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COMPLETE MONOTONICITY OF THE REMAINDER OF AN
ASYMPTOTIC EXPANSION OF THE GENERALIZED GURLAND’S RATIO

ZHEN-HANG YANG AND JING-FENG TIAN*

(Communicated by S. Varosanec)

Abstract. Let a,b,c,d € R with a+b=c+d =2r+1. Then

Fx+a)T(x+b) i Boy (61) — B (62)
Tato)Tatd) S k(2k—1)(x+r)*!

where (61,6,) = (la—b|,|c—d|) =(1—261,1—26,). When 0 < &, < §; < 1, the function

as x — oo,

X’—>(*l)m lnr(x+a) i Bok ( 91 (92)

Fx+c)l k(2k—1) (x+r)*!

for m € N is completely monotonic on (—r,e0). This yields some known and new results.

1. Introduction

The ratio of gamma functions

__rwry
ToD = E 2?7

is called Gurland’s ratio by Merkle in [16] due to Gurland’s paper [12]. In probability
theory and their applications, the ratio T (x,x+2v) for x,x+2v > 0 is in connection
with the variance of an estimator involving gamma distribution; while the ratios

13 1/p)T(3 15\ T(5/pr(
(p p) (r/fz)/ (2/19) ond T(_’_) _T(5/p) (2/19)
p) pp I'(3/p)

called Mallat ratio [14] and Kurtosis ratio [35], respectively, are used to estimate the
shape parameter p in a generalized Gaussian density. Gurland’s ratio has attracted
the attention of some scholars on this account, and some of interesting results were
found, including inequalities [4], [10], [13], [15], [16], [19], [22], [25], (complete)
monotonicity [6], [16], [20], [29], [30], [32], [33], [34], asymptotic expansions [4], [8],
[24]1, [32].
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For a,b,c,d € R, let us consider the following ratio of gamma functions

I'x+a)T'(x+D)

/. 1T/ > —mi 7b7 7d .
Tt O (td) X min{a,b,c,d}

X = Qa,b;c,d (x) =

Clearly, Qg p:cq (x) is a generalization of Gurland’s ratio T (x+a,x+b), and we call it
as generalized Gurland’s ratio. In 1986, Bustoz and Ismail [6, Theorem 6] showed that
the function

I'x)T'(x+a+0)

x»—>p(x;a7b) = l"(x_|_a)r(x+b)

= Q0.a+biab (X)
for a,b > 0 is logarithmically completely monotonic on (0,e0) (see also [16, Lemma
1], [33, Corollary 3.6]). In 2017, Yang and Zheng [33, Corollary 4.9] proved that the
function Qg p:c 4 (x) is logarithmically completely monotonic on (—min{a,b,c,d} o)
ifand only if a+b <c+d and min{a,b} <min{c,d}, and InQ, p.c 4 (x) is completely
monotonic on (—min{a,b,c,d},e) if and only if a+b = c+d and min{a,b} <
min{c,d}. In 2019, the authors further proved in [34, Theorem 1] that, for fixed
p,q,hs,u,v € R with (p—¢q)(r—s)(u—v)#0 and p = min(p,q,r,s) + min(u,v),
the function

In Opt+ugtviptvgru (x) _ In Oy ustvirtvstu (x)

(p—aq)(u—v) (r—s)(u—v)

is completely monotonic on (—p,e) if and only if p+¢ < r+s and min(p,q) <
min(r,s).

The aim of this paper is to further investigate the asymptotic expansion of function
Qu p:c.d (x), and the complete monotonicity of the remainder of the asymptotic expan-
sion of InQ, p:c.q4 (x). To state our results, we need two basic knowledge. The first is
the Bernoulli polynomials B, (x) defined by

te?
-1

00 M
S B.(x) 5, ] <2m, (1)
n=0

n!

which satisfy the following properties listed in [1, (23.1.8), (23.1.6), (23.2.5), (23.1.14),
(23.1.2D)1]:

PROPERTY 1. B, (1—x)=(—1)"B,(x);

PROPERTY 2. B, (x+1)—B,(x) =nx""!, n € Ny = NU{0};

