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Abstract. Let a,b,c,d ∈ R with a+b = c+d = 2r +1 . Then

ln
Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

∼

∞

∑
k=1

B2k (θ1)−B2k (θ2)

k (2k−1) (x+ r)2k−1 as x → ∞,

where (δ1,δ2) = (|a−b| , |c−d|) = (1−2θ1,1−2θ2) . When 0 � δ2 < δ1 � 1 , the function

x �→ (−1)m
[
ln

Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

−
m

∑
k=1

B2k (θ1)−B2k (θ2)

k (2k−1) (x+ r)2k−1

]

for m ∈ N is completely monotonic on (−r,∞) . This yields some known and new results.

1. Introduction

The ratio of gamma functions

T (x,y) =
Γ(x)Γ(y)

Γ((x+ y)/2)2 x,y > 0,

is called Gurland’s ratio by Merkle in [16] due to Gurland’s paper [12]. In probability
theory and their applications, the ratio T (x,x+2v) for x,x+ 2v > 0 is in connection
with the variance of an estimator involving gamma distribution; while the ratios

T

(
1
p
,
3
p

)
=

Γ(1/p)Γ(3/p)

Γ(2/p)2
and T

(
1
p
,
5
p

)
=

Γ(5/p)Γ(1/p)

Γ(3/p)2
for p > 0,

called Mallat ratio [14] and Kurtosis ratio [35], respectively, are used to estimate the
shape parameter p̂ in a generalized Gaussian density. Gurland’s ratio has attracted
the attention of some scholars on this account, and some of interesting results were
found, including inequalities [4], [10], [13], [15], [16], [19], [22], [25], (complete)
monotonicity [6], [16], [20], [29], [30], [32], [33], [34], asymptotic expansions [4], [8],
[24], [32].
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For a,b,c,d ∈ R , let us consider the following ratio of gamma functions

x �→ Qa,b;c,d (x) =
Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

, x > −min{a,b,c,d} .

Clearly, Qa,b;c,d (x) is a generalization of Gurland’s ratio T (x+a,x+b), and we call it
as generalized Gurland’s ratio. In 1986, Bustoz and Ismail [6, Theorem 6] showed that
the function

x �→ p(x;a,b) =
Γ(x)Γ(x+a+b)
Γ(x+a)Γ(x+b)

= Q0,a+b;a,b (x)

for a,b � 0 is logarithmically completely monotonic on (0,∞) (see also [16, Lemma
1], [33, Corollary 3.6]). In 2017, Yang and Zheng [33, Corollary 4.9] proved that the
function Qa,b;c,d (x) is logarithmically completely monotonic on (−min{a,b,c,d} ,∞)
if and only if a+b� c+d and min{a,b}� min{c,d} , and lnQa,b;c,d (x) is completely
monotonic on (−min{a,b,c,d} ,∞) if and only if a + b = c + d and min{a,b} �
min{c,d} . In 2019, the authors further proved in [34, Theorem 1] that, for fixed
p,q,r,s,u,v ∈ R with (p−q)(r− s) (u− v) �= 0 and ρ = min(p,q,r,s) + min(u,v) ,
the function

x �→ lnQp+u,q+v;p+v,q+u (x)
(p−q)(u− v)

− lnQr+u,s+v;r+v,s+u (x)
(r− s) (u− v)

is completely monotonic on (−ρ ,∞) if and only if p + q � r + s and min(p,q) �
min(r,s) .

The aim of this paper is to further investigate the asymptotic expansion of function
Qa,b;c,d (x) , and the complete monotonicity of the remainder of the asymptotic expan-
sion of lnQa,b;c,d (x) . To state our results, we need two basic knowledge. The first is
the Bernoulli polynomials Bn (x) defined by

text

et −1
=

∞

∑
n=0

Bn (x)
tn

n!
, |t| < 2π , (1)

which satisfy the following properties listed in [1, (23.1.8), (23.1.6), (23.2.5), (23.1.14),
(23.1.21)]:

PROPERTY 1. Bn (1− x) = (−1)n Bn (x) ;

PROPERTY 2. Bn (x+1)−Bn (x) = nxn−1 , n ∈ N0 = N∪{0} ;

PROPERTY 3. B′
n (x) = nBn−1 (x) and n

∫ x
a Bn−1 (t)dt = Bn (x)−Bn (a) , n ∈ N ;

PROPERTY 4. (−1)n+1 B2n+1 (x) > 0, x ∈ (0,1/2) , n ∈ N ;

