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Abstract. Let f , g be two continuous non-negative real-valued functions defined on the non-
negative half-line [0,∞) that satisfy the condition f (t)g(t) = t , for all t � 0 , and let P and Q
denote two positive elements in an unital C*-algebra A . We shall show that the following model
of inequality holds:

∀X ∈ A , ‖ f (P)Xg(Q)+g(P)X f (Q)‖� 2
∥∥∥P

1
2 XQ

1
2

∥∥∥ .

Through this model, we shall establish the universality of the Heinz operator norm inequality
and related inequalities within the broad spectrum of any abstract unital C*-algebra.

1. Introduction

Let B(H) be the C∗ -algebra of all bounded linear operators on a complex separa-
ble Hilbert space H . We consider an abstract unital C*-algebra A with unit I of norm
one.

In operator theory, there exist several remarkable operator norm inequalities. In
this work, we concentrate to a family of them related to the Heinz inequality, where
each of which can follow from the others:

For every two positive operators P and Q in B(H) , and for every λ ∈ [0,1] , the
following double operator inequality holds:

∀X ∈ B(H), ‖PX +XQ‖ �
∥∥∥Pλ XQ1−λ +P1−λXQλ

∥∥∥ � 2
∥∥∥P

1
2 XQ

1
2

∥∥∥ . (1)

For every two positive operators P and Q in B(H) , the following operator inequality
holds:

∀X ∈ B(H), ‖PX +XQ‖ � 2
∥∥∥P

1
2 XQ

1
2

∥∥∥ . (2)

For every operators A and B in B(H) , the following operator inequality holds:

∀X ∈ B(H), ‖A∗AX +XBB∗‖ � 2‖AXB‖ . (3)
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Note that the first inequality (1) was introduced by Heinz [5], but its proof is somewhat
complicated. So, McIntosh [9] proved the inequality (2) (where (2) follows immedi-
ately from (1) with λ = 0,1, 1

2 ) and deduced from it the inequality (1) using an iteration
method. It is is easy to see the equivalence between (2) and (3) and where each of them
is called the arithmetic-geometric mean inequality. In [2, 4, 10], we find a largest family
of inequalities including the three given above inequalities and follows from each other.
A fourth inequality of this family is given by: for every invertible selfadjoint operator
S in B(H) , the following inequality holds:

∀X ∈ B(H),
∥∥SXS−1 +S−1XS

∥∥ � 2‖X‖ . (4)

Independently of the work of Heinz and McIntosh and with another motivation,
Corach et al. [3] have proved this last inequality.

From matrix theory to operator theory, the four distinguished inequalities pre-
sented before were reformulated in a general situation with any unitarily invariant norm
instead of the operator norm, see [1, 6, 7, 8].

Our focus in this paper is to extend the above results to an abstract unital C*-
algebra where we shall present:

1. a model of inequality (the main theorem) given by: for f , g be two continuous
non-negative (resp. positive) real-valued functions defined on the non-negative
(resp. positive) half-line [0,∞) (resp. (0,∞)) satisfying f (t)g(t) = t , for all
t � 0 (resp. t > 0), and for two positive (resp. invertible positive) elements P,Q
in A , the following inequality holds:

∀X ∈ A , ‖ f (P)Xg(Q)+g(P)X f (Q)‖ � 2
∥∥∥P

1
2 XQ

1
2

∥∥∥ ,

2. for two positive (resp. invertible positive) elements P,Q in A , and for λ ∈ [0,1]
(resp. λ ∈ R), the following inequality holds:

∀X ∈ A ,
∥∥∥Pλ XQ1−λ +P1−λXQλ

∥∥∥ � 2
∥∥∥P

1
2 XQ

1
2

∥∥∥ ,

3. the four above inequalities (1)–(4) remain true.

All these results are given in the section 3.
In section 2, we shall give some observations about the numerical version of the

Heinz inequality, and we introduce four models of numerical inequalities and where
one of them includes the numerical version of Heinz inequality.