PROPERTY 3. B) (x) =nB,_i(x) and n [} B, (t)dt = B,(x) —B,(a), n € N;
PROPERTY 4. (—1)""' By, 1 (x) >0, x€(0,1/2), neN;

PROPERTY 5. B, (1/2)=—(1-2")B,, n€Ny.
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The second is (logarithmically) completely monotonic functions. A function f is
said to be completely monotonic on an interval / if f has derivatives of all orders on /

and satisfies
(-1 P x) >0

for all k € Ny on I (see [3], [26]). A positive function f is called logarithmically com-
pletely monotonic on an interval [ if f has derivatives of all orders on / and satisfies

(—D)f[inf (x)]®

for all k € N on I (see [2], [21]). It was pointed out in [21] that if f is logarithmically
completely monotonic on / then f is completely monotonic on /, and not vice versa.

The famous Bernstein Theorem [26, p. 161, Theorem 12b] tells us that the function
f(x) is completely monotonic on (0,°) if and only if

@)= [ e,

where u (¢) is nondecreasing and the integral converges for 0 < x < oo.
Now we state our main result as follows.

THEOREM 1. Let a,b,c,d € R with a+b=c+d=2r+1 and let 6 =
= |c —d|. The following statements are valid.

(i) It holds that
I'x+a)T'(x+D) cosh (61#/2) —cosh (8:1/2) (i
nF(x+c)F(x+d) _/0 tsinh (¢/2) ¢ i @
o B (61) — B (62)
~ — OO’ 3
,Z‘lk(Zk— 1) (x+r)*! “r ©)
where 6y = (1—0) /2, k=1,2.
(ii) Let
Dm(x):mr(H“)r i Boy (61) — By (62)

Fx+c)l k(2k—1) (x+r)* "

If 0 < 6 < 6 < 1, then for any integer m € N, the function x — (—1)" Dy, (x) is
completely monotonic on (—r,). Consequently, the inequality

|Bom+2(61) — Bayms2(62)]
(m—+1)(2m+1) (x4 r)*" !

[Din ()] < )

holds for x > —r, where the upper bound is sharp.

REMARK 1. Using Property 3 we see that

6,
Boy (61) — Boy (62) — —Zk/e Bo_1 (6)d6.
1
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If 0< 8 <6 <1 then 0< 6; < 6, <1/2. By Property 4 we find that
Boi (01) — By (6,) < (>)0if k is odd (even),

which shows that the series given in (3) is alternate if 0 < 0, < 6; < 1.

2. Consequences and remarks

Let  =0. Then 6, =1/2 and c=d = (a+Db) /2 =r+1/2. Using Theorem 1
and replacing (0,60) with (8;,0;) we have

COROLLARY 1. Let a,p € R with 6 =|a—b|#0, r=(a+b—1)/2.
(i) The following integral representation and asymptotic expansion

N I'(x+a)T (x+b) /°° COSh(&/Z)_le’(”’)’dt
T(x+(a+b)/2)> Jo  tsinh(r/2)
N i Bu(0)—Bu(1/2)

Sk (2k—1) (x4 r) !

holds, where 6 = (1 —98) /2.
(ii) Let

Fx+a)T(x+b) i By (6) — B (1/2)

C(x+(a+b)/2)? S kk—1)(x+r)*1

Dy, (x;a,b) =1n

If 0 < 6 < 1, then the function x — (—1)" Dy, (x;a,b) for m € N is completely mono-
tonic on (—r,).

REMARK 2. Corollary 1 was established in [24, Theorems 1 and 2]. This shows
that the Theorem 1 is a generalization of [24, Theorems 1 and 2].

Assume that b > a and d > c¢. From the conditions that a+b=c-+d and & < §;
it is deduced that b > d > ¢ > a. Note that

1 i F(x+a)F(x+b)__lnF(x+c)—1nF(x+a)+lnl"(x—|—b)—lnl"(x+d)

c—a nF(x+c)F(x+d) c—a b—d

Taking ¢ — a (which implies that d — b) gives

. 1 I'x+a)T(x+b)
lg}zc—alnr(x—i—c)l"(x—i—d) = vtb)—ylta).