PROPERTY 5. Bn (1/2) = −(1−21−n
)
Bn , n ∈ N0 .
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The second is (logarithmically) completely monotonic functions. A function f is
said to be completely monotonic on an interval I if f has derivatives of all orders on I
and satisfies

(−1)k f (k) (x) � 0

for all k ∈ N0 on I (see [3], [26]). A positive function f is called logarithmically com-
pletely monotonic on an interval I if f has derivatives of all orders on I and satisfies

(−1)k [ln f (x)](k) � 0

for all k ∈ N on I (see [2], [21]). It was pointed out in [21] that if f is logarithmically
completely monotonic on I then f is completely monotonic on I , and not vice versa.

The famous Bernstein Theorem [26, p. 161, Theorem 12b] tells us that the function
f (x) is completely monotonic on (0,∞) if and only if

f (x) =
∫ ∞

0
e−xtdμ (t) ,

where μ (t) is nondecreasing and the integral converges for 0 < x < ∞ .
Now we state our main result as follows.

THEOREM 1. Let a,b,c,d ∈ R with a+b = c+d = 2r +1 and let δ1 = |a−b|,
δ2 = |c−d| . The following statements are valid.

(i) It holds that

ln
Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

=
∫ ∞

0

cosh(δ1t/2)− cosh(δ2t/2)
t sinh(t/2)

e−(x+r)t dt (2)

∼

∞

∑
k=1

B2k (θ1)−B2k (θ2)

k (2k−1)(x+ r)2k−1 as x → ∞, (3)

where θk = (1− δk)/2 , k = 1,2 .
(ii) Let

Dm (x) = ln
Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

−
m

∑
k=1

B2k (θ1)−B2k (θ2)

k (2k−1)(x+ r)2k−1 .

If 0 � δ2 < δ1 � 1 , then for any integer m ∈ N , the function x �→ (−1)m Dm (x) is
completely monotonic on (−r,∞) . Consequently, the inequality

|Dm (x)| < |B2m+2 (θ1)−B2m+2 (θ2)|
(m+1)(2m+1)(x+ r)2m+1 (4)

holds for x > −r , where the upper bound is sharp.

REMARK 1. Using Property 3 we see that

B2k (θ1)−B2k (θ2) = −2k
∫ θ2

θ1

B2k−1 (θ )dθ .
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If 0 � δ2 < δ1 � 1 then 0 � θ1 < θ2 � 1/2. By Property 4 we find that

B2k (θ1)−B2k (θ2) < (>)0 if k is odd (even),

which shows that the series given in (3) is alternate if 0 � δ2 < δ1 � 1.

2. Consequences and remarks

Let δ2 = 0. Then θ2 = 1/2 and c = d = (a+b)/2 = r +1/2. Using Theorem 1
and replacing (δ ,θ ) with (δ1,θ1) we have

COROLLARY 1. Let a,b ∈ R with δ = |a−b| �= 0 , r = (a+b−1)/2 .
(i) The following integral representation and asymptotic expansion

ln
Γ(x+a)Γ(x+b)

Γ(x+(a+b)/2)2
=
∫ ∞

0

cosh(δ t/2)−1
t sinh(t/2)

e−(x+r)t dt

∼

∞

∑
k=1

B2k (θ )−B2k (1/2)

k (2k−1)(x+ r)2k−1 as x → ∞

holds, where θ = (1− δ )/2 .
(ii) Let

Dm (x;a,b) = ln
Γ(x+a)Γ(x+b)
Γ(x+(a+b)/2)2 −

m

∑
k=1

B2k (θ )−B2k (1/2)

k (2k−1)(x+ r)2k−1 .

If 0 < δ � 1 , then the function x �→ (−1)m Dm (x;a,b) for m ∈ N is completely mono-
tonic on (−r,∞) .

REMARK 2. Corollary 1 was established in [24, Theorems 1 and 2]. This shows
that the Theorem 1 is a generalization of [24, Theorems 1 and 2].

Assume that b � a and d � c . From the conditions that a+b = c+d and δ2 < δ1

it is deduced that b > d � c > a . Note that

1
c−a

ln
Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

= − lnΓ(x+ c)− lnΓ(x+a)
c−a

+
lnΓ(x+b)− lnΓ(x+d)

b−d
.

Taking c → a (which implies that d → b ) gives

lim
c→a

1
c−a

ln
Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

= ψ (x+b)−ψ (x+a).

