}_{\gamma, n}^{p(\cdot)}(\Omega)} \leqslant c_{0}\|f\|_{L_{q}^{p(\cdot), \varphi(\cdot)}(\Omega)} \tag{15}
\end{equation*}
$$

DEFInition 4. Let $\Omega \subset \mathbb{R}^{d}$ be an open set and let n be a positive constant. We say that a Borel measure μ defined on Ω satisfies condition $A(n, \Omega)$ (or $\mu \in A(n, \Omega)$) if there is a positive constant c_{0} such that for all $x \in \Omega$ and $R \in(0, \operatorname{diam} \Omega)$,

$$
\begin{equation*}
\frac{1}{c_{0}} R^{n} \leqslant \mu(D(x, R)) \leqslant c_{0} R^{n} \tag{16}
\end{equation*}
$$

For example, the induced Lebesgue measure $|\cdot|_{d}$ on $\Omega \subset \mathbb{R}^{d}$ satisfying the condition $|D(x, R)|_{d} \geqslant C_{0} R^{d}$ belongs to the class $A(d, \Omega)$; arc-length measure v on a regular curve Γ belongs to $A(1, \Gamma)$; the Haar measure on a nilpotent Lie groups G belongs to $A(Q, G)$, where Q is the homogeneous dimension of G.

It is easy to see that any measure μ satisfying condition (16) is doubling.

Corollary 1. Let μ be a finite measure on a bounded open set $\Omega \subset \mathbb{R}^{d}$ satisfying the condition $A(n, \Omega)$. Suppose that $p(\cdot)$ and $q(\cdot)$ are variable exponents on Ω such that $(p(\cdot), q(\cdot)) \in \widetilde{\boldsymbol{P}}(\Omega)$. Assume that $\varphi(\cdot) \in \mathscr{A}_{q(\cdot)}$. Let γ and ε be positive constants such that $\frac{n}{\gamma}<p_{-} \leqslant p_{+}<\frac{n}{\gamma-\varepsilon}$. Then the operator J_{Ω}^{γ} is bounded from $L_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(\Omega)$ to $\widetilde{H}_{\gamma, n}^{p(\cdot)}(\Omega)$, i.e. there is a positive constant c_{0} such that for all $f \in L_{q(\cdot), \varphi(\cdot)}^{p(\cdot)}(\Omega),(15)$ holds.

Acknowledgements. The second and third authors were supported by Batumi Shota Rustaveli State University Grant (Resolution No. 06-01/04, 31.01.2023).

The authors are grateful to the reviewer for helpful remarks and suggestions.

REFERENCES

[1] A. Almeida and S. Samko, Fractional and hypersingular operators in variable exponent spaces on metric measure spaces, Mediterr. J. Math., 353 (2009), 489-496.
[2] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogénes, Lecture Notes in Math., vol. 242, Springer-Verlag, Berlin, 1971.
[3] D. V. Cruz-Uribe and A. FiorenZa, Variable Lebesgue spaces, foundations and harmonic analysis, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg (2013).
[4] L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k, p(\cdot)}$, Math. Nachr. 268 31-43 (2004).
[5] L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev Spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg (2011).
[6] D. E. Edmunds, V. Kokilashvili and A. Meskhi, Sobolev-type inequalities for potentials in grand variable exponent Lebesgue spaces, Math. Nachr. 292, no. 10, 2174-2188 (2019).
[7] D. E. Edmunds, V. Kokilashvili and A. Meskit, Embeddings in grand variable exponent function spaces, Results Math. 76 (2021), no. 3, Paper No. 137, 27 pp, doi:10.1007/s00025-021-01450-1.
[8] D. E. Edmunds, D. Makharadze and A. Meskhi, Embeddings and regularity of potentials in grand variable exponent function spaces, Trans. A. Razmadze Math. Inst. 177 (2023), issue 2, 309314.
[9] D. E. Edmunds, J. Rákosník, Sobolev embeddings with variable exponent II, Math. Nachr. 246/247, 53-67 (2002).
[10] X. FAN, J. Shen, D. Zhao, Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl. 262, 749-760 (2001).
[11] A. Fiorenza, B. Gupta and P. Jain, The maximal theorem for weighted grand Lebesgue spaces, Studia Math. 188 (2008), no. 2, 123-133.
[12] A. Fiorenza, Duality and reflexivity in grand lebesgue spaces, Collect. Math. 51 (2000), no. 2, 131-148.
[13] J. García-Cuerva and A. E. Gatto, Boundedness properties of fractional integral operators associated to non-doubling measures, Studia Math. 162 (2004), 245-261.
[14] T. Greco, L. Iwaniec and C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math. 92 (1997), 249-258.
[15] P. HajŁasz, Sobolev spaces on arbitrary metric spaces, Potential Anal. 5, 403-415 (1996).
[16] P. Hajeasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. vol. 688, Providence, RI (2000).
[17] M. Izuki, E. Nakai and Y. Sawano, Function spaces with variable exponent - An Introduction, Scientiae Mathematicae Japonicae 77, no. 2, 187-315 (2014).
[18] T. Iwaniec and C. Sbordone, On the integrability of the jacobian under minimal hypotheses, Arch. Rational Mech. Anal. 119 (1992), 129-143.
[19] V. Kokilashvili and A. Meskhi, Maximal and Calderón-Zygmund operators in grand variable exponent Lebesgue spaces, Georgian Math. J., 21 (4) (2014), 447-461.
[20] V. Kokilashvili and A. Meskhi, Maximal functions and potentials in variable exponent Morrey spaces with non-doubling measure, Complex Var. Ell. Eq. 55 (2010), no. 8, 923-936.
[21] V. Kokilashvili and A. Meskhi, Boundedness of operators of Harmonic Analysis in grand variable exponent Morrey spaces, Mediterr. J. Math. 20, 71 (2023), https://doi.org/10.1007/s00009-023-02267-8.
[22] V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko, Integral operators in non-standard function spaces: Variable exponent Lebesgue and amalgam spaces, vol. 1, Birkäuser/Springer, Heidelberg, (2016).
[23] V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko, Integral operators in nonstandard function spaces: Variable exponent Hölder, Morrey-Campanato and grand spaces, vol. 2, Birkäuser/Springer, Heidelberg (2016).
[24] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J., 41 (116) (1991), 592-618.
[25] A. Meskhi, Maximal functions, potentials and singular integrals in grand Morrey spaces, Complex Var. Elliptic Equ., 56 (10-11) (2011), 1003-1019.
[26] H. Rafeiro, A note on boundedness of operators in grand grand Morrey spaces, In: Advances in harmonic analysis and operator theory, vol. 229 of Oper. Theory Adv. Appl., pages 349-356. Birkhäuser/Springer Basel AG, Basel, 2013.
[27] Y. Sawano, G. Di Fazio, D. I. Hakim, Morrey Spaces Introduction and Applications to Integral Operators and PDE's, volumes I, II, CRC Press, Taylor and Francis, 2020.
[28] Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.), 21 (6) (2005), 1535-1544.

[^0]: Mathematics subject classification (2020): 26A33, 42B20, 42B25, 42B35.
 Keywords and phrases: Grand variable exponent Hajłasz-Morrey-Sobolev spaces, variable exponent Hölder spaces, quasi-metric measure spaces, embeddings, fractional integral operator.

 * Corresponding author.