Since
0 — & _ b—a—d+c:2 and
c—a c—a c—a 2 c—a
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we have
. cosh(017/2) —cosh(8t/2) 61 —6 . cosh(8;7/2)—cosh(6t/2)
lim = lim
c—a c—a c—a §—o )
= tsinh (0;¢/2),

lim B (01) — By (62) _6-6 lim B (01) — By (62)
c—a c—a c—a 6,-6 0, — 6,
= —2kBs—1(61),

where the last equality holds due to Property 3. Using Theorem 1 and replacing (5, 0)
with (61, 0,) we have

COROLLARY 2. Let a,b € R with 6 =b—a >0, r=(a+b—1)/2 and 6 =
(1—=90)/2. (i) It holds that

V(x+b)—y(x+a)= /0 72?;}1(2722)) (11 gy
N 2 —2Bo;1(0) 4s X s o0,

(2k—1) (x+r)*!

(ii) Let
. - 2By-1(0)
D;, (x;b,a) =y (x+Db)— w(x+a)

( )=w( )— kg (2k—1) (x4 1)1
If 0 < 8 < 1, then the function x — (—1)" D}, (x;b,a) for m € N is completely mono-
tonic on (—r,).

REMARK 3. Let

InT"(x+b)—InT" (x+a) & Bori1(0)

b-a T S e ) (e

Ry (x;b,a) =

In 2020, Yang, Tian and Ha [31] proved that, under the conditions as in Corollary 2, the
function x — (—1)" Ry, (x; b,a) is completely monotonic on (—r,). Now we present a
simple proof of Theorem 2 in [31] using Corollary 2. In fact, since limy_,.. Ry, (x;0,a) =
0, it suffices to prove that (—1)" ™' R (x;b,a) is completely monotonic on (—r,o).
Differentiation yields

i 2By 41(0)

SR, (x;b,a) =y (x+b)—y(x+a)— .
(x;b,a) =y (x+b)—y( E R )t )P

Since 2B; (0) =26 — 1 = —3§, we have

i 2B2k+1 (9) _ i 2B2k+1 (6)
x+r :1 2k+1 x+r)2k+l P (2k+l)(x+r)2k+l7
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and then, 8R!, (x;b,a) can be written as

< 2Boi11(0)
SR, (x;b,a) =y (x+b)—y(x+a)+
( ) =w( )=y ( ,;Z)(Zk—i—l)(x—i-r)zkﬂ

By Corollary 2 the required complete monotonicity follows.

:D;:H-l (X;b7a>'

We continue to observe Corollary 2. Evidently, x +— (—1)"lim,_, D%, (x;b,a) /]
for m € N is also completely monotonic on (—r,e). Applying L’Hospital rule with
Properties 1 and 3, we have

lim V(x+b)—yw(x+a)

lim p— =y (x+a),
hmM: lim 3216*71(9):_1(2](_1)3 1
b—a O o—1/2 1—20 2 #*=2\2 )
Then i
D% (x:b, mo By o (1/2
VRS ST
b—a a =1 (x+a—1/2)

Taking a = 1/2 gives the following corollary.

COROLLARY 3. Let

D! (x) =y’ <x+ %) -

The function x — (—1)" D}, (x) for m € N is completely monotonic on (0,).

'"21 sz(l/Z).

x2k+1

REMARK 4. Let
1 (12172 By
8m (.x) = lnr <x+ E) _xln.x+.x— —ln 27‘[ + Z m
Yang [28, Theorem 4] proved that the function x — (—1)""'g, (x) is completely
monotonic on (0,e). Now we give a concise proof of this assertion. In fact, differ-
entiation yields

1 m (1 _2172k) Boi
/ 2
gm(x)ZlV(x—FE)—lnx— T,

=1
1\ & (1-2"%)By
gn(X) =y (x—i— 5) +Y ()ch) Dy (%),
k=0

where the last equality holds due to By (1/2) = — (1 —2!72%) B, derived from Prop-

"Dk (x) for m € Ny is completely

erty 5. By Corollary 3 we see that x +— (—1)
monotonic on (0,e), and so is (—1)""! g,’,’1( ) on (0,%0). In view of limy_co gm (x) =
lim, ... g, (x) = 0, we find that x — (—1)""" g, (x) is also completely monotonic on

(0,0).
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Let (a,b) = (p,1 —p) and (c,d) = (q,1 —q) with p # ¢ in Theorem 1. Then
r=0. By Theorem 1 we obtain the following corollary.