Since
δ1− δ2

c−a
=

b−a−d+ c
c−a

= 2 and
θ1 −θ2

c−a
= −1

2
δ1− δ2

c−a
= −1,
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we have

lim
c→a

cosh(δ1t/2)− cosh(δ2t/2)
c−a

=
δ1 − δ2

c−a
lim

δ2→δ1

cosh(δ1t/2)− cosh(δ2t/2)
δ1− δ2

= t sinh(δ1t/2) ,

lim
c→a

B2k (θ1)−B2k (θ2)
c−a

=
θ1 −θ2

c−a
lim

θ2→θ1

B2k (θ1)−B2k (θ2)
θ1−θ2

= −2kB2k−1 (θ1) ,

where the last equality holds due to Property 3. Using Theorem 1 and replacing (δ ,θ )
with (δ1,θ1) we have

COROLLARY 2. Let a,b ∈ R with δ = b− a > 0 , r = (a+b−1)/2 and θ =
(1− δ )/2 . (i) It holds that

ψ (x+b)−ψ (x+a) =
∫ ∞

0

sinh(δ t/2)
sinh(t/2)

e−(x+r)t dt

∼

∞

∑
k=1

−2B2k−1 (θ )

(2k−1)(x+ r)2k−1 as x → ∞.

(ii) Let

D∗
m (x;b,a) = ψ (x+b)−ψ (x+a)+

m

∑
k=1

2B2k−1 (θ )

(2k−1)(x+ r)2k−1 .

If 0 < δ � 1 , then the function x �→ (−1)m D∗
m (x;b,a) for m ∈ N is completely mono-

tonic on (−r,∞) .

REMARK 3. Let

Rm (x;b,a) =
lnΓ(x+b)− lnΓ(x+a)

b−a
− ln(x+ r)−

m

∑
k=1

B2k+1 (θ )

δk (2k+1)(x+ r)2k .

In 2020, Yang, Tian and Ha [31] proved that, under the conditions as in Corollary 2, the
function x �→ (−1)m Rm (x;b,a) is completely monotonic on (−r,∞) . Now we present a
simple proof of Theorem 2 in [31] using Corollary 2. In fact, since limx→∞ Rm (x;b,a)=
0, it suffices to prove that (−1)m+1 R′

m (x;b,a) is completely monotonic on (−r,∞) .
Differentiation yields

δR′
m (x;b,a) = ψ (x+b)−ψ (x+a)− δ

x+ r
+

m

∑
k=1

2B2k+1 (θ )

(2k+1)(x+ r)2k+1 .

Since 2B1 (θ ) = 2θ −1 = −δ , we have

− δ
x+ r

+
m

∑
k=1

2B2k+1 (θ )

(2k+1)(x+ r)2k+1 =
m

∑
k=0

2B2k+1 (θ )

(2k+1)(x+ r)2k+1 ,
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and then, δR′
m (x;b,a) can be written as

δR′
m (x;b,a) = ψ (x+b)−ψ (x+a)+

m

∑
k=0

2B2k+1 (θ )

(2k+1)(x+ r)2k+1 = D∗
m+1 (x;b,a) .

By Corollary 2 the required complete monotonicity follows.

We continue to observe Corollary 2. Evidently, x �→ (−1)m limb→a [D∗
m (x;b,a)/δ ]

for m ∈ N is also completely monotonic on (−r,∞) . Applying L’Hospital rule with
Properties 1 and 3, we have

lim
b→a

ψ (x+b)−ψ (x+a)
b−a

= ψ ′ (x+a) ,

lim
b→a

B2k−1 (θ )
δ

= lim
θ→1/2

B2k−1 (θ )
1−2θ

= −1
2

(2k−1)B2k−2

(
1
2

)
.

Then

lim
b→a

D∗
m (x;b,a)
b−a

= ψ ′ (x+a)−
m

∑
k=1

B2k−2 (1/2)

(x+a−1/2)2k−1 .

Taking a = 1/2 gives the following corollary.

COROLLARY 3. Let

D∗
m (x) = ψ ′

(
x+

1
2

)
−

m−1

∑
k=0

B2k (1/2)
x2k+1 .

The function x �→ (−1)m D∗
m (x) for m ∈ N is completely monotonic on (0,∞) .