2. Some observations about the numerical version of Heinz inequality.

In this section, we shall interest in the numerical version of Heinz inequality (1)
that says: for every λ ∈ [0,1] , the following holds:

∀s,t > 0,
s+ t
2

� tλ s1−λ + t1−λ sλ

2
�
√

st. (5)
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A simple proof of (5) was previously accomplished given that the function: [0,1]→
R , λ �→ tλ s1−λ + t1−λ sλ , is continuous, convex, and has symmetry about the vertical
line λ = 1

2 (where s,t are two positive parameters).
We propose a straightforward and fundamental proof of (5) that eschews reliance

on the principles of continuity and convexity by considering the two positive real-valued
functions f and g defined on the positive half-line (0,∞) by f (t) = tλ and g(t)= t1−λ ,
for every t > 0 and where λ is a parameter in [0,1] . Indeed, for s,t > 0, we have:

s+ t
2

− tλ s1−λ + t1−λ sλ

2
=

1
2

( f (t)− f (s)) (g(t)−g(s)) ,

� 0, since f and g are both non-decreasing,

and
tλ s1−λ + t1−λ sλ

2
−√

st =
1
2

(√
f (t)g(s)−

√
f (s)g(t)

)2
� 0.

This proves easily the numerical version of Heinz inequality .
Extending the analysis, if λ lies outside the interval [0,1] , in the domain of

R\ [0,1] , one function among f and g is non-decreasingwhile the other is non-increasing.
Consequently:

s+ t
2

− tλ s1−λ + t1−λ sλ

2
=

1
2

( f (t)− f (s)) (g(t)−g(s)) � 0.

This leads to the conclusion that for every λ ∈ R\ [0,1] , the inequality below is
valid:

∀s,t > 0,
tλ s1−λ + t1−λ sλ

2
� s+ t

2
�
√

st. (6)

It is important to note that the second part of (6) is recognized as the classical
numerical arithmetic-geometric mean inequality. Inequality (6) can thus be regarded as
a dual inequality to the Heinz inequality (5).

Furthermore, the proof outlined above maintains the validity of the second part of
inequality (5) for any real-valued λ . Therefore, it holds true that for any λ ∈ R :

∀s,t > 0,
tλ s1−λ + t1−λ sλ

2
�
√

st, (7)

Combining the two inequalities (5) and (6), it is derived that for every λ ∈R\ [0,1]
and for every μ ∈ [0,1] , the following inequality holds:

∀s,t > 0, tλ s1−λ + t1−λsλ � tμs1−μ + t1−μsμ . (8)

Our last observation is to see that the condition λ ∈ [0,1] is necessary and suffi-
cient to have the first part of the Heinz inequality (5) holds.

Indeed, assume that the first part of (5) holds for some λ ∈ R\ [0,1] . So, from
(5) and (6), we have tλ s1−λ + t1−λ sλ = s + t , for all s,t > 0. This gives use that(
tλ − sλ )(

t1−λ − s1−λ)
= 0, for all s,t > 0. So, we have

(
2λ −1

)(
21−λ −1

)
= 0.
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Hence, λ = 0 or λ = 1, contradiction with λ ∈R\ [0,1] . This proves that the condition
λ ∈ [0,1] is necessary to have the first part of (5) holds. This proves that the condition
λ ∈ [0,1] is necessary and sufficient for the first part of (5).

In this section, we shall show that each of the four above inequalities is a part of
a model including infinitely numerical inequalities. In particular, the numerical version
of the Heinz inequality becomes a simple example of a model including infinitely of
inequalities.

In the following definition, we introduce the notion of the conjugate of a numerical
function which is the basis of all results of this paper.

DEFINITION 1. If f , g be two continuous non-negative (resp. positive) real-
valued functions defined on the non-negative (resp. positive) half-line [0,∞) (resp.
(0,∞)), we say that g is a conjugate of f , if f (t)g(t) = t , for all t � 0 (resp. t > 0).