COROLLARY 4. Let p,q € R with p # q and let 6; = |1—2p|, 6 =|1—2q]|.
The following statements are valid.

(i) It holds that
lnF(x+p)F (x+1-p / cosh (8;7/2) —cosh(8,1/2) —
IF'x+¢)T(x+1—g¢g tsmh(t/Z)
By (p) — B (q)
2 2k—l — T A5 X — oo,

(ii) Let

I'(x 'x+1- Z B —B

If 0 < p < q<1/2, then for any integer m € N, the function x — (—1)" Ay, (x) is
completely monotonic on (0,). Consequently, the inequality

|B2m+2 (p) _B2m+2 (q)|
Ap
An ()] < Ty @ e

holds for x > 0, where the upper bound is sharp.

A transformation formula of asymptotic expansions was established in [7, Lemma
3] (see also [8, Lemma 3.5]), which states that

= =
exp<2x7>~2)7 as x — oo,

n=1 n=0

with vo = 1 and

1 n
= — Ekukvn,k forn > 1.
k=1

Writing the asymptotic expansion (3) as

where
B2, (01) — B2, (62)

n@2n—1)(x+r)*!

Uyp—1 = and Uy = O,

then employing the above transformation formula of asymptotic expansions, we obtain
another asymptotic expansion of Qy p.c 4 (X).
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COROLLARY 5. Let a,b,c,d € R with a+b=c+d=2r+1 andlet § =|a—b|,
0 =|c—d|. Then as x — o,

Fx+a)T(x+b) &

Qa,b;c‘,d ()C) = l—*(x+c)r(x+d) ~ n;() (X+ ,,-)n
with vo =1 and
L Len/2)
S @)y 0

where 6y = (1—68)/2, k=1,2.

We close this section with two examples.

EXAMPLE 1. In Corollary 4, taking (p,q) = (0,1/4) gives (8;,8) = (1,1/2).
Then

n Fx)T(x+1) % Bak(0) — By (1/4)

Fx+1/4)0(x+3/4) kg‘l k(2k—Da2k1 8T

and the function
m r(x)r(x+1) m B2k(0)_32k(1/4)
x—(=1) 1HF(X+1/4)F(X+3/4)_IZ‘1 k(2k — 1)x2k—1

is completely monotonic on (0,). Hence, the double inequality

& By (0) — By (1/4) Fx)Cx+1) 2By (0) — By (1/4)
IZI Kk DT R /a3 /4) 2 K (2k — 1) a2k

k=1
holds for x > 0 and m,n € N. In particular, when m = 1, n =2 we have

3 3 . T@retl 33 33

T6x 5120 = "T(xt I/A)T(x13/4) " 16x 5120 ' 20480
for x > 0.

EXAMPLE 2. In Corollary 5, Taking (a,b) = (0,1) and (c¢,d) = (1/2,1/2) gives
r=20, (61,6,) = (1,0) and (6;,6,) = (0,1/2). Then as x — oo,
I'x)T(x+1) N i Vn
Tar12f &
with vo = 1 and
1

Ln1)/2])
Vo = > 7 [B2j(0) — B2 (1/2)] v2js1
=1

1 [(n+1)/2] 1 oy
= > ;(2—2 ") Byjvnaji1,
s
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where the last equality holds due to B»;(0) = By; and By (1/2) = — (1—-2!7%/) By;
A direct computation leads to

B R 5 23 53
T T BT g T 20487 P T 81927 0 T 65536

4’
Noting that T"(x) = T'(x+ 1) /x, we arrive at

Cx4+1) 1? St s 23 88
T(x+1/2) 47 32x  128x2  2048x3 ' 8192¢* ' 65536x°
as X — oo,

REMARK 5. The ratio W (x) =T'(x+1)/I'(x+1/2) is called Wallis® fraction
(see [8]). The asymptotic expansion was derived in [5] (see also [17]). Two nice
asymptotic expansions of Wallis” fraction were presented in [11], [31]. More asymp-
totic expansions of W (x) can be found in [9], [23], [27].