REMARK 4. Let

gm (x) = lnΓ
(

x+
1
2

)
− x lnx+ x− 1

2
ln(2π)+

m

∑
k=1

(
1−21−2k

)
B2k

2k (2k−1)x2k−1 .

Yang [28, Theorem 4] proved that the function x �→ (−1)m+1 gm (x) is completely
monotonic on (0,∞) . Now we give a concise proof of this assertion. In fact, differ-
entiation yields

g′m (x) = ψ
(

x+
1
2

)
− lnx−

m

∑
k=1

(
1−21−2k

)
B2k

2kx2k ,

g′′m (x) = ψ ′
(

x+
1
2

)
+

m

∑
k=0

(
1−21−2k

)
B2k

x2k+1 = D∗
m+1 (x) ,

where the last equality holds due to B2k (1/2) = −(1−21−2k
)
B2k derived from Prop-

erty 5. By Corollary 3 we see that x �→ (−1)m+1 D∗
m+1 (x) for m ∈ N0 is completely

monotonic on (0,∞) , and so is (−1)m+1 g′′m (x) on (0,∞) . In view of limx→∞ gm (x) =
limx→∞ g′m (x) = 0, we find that x �→ (−1)m+1 gm (x) is also completely monotonic on
(0,∞) .
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Let (a,b) = (p,1− p) and (c,d) = (q,1−q) with p �= q in Theorem 1. Then
r = 0. By Theorem 1 we obtain the following corollary.

COROLLARY 4. Let p,q ∈ R with p �= q and let δ1 = |1−2p|, δ2 = |1−2q|.
The following statements are valid.

(i) It holds that

ln
Γ(x+ p)Γ(x+1− p)
Γ(x+q)Γ(x+1−q)

=
∫ ∞

0

cosh(δ1t/2)− cosh(δ2t/2)
t sinh(t/2)

e−xtdt

∼

∞

∑
k=1

B2k (p)−B2k (q)
k (2k−1)x2k−1 as x → ∞.

(ii) Let

Δm (x) = ln
Γ(x+ p)Γ(x+1− p)
Γ(x+q)Γ(x+1−q)

−
m

∑
k=1

B2k (p)−B2k (q)
k (2k−1)x2k−1 .

If 0 � p < q � 1/2 , then for any integer m ∈ N , the function x �→ (−1)m Δm (x) is
completely monotonic on (0,∞) . Consequently, the inequality

|Δm (x)| < |B2m+2 (p)−B2m+2 (q)|
(m+1)(2m+1)x2m+1

holds for x > 0 , where the upper bound is sharp.

A transformation formula of asymptotic expansions was established in [7, Lemma
3] (see also [8, Lemma 3.5]), which states that

exp

(
∞

∑
n=1

un

xn

)
∼

∞

∑
n=0

vn

xn as x → ∞,

with v0 = 1 and

vn =
1
n

n

∑
k=1

kukvn−k for n � 1.

Writing the asymptotic expansion (3) as

Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

∼ exp

[
∞

∑
n=1

un

(x+ r)n

]
,

where

u2n−1 =
B2n (θ1)−B2n (θ2)

n(2n−1)(x+ r)2n−1 and u2n = 0,

then employing the above transformation formula of asymptotic expansions, we obtain
another asymptotic expansion of Qa,b;c,d (x) .
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COROLLARY 5. Let a,b,c,d ∈R with a+b= c+d = 2r+1 and let δ1 = |a−b|,
δ2 = |c−d| . Then as x → ∞ ,

Qa,b;c,d (x) =
Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

∼

∞

∑
n=0

vn

(x+ r)n

with v0 = 1 and

vn =
1
n

	(n+1)/2

∑
j=1

1
j

[
B2 j (θ1)−B2 j (θ2)

]
vn−2 j+1,

where θk = (1− δk)/2 , k = 1,2 .

We close this section with two examples.

EXAMPLE 1. In Corollary 4, taking (p,q) = (0,1/4) gives (δ1,δ2) = (1,1/2) .
Then

ln
Γ(x)Γ(x+1)

Γ(x+1/4)Γ(x+3/4)
∼

∞

∑
k=1

B2k (0)−B2k (1/4)
k (2k−1)x2k−1 as x → ∞,

and the function

x �→ (−1)m
[
ln

Γ(x)Γ(x+1)
Γ(x+1/4)Γ(x+3/4)

−
m

∑
k=1

B2k (0)−B2k (1/4)
k (2k−1)x2k−1

]

is completely monotonic on (0,∞) . Hence, the double inequality

2m

∑
k=1

B2k (0)−B2k (1/4)
k (2k−1)x2k−1 < ln

Γ(x)Γ(x+1)
Γ(x+1/4)Γ(x+3/4)

<
2n−1

∑
k=1

B2k (0)−B2k (1/4)
k (2k−1)x2k−1

holds for x > 0 and m,n ∈ N . In particular, when m = 1, n = 2 we have

3
16x

− 3
512x3 < ln

Γ(x)Γ(x+1)
Γ(x+1/4)Γ(x+3/4)

<
3

16x
− 3

512x3 +
33

20480x5

for x > 0.