Note that each continuous function f : (0,∞) → (0,∞) has a unique continuous
conjugate function g defined on (0,∞) given by g(t) = t

f (t) , for all t > 0, and every

continuous function f : [0,∞) → [0,∞) has at most one continuous conjugate function
g : [0,∞) → [0,∞).

We denote by:

(i). C∗
+ (resp. C+ ), the class of all continuous function f : (0,∞) → (0,∞) (resp.

f : [0,∞) → [0,∞) having a continuous conjugate function g : [0,∞) → [0,∞)),

(ii).
∼
f , the conjugate of f , where f ∈ C∗

+ (resp. C+ ),

(iii). Hλ , the element in C∗
+ (resp. C+ ) given by Hλ (t) = tλ , for all t > 0 (resp.

t � 0), where λ ∈ R (resp. λ ∈ [0,1]), and where the conjugate of Hλ is H1−λ ,

(iv). (C1) , the class of all f ∈ C∗
+ (resp. C+ ) such that f and

∼
f are both non-

decreasing,

(v). (C2) , the class of all f ∈ C∗
+ (resp. C+ ) such that one function among f and

∼
f

is non-decreasing while the other is non-increasing.

Note that Hλ belongs to the subclass (C1) (resp. (C2)) of C∗
+ , if λ ∈ [0,1] (resp.

λ ∈ R\ [0,1]); and Hλ belongs to the subclass (C1) of C+ , for all λ ∈ [0,1].
For f ∈ C∗

+ (resp. C+ ), it is clear that for every s, t > 0 (resp. s, t � 0), the two
following equalities hold:

⎧⎪⎨
⎪⎩

(
f (t)

∼
f (s)+ f (s)

∼
f (t)

)
−2

√
st =

(√
f (t)

∼
f (s)−

√
f (s)

∼
f (t)

)2

,

(s+ t)−
(

f (t)
∼
f (s)+ f (s)

∼
f (t)

)
= ( f (t)− f (s))

(∼
f (t)−∼

f (s)
)

.

The following proposition follows immediately from the two last identities.
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PROPOSITION 1. Let f , g ∈ C∗
+ (resp. C+ ).

(1). Assume that f belongs to the class (C1) . Then, the following double inequality
holds:

∀s, t > 0 (resp. s,t � 0 ),
s+ t
2

� 1
2

(
f (t)

∼
f (s)+ f (s)

∼
f (t)

)
�
√

st. (MI1)

(2). Assume that f belongs to the class (C2) . Then, the following double inequality
holds:

∀s, t > 0 (resp. s,t � 0),
1
2

(
f (t)

∼
f (s)+ f (s)

∼
f (t)

)
� s+ t

2
�
√

st. (MI2)

(3). The following inequality holds:

∀s, t > 0 (resp. s,t � 0),
1
2

(
f (t)

∼
f (s)+ f (s)

∼
f (t)

)
�
√

st. (MI3)

(4). Assume that f belongs to the class (C1) and g belongs to the class (C2) . Then,
the following inequality holds:

∀s, t > 0 (resp. s,t � 0),
(
g(t)

∼
g(s)+g(s)

∼
g(t)

)
�

(
f (t)

∼
f (s)+ f (s)

∼
f (t)

)
.

(MI4)

It is clear that with the class C∗
+ :

(i). the model of inequality (MI1) includes the numerical version of Heinz inequality
(5) with f = Hλ and where λ ∈ [0,1],

(ii). the model of inequality (MI2) includes the inequality dual of Heinz (6) with
f = Hλ and where λ ∈ R\ [0,1] ,

(iii). the model (MI3) includes the inequality (7) with f = Hλ and λ ∈ R ,

(iv). the model (MI4) includes the inequality (8) with f = Hμ , where μ ∈ [0,1] , and
g = Hλ , where λ ∈ R\ [0,1] .

3. Model of norm inequality in unital C*-algebra and applications

In this section, we elaborate on a model of norm inequalities within the framework
of an abstract unital C*-algebra. Through this model, we shall establish the universality
of the Heinz inequality, denoted herein as (1), along with the four other known operator
norm inequalities indexed as (2), (3), (4) within the broad spectrum of any abstract
unital C*-algebra.