3. Lemmas

To prove the first part of Theorem 1, we need the following special case of Wat-
son’s lemma.

LEMMA 1. ([18, Section 2.3]) Assume that the Laplace transform [;” f (t)e ' dt
converges for all sufficiently large x, and f(t) is infinitely differentiable in a neighbor-
hood of the origin. Then

LEMMA 2. Let 0 <v < u. The function
sinh (v\/f)
sinh (uv/7)

is logarithmically completely monotonic on (0,e0). Therefore, ¢y, (t) is completely
monotonic on (0,eo)

t Guy(t) =

Proof. To prove the required logarithmically complete monotonicity of @, (7), it
suffices to prove that — [In ¢y, ()]" is completely monotonic on (0,c0). It was listed in

[1, Eq. (4.5.68)] that
sinhz 7z
= H n27r2

for z € C. Logarithmic differentiation yields

smh(u\/_) d & u’t . 1
ll U\t ] dt Z‘ ( >_n§‘1n2n2/u2+t'
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‘We thus obtain that

. . /
—[In¢y,, (l)y =—|In 5 +1In Smllf;z\/i) —1In Sml;s;?/;)
it 1 h 1
- _ng‘lt%—ﬂ:znz/v2 +n§‘1t+n2n2/u2
2 (u2 — v2) i n?

u?y? ng‘l (t+ m2n2 /u?) (t + m2n? /v2)

Since 7 — 1/(t+a) (o > 0) is completely monotonic on (0,), so is — [In @y, (¢)]’
on (0,).

As shown in [21], a (strictly) logarithmically completely monotonic function is
also (strictly) completely monotonic. Therefore, the function @, (¢) is completely
monotonic on (0,e). O

LEMMA 3. Let
_cosh(612/2) —cosh(0yt/2)
()= 15inh (1/2) '

If 0< 8, < 8y < 1, then the function t — f (\/1) is completely monotonic on (0,).

Proof. Since

cosh (811/1/2) — cosh (8,1/7/2) ot
- &) \/2/2 _/0 sinh (V\/;) dx,
where 5 5 |
v:v(x)=x71+(l—x)76<07§>, &)

dueto 0< 8 < & <1andxel0,1], f(/7) can be represented as

cosh (811/7/2) —cosh (8,v/1/2) 5 I sinh (v/7)
(8 — &) isinh (V7/2) (01— )/0 sinh (uy/7)
where u =1/2 and v € (0,1/2) is defined by (5). It follows from Lemma 2 that

nd" lsmh (v\/f)] de0
dt"

f(Vi)=(8-&)

i dn B 1
(1 gt (Vi) = G- [ 1 g | S

for ¢ > 0. This completes the proof. [J

LEMMA 4. If g(x) is completely monotonic on the interval I and xo € I, then

(—1"*! lg (x) — i g% () (x—xo)k] >0

!
& K

forall x €I and m € Ny.
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Proof. Tt is known that

Then
m (k) X
(1! [g (-3 &) (X—xo)ﬂ
- / 1" g (1) —(x;vt—)m dt >0

for all x € I, which completes the proof. [l

The following lemma is crucial to prove the second part of Theorem 1.

LEMMA 5. For m € N, let

cosh (87/2) — cosh (6t /2) 5 i By (0 B2k(92)t2k72 ©)

I () = tsinh(r/2) k=1 2k): |

where Oy = (1—0;) /2, k=1,2. If 0< 8, < 8 < 1, then (—1)"Jy () > 0 for t > 0.