EXAMPLE 2. In Corollary 5, Taking (a,b) = (0,1) and (c,d) = (1/2,1/2) gives
r = 0, (δ1,δ2) = (1,0) and (θ1,θ2) = (0,1/2) . Then as x → ∞ ,

Γ(x)Γ(x+1)

Γ(x+1/2)2
∼

∞

∑
n=0

vn

xn

with v0 = 1 and

vn =
1
n

	(n+1)/2

∑
j=1

1
j

[
B2 j (0)−B2 j (1/2)

]
vn−2 j+1

=
1
n

	(n+1)/2

∑
j=1

1
j

(
2−21−2 j)B2 jvn−2 j+1,
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where the last equality holds due to B2 j (0) = B2 j and B2 j (1/2) = −(1−21−2 j
)
B2 j .

A direct computation leads to

v1 =
1
4
, v2 =

1
32

, v3 = − 1
128

, v4 = − 5
2048

, v5 =
23

8192
, v6 =

53
65536

.

Noting that Γ(x) = Γ(x+1)/x , we arrive at[
Γ(x+1)

Γ(x+1/2)

]2

∼ x+
1
4

+
1

32x
− 1

128x2 −
5

2048x3 +
23

8192x4 +
53

65536x5 + . . .

as x → ∞ .

REMARK 5. The ratio W (x) = Γ(x+1)/Γ(x+1/2) is called Wallis’ fraction
(see [8]). The asymptotic expansion was derived in [5] (see also [17]). Two nice
asymptotic expansions of Wallis’ fraction were presented in [11], [31]. More asymp-
totic expansions of W (x) can be found in [9], [23], [27].

3. Lemmas

To prove the first part of Theorem 1, we need the following special case of Wat-
son’s lemma.

LEMMA 1. ([18, Section 2.3]) Assume that the Laplace transform
∫ ∞
0 f (t)e−xtdt

converges for all sufficiently large x , and f (t) is infinitely differentiable in a neighbor-
hood of the origin. Then

∫ ∞

0
f (t)e−xtdt ∼

∞

∑
n=0

f (n) (0)
xn+1 , x → ∞.

LEMMA 2. Let 0 < v < u. The function

t �→ φu,v (t) =
sinh

(
v
√

t
)

sinh
(
u
√

t
)

is logarithmically completely monotonic on (0,∞) . Therefore, φu,v (t) is completely
monotonic on (0,∞)

Proof. To prove the required logarithmically complete monotonicity of φu,v (t) , it
suffices to prove that − [lnφu,v (t)]′ is completely monotonic on (0,∞) . It was listed in
[1, Eq. (4.5.68)] that

sinhz
z

=
∞

∏
n=1

(
1+

z2

n2π2

)

for z ∈ C . Logarithmic differentiation yields[
ln

sinh
(
u
√

t
)

u
√

t

]′
=

d
dt

∞

∑
n=1

ln

(
1+

u2t
n2π2

)
=

∞

∑
n=1

1
π2n2/u2 + t

.
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We thus obtain that

− [lnφu,v (t)]′ = −
[
ln

v
u

+ ln
sinh

(
v
√

t
)

v
√

t
− ln

sinh
(
u
√

t
)

u
√

t

]′

= −
∞

∑
n=1

1
t + π2n2/v2 +

∞

∑
n=1

1
t + π2n2/u2

=
π2
(
u2− v2

)
u2v2

∞

∑
n=1

n2

(t + π2n2/u2)(t + π2n2/v2)
.

Since t �→ 1/(t + α) (α > 0) is completely monotonic on (0,∞) , so is − [lnφu,v (t)]′

on (0,∞) .
As shown in [21], a (strictly) logarithmically completely monotonic function is

also (strictly) completely monotonic. Therefore, the function φu,v (t) is completely
monotonic on (0,∞) . �

LEMMA 3. Let

f (t) =
cosh(δ1t/2)− cosh(δ2t/2)

t sinh(t/2)
.