We introduce the following notations needed for this section:

(i). P (A ) =
{

ϕ ∈ A
′
: ϕ (I) = 1 = ‖ϕ‖

}
, the set of all states on A ,
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(ii). V (A) = {ϕ (A) : ϕ ∈ P (A )} , the algebraic numerical range of an element A ∈
A ,

(iii) |A| , the positive square root of the positive element A∗A of A (it is called the
modulus of A) , where A ∈ A .

We present the model cited before in the following main result:

PROPOSITION 2. Consider f belonging to C+ (resp. C∗
+ ), and let P and Q

represent two elements of A that are positive (resp. invertible positive). Under these
conditions, the following inequality holds:

∀X ∈ A ,
∥∥∥ f (P)X

∼
f (Q)+

∼
f (P)X f (Q)

∥∥∥ � 2
∥∥∥P

1
2 XQ

1
2

∥∥∥ . (MI5)

Proof. Case 1. Suppose f ∈ C+ , with P and Q being positive elements.
Let X ∈ A and let ϕ ∈ P (A ) . The validity of inequality (MI5) is immediate in

the case where P
1
2 XQ

1
2 = 0.

Assuming the contrary, that P
1
2 XQ

1
2 �= 0 and put A = f (P)X

∼
f (Q) and B =

∼
f (P)X f (Q).

Since (A−B)∗ (A−B) � 0, and (A−B)∗ (A−B) = (A∗A+B∗B)− 2Re(A∗B) ,
so it follows immediately that

ϕ (A∗A+B∗B) � 2Reϕ (A∗B) . (A)

So, we obtain:

∥∥∥ f (P)X
∼
f (Q)+

∼
f (P)X f (Q)

∥∥∥2
= ‖A+B‖2 ,

= ‖A∗A+B∗B+2Re(A∗B)‖ ,

� ϕ (A∗A+B∗B)+2Reϕ (A∗B) ,
� 4Reϕ (A∗B) , using (A).

= 4Reϕ
(∼

f (Q)X∗ f (P)
∼
f (P)X f (Q)

)
,

= 4Reϕ
(∼

f (Q)X∗PX f (Q)
)

, since f (P)
∼
f (P) = P.

(B)

On the other hand, we have

σ
(∼

f (Q)X∗PX f (Q)
)
−{0} = σ

(
X∗PX f (Q)

∼
f (Q)

)
−{0} ,

= σ (X∗PXQ)−{0} , since f (Q)
∼
f (Q) = Q,

= σ
(
Q

1
2 X∗PXQ

1
2

)
−{0} .
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Since Q
1
2 X∗PXQ

1
2 =

(
P

1
2 XQ

1
2

)∗(
P

1
2 XQ

1
2

)
is a nonzero positive element of A , then

its norm
∥∥∥P

1
2 XQ

1
2

∥∥∥2 ∈σ
(
Q

1
2 X∗PXQ

1
2

)
−{0} . So,

∥∥∥P
1
2 XQ

1
2

∥∥∥2 ∈σ
(∼

f (Q)X∗PX f (Q)
)

− {0} . Since σ
(∼

f (Q)X∗PX f (Q)
)
⊂ V

(∼
f (Q)X∗PX f (Q)

)
, thus,

∥∥∥P
1
2 XQ

1
2

∥∥∥2 ∈
V

(∼
f (Q)X∗PX f (Q)

)
. Then, we may choose the state ϕ such that ϕ

(∼
f (Q)X∗PX f (Q)

)

=
∥∥∥P

1
2 XQ

1
2

∥∥∥2
. Using the above inequality (B) , the model (MI5) follows immediately.