Proof. We first show that

where g () = f (/). Using the definition of Bernoulli polynomials (1) yields

cosh(8/2) 1692402 1 1ol 4 1ol1-00/2

tsinh(1/2) ¢ el2—e12 12 e —1
Z By ((14+8)/2)+B,((1-8)/2)
:nzOB((+)/>;B(( )/2) n2

By Property 1 it is easy to see that
148 ifn=2m+1,

0
1-8
B (T) B (T) = 2B, (—1;5) itn=2m,

which yields

cosh(81/2) i 2By, ((1 _6)/2)t2m72
tsinh(1/2) &, (2m)! '
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This together with By (x) =1 gives
cosh (8;7/2) —cosh (8,1 /2)
tsinh (t /2)

_ 4 2 Bow (( 51)/2()2;")B!2m((1_62)/2)t2m—2

f@) =

Bii42 (01) — Baiy2 (02) o
=2 7
2 2k+2)! ! ™

for |¢| < 27. We thus obtain the Taylor series of the function g(r) = f (/) about
t=0:

gt)y=r (Vi )—2232k+2 9;k+123§k+2(92>fk,

which converges for 0 <t < 47”. Noting that

i By (61) — By (92) _ 2 = By (61) — By (92)tk
] 2k)! =l (2k+2)! 7

we have

By using Lemma 3, we find that g (1) = f(1/7) is completely monotonic on (0,o).
It then follows from Lemma 4 that (—1)"J, (\/f) > 0 for r > 0, which implies that
(—=1)"Ju (r) > 0 for r > 0. This completes the proof. [J

4. Proof of Theorem 1

We are in a position to prove Theorem 1.

Proof. (i) Using the integral representation of InT"(x) [1, p.258, (6.1.50)]

1nr(x):/0°° ((x—l)e_t—%> / £ (x>0,

we get
lnF(x+a)+lnF(x+b)—lnF(x+c)—lnF(x+d):/ n (x,1)dt
0
where |
n (.X,l) = ; [5 (x—|—a,t)+§ (X+b,t) _5 (.X—FC,[)—é (X+d,t)] :
An easy verification gives

P + e—bt _e e—dt

n (XJ) = t(l _ eft) e_tx7




COMPLETE MONOTONICITY OF THE GENERALIZED GURLAND’S RATIO 243

and then,

I'(x+
1 x+rtdt
TG+l (x+d) / )

where
ﬂe—at +e—bt e e—dt

flo)=e (l—e

Clearly, f(¢) can be written as

e(bfu)t/2 _|_e(a7h)t/2 _ e(dfc)t/2 _ e(cfd)t/z

£ = (@72 —eP2)
_cosh(812/2) —cosh(0yt/2)
B tsinh (1/2) ’

On the other hand, from the Taylor series of f(¢) at + = 0 proved in (7) we find that
F@+1(0) =0 and

) B f(2n) (0) B B2 (601) — Bopt2 (62)
707 (0) = (2n)! o = (2n) 1222242 (én+2§!+2 h

B2y 12(61) — Bopy2(6:)
B (n+1)2n+1)

By Lemma 1, we get that

" S fO0) & Byua(61) — B2 (6:)
/f i ~ nzox+r2"+1 ,,zz)(n—l—l)(2n+l)(x+r)2n+l

as x — oo, which proves part one of this theorem.
(ii) Firstly, we establish the integral representation of D,, (x). By the integral

representation (2) and
1 1 °°
—= 7/ " lear,
X (n—=1)!Jo

cosh (812/2) —cosh(8:1/2) _(\y
Dy, (x) = /0 LS (1/2) e~ gy

B (61) =By (62) 1 © 2k—2 —(xtr)
2 K(2k—1) (2k—2)!/o e T

_/ J x+rtdt

where J,, () is defied by (6). Then

we immediately get
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Secondly, from Lemma 5 and Bernstein Theorem it follows that x +— (—1)" D, (x) is
completely monotonic on (—r,eo).

Finally, we prove inequality (4). If m is even, then from the inequalities D,, (x) >
0, Dy11 (x) <0 for x > —r and the relation

Bomy2(01) — Boni2 (62)
(m+1)(2m+1) (x+r)*" !

D11 (x) =D (x) -

it is deduced that

Bopmy2(01) — Bany2 (62)
(m+1)(2m+1) (x+ r)*" !