If 0 � δ2 < δ1 � 1 , then the function t �→ f
(√

t
)

is completely monotonic on (0,∞) .

Proof. Since

cosh
(
δ1
√

t/2
)− cosh

(
δ2
√

t/2
)

(δ1 − δ2)
√

t/2
=
∫ 1

0
sinh

(
v
√

t
)
dx,

where

v = v(x) = x
δ1

2
+(1− x)

δ2

2
∈
(

0,
1
2

)
, (5)

due to 0 � δ2 < δ1 � 1 and x ∈ [0,1] , f
(√

t
)

can be represented as

f
(√

t
)

= (δ1− δ2)
cosh

(
δ1
√

t/2
)− cosh

(
δ2
√

t/2
)

(δ1 − δ2)
√

t sinh
(√

t/2
) = (δ1− δ2)

∫ 1

0

sinh
(
v
√

t
)

sinh
(
u
√

t
)dx,

where u = 1/2 and v ∈ (0,1/2) is defined by (5). It follows from Lemma 2 that

(−1)n dn

dtn
f
(√

t
)

= (δ1 − δ2)
∫ 1

0
(−1)n

dn

dtn

[
sinh

(
v
√

t
)

sinh
(
u
√

t
)
]

dx > 0

for t > 0. This completes the proof. �

LEMMA 4. If g(x) is completely monotonic on the interval I and x0 ∈ I , then

(−1)m+1

[
g(x)−

m

∑
k=0

g(k) (x0)
k!

(x− x0)
k

]
> 0

for all x ∈ I and m ∈ N0 .
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Proof. It is known that

g(x) =
m

∑
k=0

g(k) (x0)
k!

(x− x0)
k +

∫ x

x0

g(m+1) (t)
(x− t)m

m!
dt.

Then

(−1)m+1

[
g(x)−

m

∑
k=0

g(k) (x0)
k!

(x− x0)
k

]

=
∫ x

x0

(−1)m+1 g(m+1) (t)
(x− t)m

m!
dt > 0

for all x ∈ I , which completes the proof. �

The following lemma is crucial to prove the second part of Theorem 1.

LEMMA 5. For m ∈ N , let

Jm (t) =
cosh(δ1t/2)− cosh(δ2t/2)

t sinh(t/2)
−2

m

∑
k=1

B2k (θ1)−B2k (θ2)
(2k)!

t2k−2, (6)

where θk = (1− δk)/2 , k = 1,2 . If 0 � δ2 < δ1 � 1 , then (−1)m Jm (t) > 0 for t > 0 .

Proof. We first show that

Jm
(√

t
)

= g(t)−
m−1

∑
k=0

g(k) (0)
k!

tk,

where g(t) = f
(√

t
)
. Using the definition of Bernoulli polynomials (1) yields

cosh(δ t/2)
t sinh(t/2)

=
1
t

eδ t/2 + e−δ t/2

et/2 − e−t/2
=

1
t2

te(δ+1)t/2 + te(1−δ )t/2

et −1

=
∞

∑
n=0

Bn ((1+ δ )/2)+Bn ((1− δ )/2)
n!

tn−2.

By Property 1 it is easy to see that

Bn

(
1+ δ

2

)
+Bn

(
1− δ

2

)
=

⎧⎨
⎩

0 if n = 2m+1,

2B2m

(
1− δ

2

)
if n = 2m,

which yields
cosh(δ t/2)
t sinh(t/2)

=
∞

∑
m=0

2B2m ((1− δ )/2)
(2m)!

t2m−2.
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This together with B0 (x) = 1 gives

f (t) =
cosh(δ1t/2)− cosh(δ2t/2)

t sinh(t/2)

= 2
∞

∑
m=0

B2m ((1− δ1)/2)−B2m ((1− δ2)/2)
(2m)!

t2m−2

= 2
∞

∑
k=0

B2k+2 (θ1)−B2k+2 (θ2)
(2k+2)!

t2k (7)

for |t| < 2π . We thus obtain the Taylor series of the function g(t) = f
(√

t
)

about
t = 0:

g(t) = f
(√

t
)

= 2
∞

∑
k=0

B2k+2 (θ1)−B2k+2 (θ2)
(2k+2)!

tk,

which converges for 0 � t < 4π2 . Noting that

2
m

∑
k=1

B2k (θ1)−B2k (θ2)
(2k)!

tk−1 = 2
m−1

∑
k=1

B2k+2 (θ1)−B2k+2 (θ2)
(2k+2)!

tk,

we have

Jm
(√

t
)

= g(t)−
m−1

∑
k=0

g(k) (0)
k!

tk.