Case 2. When f ∈ C∗
+ , and P, Q are invertible positive, the argument proceeds

along similar lines than the case 1. �

COROLLARY 1. Let λ ∈ [0,1] (resp. λ ∈ R) , and let P and Q be two positive
(resp. invertible positive) elements in A . Then, the following inequality holds:

∀X ∈ A ,
∥∥∥Pλ XQ1−λ +P1−λXQλ

∥∥∥ � 2
∥∥∥P

1
2 XQ

1
2

∥∥∥ . (9)

Proof. Applying the model (MI5) with the map f = Hλ , where λ ∈ [0,1] (resp.
λ ∈ R), the inequality (9) follows immediately. �

REMARK 1. In this context of an abstract unital C*-algebra, the above corollary
shows us that:

1. the second part of the Heinz inequality (1) remains true,

2. in the case where P, Q are invertible positive, the second part of the Heinz in-
equality (1) remains true, but for every λ ∈ R .

PROPOSITION 3. Each of the three following inequalities holds and follows from
each other:

(i). For every λ ∈ [0,1] and for every two positive elements P, Q in A , the following
inequality holds:

∀X ∈ A , ‖PX +XQ‖�
∥∥∥Pλ XQ1−λ +P1−λXQλ

∥∥∥ . (10)

(ii). For every two positive elements P, Q ∈ A , the following inequality holds:

∀X ∈ A , ‖PX +XQ‖� 2
∥∥∥P

1
2 XQ

1
2

∥∥∥ . (11)

(iii). For every two elements A, B ∈ A , the following inequality holds:

∀X ∈ A , ‖A∗AX +XBB∗‖ � 2‖AXB‖ . (12)
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Proof. (i) ⇒ (ii).Setting λ = 1
2 in inequality (10) directly yields (11).

(ii)⇒ (iii). Given (ii) , to establish (12), let A, B, X ∈A and denote R = |A| and

S = |B∗| . It is trivial to verify that ‖|A|X |B∗|‖= ‖AXB‖ , R2 � 0, R =
(
R2

) 1
2 , S2 � 0,

S =
(
S2

) 1
2 . From these and applying inequality (11), we obtain:

‖A∗AX +XBB∗‖ =
∥∥R2X +XS2

∥∥ ,

� 2‖RXS‖ ,

= 2‖|A|X |B∗|‖ ,

= 2‖AXB‖ .

The implication (iii) ⇒ (ii) is easy to prove.
(ii) ⇒ (i). Assuming (ii) , for any X ∈ A and positive elements P, Q ∈ A ,

consider the continuous function:

ϕ : [0,1]→ R, λ �→
∥∥∥Pλ XQ1−λ +P1−λXQλ

∥∥∥ .

From the inequality (11) and by using the same argument as used by McIntosh [9] for
proving the implication (ii)⇒ (i) in the case of the unital C*-algebra B(H) (it remains
true in our general situation), the following condition holds:

∀α,β ∈ [0,1], ϕ
(

α + β
2

)
� 1

2
(ϕ(α)+ ϕ(β )) . (C)

Put Γ = {λ ∈ [0,1] : ϕ (λ ) � ‖PX +XQ‖} , Δn =
{

k
2n : k = 0, 1, . . . , n

}
(n � 1) ,

and Δ =
∞⋃

n=1

Δn .

With 0, 1 ∈ Γ and the inequality (C), employing an iterative technique, it is
deduced that, Δ ⊂ Γ . In addition, since Δ is dense in [0,1] and Γ is closed, then
Γ = [0,1] .

This proves (i).
On the other hand, the inequality (11) holds by taking λ = 1/2 in the inequality

(9) given in the above corollary. This proves the Proposition. �

REMARK 2. (1). Let λ ∈ [0,1] and let two positive elements P, Q in A . Using
the last corollary and the last proposition, the following double inequality holds:

∀X ∈ A , ‖PX +XQ‖�
∥∥∥Pλ XQ1−λ +P1−λXQλ

∥∥∥ � 2
∥∥∥P

1
2 XQ

1
2

∥∥∥ . (13)

The double inequality (13) (resp. the two inequalities (11) and (12)) asserts that
the Heinz inequality (1) (resp. the two arithmetic-geometric mean inequalities
(2) and (3)) remains (resp. remain) true in the general setting of an abstract unital
C*-algebras.
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(2). Note that the complete proof of the inequality (C) given by McIntosh is not in
any journal, but it is presented in [4, Theorem 1].