0<Dy(x) < forx> —r. (8)

If m is odd, then from the inequalities Dy, (x) < 0, D;,+1 (x) > 0 it is obtained that

Bom+2(01) — Boyi2(62)
(m+1)2m+1)(x+ r)2m+1

< Dy (x) <0 forx > —r. 9)

Inequalities (8) and (9) imply (4). The limit relation

_ |Bams2(61) — Boyy2 (62)]
B (m+1)2m+1)

lim [(x+ P2 D, (%)

X—00

implies that the upper bound given in (4) is sharp, which completes the proof. [

5. Concluding remarks

In this paper, we established an asymptotic expansion of In Qg .. 4 (x) and showed
that the remainder of this expansion has complete monotonicity (Theorem 1). From
Corollaries 1-3 and Remarks 2—4 listed in Section 2 we see that certain known results
are consequences of Theorem 1. As far as method and technique are concerned, Lemma
2 is refreshing. By means of this lemma, the proof of Theorem 2 in [31] can be greatly
simplified.

Moreover, it should be noted that, in addition to the asymptotic expansion de-
scribed in (3), there is another class of asymptotic expansion of Q p:c 4 (x) in the form
of hypergeometric series, which first appeared in [25]. In fact, using the Gaussian for-
mula for the hypergeometric function (see [, p. 556, (15.1.20)])

I'e)T(c—a— — (a), (b
% = 2F (a,bic;1) :k;% (—c ¢ No,Re(c—a—b)>0),
where (a), =1 for a#0 and (a), =a(a+1)---(a+k—1) for k> 1, we obtain two

new asymptotic expansions of Q4.4 (x) that, for a,b,c,d € R with a+b=c+d,

CataTetd) o s o b-d)
I'x+c)T(x+d) 2hi(b=eb—d; +b’1)_k§6 k!(;"_b)k .
Ca+a)l+b) oy (a=ola—d),
T(x+c)T(x+d) 2Fi(a—ca—dixt ’l)_kg() k!(;"‘a)k "
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which converge only if x > —a and x > —b, respectively.

Assume that b>a and d >c. If b—a>d—c then a <c, b > d, and then
b>d>c>a;lf b—a<d—cthena>c, b<d,andthen d >b > a > c. Since
1/(x+ o) is completely monotonic in x, so are 1/ (x+ ), in x for k > 1. Then the
following theorem is immediate.

THEOREM 2. Let a,b,c,d € R with a+b=c+d. If b—a>d—c >0, then the
function
T(x+a)T(x+b) "S(b—c) (b—a),

Yo O F T v d) & K(x+b)

is completely monotonic on (—a,e).

Finally, Qg p:c.4 (x) can also be represented in the form of infinite product. Using
Euler’s formula for the gamma function [1, p. 255, (6.1.2)]

n'n®

I'(z) = lim (z#0,—1,-2,...),
n—ee (Z)n+1
we have that, for a,b,c,d € R with a+b=c—+d,

Pa+a)lr+b) (e (ot d)ey o (ktxto) (ktx+d)
Tx+o)T(x+d) k== (x+a), (x+b)y, 1o k+x+a)(k+x+b)

(10)

THEOREM 3. Let a,b,c,d €c R witha+b=c+d.Ifb—a>d—c >0, then the
function

T(x+a)T( ’il (k4+x+c)(k+x+d)

En(x)=1
x> En (%) nl"(x—i—c) (k+x+a)(k+x+Db)

is completely monotonic on (—a,eo).

Proof. By (10) we see that

w . (ktxtc)(k+x+d)
B Zln(k+x+a)(k+x+b)'

k=m

Differentiation yields

where
1 1 1 1

= + — _ .
¢0) y+a y+b y+c y+d
Since a+b=c+d and b—a>d—c>0,wehave b >d > c > a. Then ¢ (y) can be

written as
(b—c)(c—a) (b—c)(c—a)
(y+a)y+e)(y+d)  (y+b)(y+c)(y+d)’

o(y) =
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which is clearly completely monotonic in y, so is ¢ (x+k) in x. It then follows

that

—E! (x) is completely monotonic on (—a,), and then, so is E, (x) due to

limy o Epy (x) =0. [
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