By using Lemma 3, we find that g(t) = f
(√

t
)

is completely monotonic on (0,∞) .
It then follows from Lemma 4 that (−1)m Jm

(√
t
)

> 0 for t > 0, which implies that
(−1)m Jm (t) > 0 for t > 0. This completes the proof. �

4. Proof of Theorem 1

We are in a position to prove Theorem 1.

Proof. (i) Using the integral representation of lnΓ(x) [1, p.258, (6.1.50)]

lnΓ(x) =
∫ ∞

0

(
(x−1)e−t − e−t − e−xt

1− e−t

)
dt
t

:=
∫ ∞

0
ξ (x,t)

dt
t

(x > 0),

we get

lnΓ(x+a)+ lnΓ(x+b)− lnΓ(x+ c)− lnΓ(x+d) =
∫ ∞

0
η (x, t)dt,

where

η (x, t) =
1
t

[ξ (x+a,t)+ ξ (x+b,t)− ξ (x+ c,t)− ξ (x+d, t)] .

An easy verification gives

η (x,t) =
e−at + e−bt − e−ct − e−dt

t (1− e−t)
e−tx,
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and then,

ln
Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

=
∫ ∞

0
f (t)e−(x+r)t dt,

where

f (t) = ert e
−at + e−bt − e−ct − e−dt

t (1− e−t)
.

Clearly, f (t) can be written as

f (t) =
e(b−a)t/2 + e(a−b)t/2 − e(d−c)t/2 − e(c−d)t/2

t
(
et/2 − e−t/2

)
=

cosh(δ1t/2)− cosh(δ2t/2)
t sinh(t/2)

.

On the other hand, from the Taylor series of f (t) at t = 0 proved in (7) we find that
f (2n+1) (0) = 0 and

f (2n) (0) = (2n)!
f (2n) (0)
(2n)!

= (2n)!2
B2n+2 (θ1)−B2n+2 (θ2)

(2n+2)!

=
B2n+2 (θ1)−B2n+2 (θ2)

(n+1)(2n+1)
.

By Lemma 1, we get that

∫ ∞

0
f (t)e−(x+r)t dt ∼

∞

∑
n=0

f (2n) (0)

(x+ r)2n+1 =
∞

∑
n=0

B2n+2 (θ1)−B2n+2 (θ2)

(n+1)(2n+1)(x+ r)2n+1

as x → ∞ , which proves part one of this theorem.
(ii) Firstly, we establish the integral representation of Dm (x) . By the integral

representation (2) and
1
xn =

1
(n−1)!

∫ ∞

0
tn−1e−xtdt,

we immediately get

Dm (x) =
∫ ∞

0

cosh(δ1t/2)− cosh(δ2t/2)
t sinh(t/2)

e−(x+r)tdt

−
m

∑
k=1

B2k (θ1)−B2k (θ2)
k (2k−1)

1
(2k−2)!

∫ ∞

0
t2k−2e−(x+r)t dt

=
∫ ∞

0
Jm (t)e−(x+r)t dt,

where Jm (t) is defied by (6). Then

(−1)m Dm (x) =
∫ ∞

0
(−1)m Jm (t)e−(x+r)t dt.
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Secondly, from Lemma 5 and Bernstein Theorem it follows that x �→ (−1)m Dm (x) is
completely monotonic on (−r,∞) .

Finally, we prove inequality (4). If m is even, then from the inequalities Dm (x) >
0, Dm+1 (x) < 0 for x > −r and the relation

Dm+1 (x) = Dm (x)− B2m+2 (θ1)−B2m+2 (θ2)
(m+1)(2m+1)(x+ r)2m+1

it is deduced that

0 < Dm (x) <
B2m+2 (θ1)−B2m+2 (θ2)

(m+1)(2m+1)(x+ r)2m+1 for x > −r. (8)

If m is odd, then from the inequalities Dm (x) < 0, Dm+1 (x) > 0 it is obtained that

B2m+2 (θ1)−B2m+2 (θ2)

(m+1)(2m+1)(x+ r)2m+1 < Dm (x) < 0 for x > −r. (9)