(3). The model (MI5) yields infinitely of inequalities and one of them is the second
part of the Heinz inequality (13) that contains the arithmetic-geometric mean
inequality (11).

COROLLARY 2. Let R, S ∈ A .

1. Assume that R, S are selfadjoint. The following inequality holds:

∀X ∈ A ,
∥∥R2X +XS2

∥∥ � 2‖RXS‖ . (14)

2. Assume that S is invertible selfadjoint. The following inequality holds:

∀X ∈ A ,
∥∥SXS−1 +S−1XS

∥∥ � 2‖X‖ . (15)

3. Assume that R, S are normal. The following inequality holds:

∀X ∈ A ,
∥∥R2X

∥∥+
∥∥XS2

∥∥ � 2‖RXS‖ . (16)

4. Assume that S is invertible normal. The following inequality holds:

∀X ∈ A ,
∥∥SXS−1

∥∥+
∥∥S−1XS

∥∥ � 2‖X‖ . (17)

Proof. Consider an element X ∈ A .

1. Given that R and S are self-adjoint, it follows that
(
R2

) 1
2 = |R| and

(
S2

) 1
2 =

|S| . Using (11) with P = S2 and Q = S2, and since ‖RXS‖ = ‖|R|X |S|‖ , the
inequality (14) follows immediately.

2. The inequality (15) follows immediately from the inequality (14).

3. In light of the normality of R and S , we deduce
∥∥R2X

∥∥ = ‖R∗RX‖ and
∥∥XS2

∥∥ =
‖XSS∗‖ . Thus:

∥∥R2X
∥∥+

∥∥XS2
∥∥ = ‖R∗RX‖+‖XSS∗‖ ,

� ‖R∗RX +XSS∗‖ ,

� 2‖RXS‖ , using (12).

This validates inequality (16).

4. Inequality (17) is immediately inferred from inequality (16). �

REMARK 3. Inequality (15) asserts that the Corach-Porta-Recht inequality (4)
persists to hold within the framework of any abstract unital C*-algebra.
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In the next proposition, using the model (MI5), we shall present an example of
inequality that is not related to the Heinz inequality in this context of unital C∗ -algebra.

PROPOSITION 4. Let a > 0 , and let P and Q be two positive elements in A . The
following inequality holds:

∀X ∈ A ,
∥∥aPXa−QQ+Pa−PXaQ

∥∥ � 2
∥∥∥P

1
2 XQ

1
2

∥∥∥ . (18)

Proof. Define the map f on [0,∞) by f (t) = at , for t � 0. Clearly, f belongs to
the class C+ . f ∈C+ , and its conjugate is the map g defined on [0,∞) by g(t) = ta−t ,
for t � 0. The inequality (18) is obtained promptly by applying the model (MI5) with
the map f . �

In operator theory:

(i). we have shown [11] that the class of all invertible operator S ∈ B(H) satisfying
the inequality of Corach-Porta-Recht (4) is the class of all operator of the form
S = λM , where λ is a non-zero scalar and M is an invertible selfadjoint operator
of B(H) (note that the inequality (15) is exactly the inequality of Corach-Porta-
Recht (4) with A = B(H)),

(ii). we have shown [12] that the class of all invertible operator S ∈ B(H) satisfying
the inequality (17) with the case A = B(H) is the class of all invertible normal
operators in B(H) .

So, we may ask the two following problems:

PROBLEM 1. Is it true that the class of all invertible element S∈A satisfying the
inequality (15) is the class of all element of the form S = λM , where λ ∈ C

∗ and M
is an invertible selfadjoint element of A ?

PROBLEM 2. Is it true that the class of all invertible element S∈A satisfying the
inequality (17) is the class of all invertible normal elements in A ?
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