Inequalities (8) and (9) imply (4). The limit relation

lim
x→∞

[
(x+ r)2m+1 |Dm (x)|

]
=

|B2m+2 (θ1)−B2m+2 (θ2)|
(m+1)(2m+1)

,

implies that the upper bound given in (4) is sharp, which completes the proof. �

5. Concluding remarks

In this paper, we established an asymptotic expansion of lnQa,b;c,d (x) and showed
that the remainder of this expansion has complete monotonicity (Theorem 1). From
Corollaries 1–3 and Remarks 2–4 listed in Section 2 we see that certain known results
are consequences of Theorem 1. As far as method and technique are concerned, Lemma
2 is refreshing. By means of this lemma, the proof of Theorem 2 in [31] can be greatly
simplified.

Moreover, it should be noted that, in addition to the asymptotic expansion de-
scribed in (3), there is another class of asymptotic expansion of Qa,b;c,d (x) in the form
of hypergeometric series, which first appeared in [25]. In fact, using the Gaussian for-
mula for the hypergeometric function (see [1, p. 556, (15.1.20)])

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−a)

= 2F1 (a,b;c;1) =
∞

∑
k=0

(a)k (b)k

k!(c)k
(− c /∈ N0, Re (c−a−b) > 0),

where (a)0 = 1 for a �= 0 and (a)k = a(a+1) · · · (a+ k−1) for k � 1, we obtain two
new asymptotic expansions of Qa,b;c,d (x) that, for a,b,c,d ∈ R with a+b = c+d ,

Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

= 2F1 (b− c,b−d;x+b;1)=
∞

∑
k=0

(b− c)k (b−d)k
k!(x+b)k

,

Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

= 2F1 (a− c,a−d;x+a;1)=
∞

∑
k=0

(a− c)k (a−d)k
k!(x+a)k

,
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which converge only if x > −a and x > −b , respectively.
Assume that b � a and d � c . If b− a > d − c then a < c , b > d , and then

b > d � c > a ; If b− a < d − c then a > c , b < d , and then d > b � a > c . Since
1/(x+ α) is completely monotonic in x , so are 1/(x+ α)k in x for k � 1. Then the
following theorem is immediate.

THEOREM 2. Let a,b,c,d ∈ R with a+b = c+d . If b−a > d− c � 0 , then the
function

x �→ (x+b)m

[
Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

−
m−1

∑
k=0

(b− c)k (b−d)k
k!(x+b)k

]

is completely monotonic on (−a,∞) .

Finally, Qa,b;c,d (x) can also be represented in the form of infinite product. Using
Euler’s formula for the gamma function [1, p. 255, (6.1.2)]

Γ(z) = lim
n→∞

n!nz

(z)n+1
(z �= 0,−1,−2, . . .),

we have that, for a,b,c,d ∈ R with a+b = c+d ,

Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

= lim
k→∞

(x+ c)k+1 (x+d)k+1

(x+a)k+1 (x+b)k+1
=

∞

∏
k=0

(k+ x+ c)(k+ x+d)
(k+ x+a)(k+ x+b)

. (10)

THEOREM 3. Let a,b,c,d ∈ R with a+b = c+d . If b−a > d− c � 0 , then the
function

x �→ Em (x) = ln
Γ(x+a)Γ(x+b)
Γ(x+ c)Γ(x+d)

−
m−1

∑
k=0

ln
(k+ x+ c)(k+ x+d)
(k+ x+a)(k+ x+b)

is completely monotonic on (−a,∞) .

Proof. By (10) we see that

Em (x) =
∞

∑
k=m

ln
(k+ x+ c)(k+ x+d)
(k+ x+a)(k+ x+b)

.

Differentiation yields

−E ′
m (x) =

∞

∑
k=m

φ (x+ k) ,

where

φ (y) =
1

y+a
+

1
y+b

− 1
y+ c

− 1
y+d

.

Since a+b = c+d and b−a > d− c � 0, we have b > d � c > a . Then φ (y) can be
written as

φ (y) =
(b− c)(c−a)

(y+a)(y+ c)(y+d)
+

(b− c)(c−a)
(y+b)(y+ c)(y+d)

,
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which is clearly completely monotonic in y , so is φ (x+ k) in x . It then follows
that −E ′

m (x) is completely monotonic on (−a,∞) , and then, so is Em (x) due to
limx→∞ Em (x) = 0. �
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