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A HILBERT–TYPE INEQUALITY FOR FOURIER COEFFICIENTS
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(Communicated by J. Jakšetić)

Abstract. There is extensive literature on Hilbert inequality and its many extensions. In this work
we obtain inequalities involving Fourier coefficients of a Hölder continuous function. The results
given here are valid without any assumption of monotonicity or signs of the Fourier coefficients.

1. Introduction

Hardy-Hilbert inequalities have a long history ([3]) with a substantial amount of
literature. For sequences of real numbers {c j} and {d j} with c2

j < and d2
j <,

the basic inequalities are of the form
∣∣∣∣∣ 
1� j,k�

c jdkh jk

∣∣∣∣∣ � 
[
c2

j

]1/2 [
d2

j

]1/2
,

where h jk = 1/( j + k) , or h jk = 1/( j + k−1) or

h jk = 1/( j− k) if j �= k, h jk = 0 when j = k.

Montgomery and Vaughan ([6]) extended the inequality whereby

h jk = 1/( j −k) if j �= k, h jk = 0 when j = k,

where { j} is an increasing sequence of real numbers with the constraint  j+1− j �
f , j � 1, for some positive constant f .

There are many extensions of discrete and integral versions of Hardy-Hilbert in-
equalities. A homogenouskernel H(x,y) , x,y > 0, is of order  if H(tx,ty)= tH(x,y),
t > 0. Extensive results are available for Hardy-Hilbert type inequalities for quadratic
forms involving homogeneous kernels for discrete and continuos cases. A good account
of these results can be found in the books [4] and [7], and in a recent survey article [2].

In this work we consider different kind of inequalities. Let h be a function on
[0,1] which is Hölder continuous with exponent  , 0 <  < 1, ie,

w(h) = sup
0�x,y�1

|h(x)−h(y)|/|x− y| <  (1.1)
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Here we examine bounds for the quadratic forms  j �=k c jckh jk and c jckg jk , where

h jk = ( jk)/2  j −k

j− k
, with  j = ( j−1/2), j �= k, (1.2)

g jk = ( jk)/2  j +k

j + k−1
, (1.3)

 j = C
j =

∫ 1

0
h(x)cos( jx)dx or  j =  S

j =
∫ 1

0
h(x)sin( jx)dx.

Since C
j and  S

j decay like −
j , though not necessarily monotone (even in magni-

tude), we would expect h jk and g jk to behave like homogeneous kernels in  j,k of
order  = −1. We obtain the upper bound of the absolute values of  j �=k c jckh jk and
c jckg jk which involve the constant w(h) given in (1.1) as well as the value of h(1) or
h(0) depending on whether the quadratic form involves {C

j } or { S
j } . We make no

claim that the constants in the upper bounds are the best possible. We note in passing
that { j =

√
2cos( jx)} is an orthonormal basis for L2 = L2[0,1] , the space of square

integrable functions on [0,1] . Similarly, { j(x) =
√

2sin( jx)} is also an orthonormal
basis for L2 . Thus {C

j } and { S
j } are proportional to the Fourier coefficients of h

with respect to the bases { j} and { j} respectively.
We mention that, using the methods described in this work, it is possible to obtain

similar bounds when  j is of the form
∫ 1
0 h(x)cos( jx)dx , or

∫ 1
0 h(x)cos(2 jx)dx, or∫ 1

0 h(x)sin( jx)dx , or
∫ 1
0 h(x)sin(2 jx)dx . However, we do not present them here.

Section 2 lists the main results. Section 3 contains the proofs.

2. The main results

We begin this section with a well known result on Hilbert type inequalities involv-
ing homogeneous kernels of order  = −1 ([1], [5]).

THEOREM 1. (a) Let H be a homogeneous kernel of order  = −1 , H(x,y) � 0
for all x,y > 0 . Assume that H(1,y)y−1/2 and H(y,1)y−1/2 are decreasing in y. If
H1 =

∫ 
0 H(1,y)y−1/2dy <  , then for any sequences {c j} and {d j} with c2

j < 
and d2

j <  , the following holds

∣∣c jdkH( j,k)
∣∣ � H1

{
c2

j

}1/2 {
d2

j

}1/2
.

(b) Let H be as in part (a) above. Additionally assume that H(1,y)y−1/2 and
H(y,1)y−1/2 are convex in y. Denoting j1 = j − 1/2 , for any sequences {c j} and
{d j} , we have ∣∣c jdkH( j1,k1)

∣∣ � H1
{
c2

j

}1/2 {
d2

j

}1/2
.

We should point out that the double sums in Theorem 1 include the diagonal, ie,
c jd jH( j, j) in part (a), and c jd jH( j1, j1) in part (b).

Before we state the main results, we present two simple lemmas. The first lemma
is rather easy to verify and is stated without proof.
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LEMMA 1. If f and g are both non-negative, non-increasing (or non-decreasing),
and convex, then their product f g is also non-negative, non-increasing (or non-decrea-
sing), and convex.

Let

C
∗ = (2/)w(h)S +(2/)1− |h(1)|,
S
∗ = (2/)w(h)S +(2/)1− |h(0)|, (2.1)

where

S =
∫ /2

0
x sin(x)dx. (2.2)

LEMMA 2. Let C
j and  S

j be as defined in the Introduction and let C∗ and S∗
be as in (2.1) . Then

j |C
j | � C

∗ , j | S
j | � S

∗ .

The proof of Lemma 2 will be given later. Let

A( ) = 2 [1+ tan(/2)].

We now state our main results. The proof of Theorem 2 involves carefully bounding
the quadratic form Q =  j �=k c jckh jk by sum of two appropriate quadratic forms. The
first quadratic form uses Theorem 1 and the second quadratic form uses the well-known
Hilbert inequality for {( j− k)−1, j �= k} .

THEOREM 2. Let h jk be as in (1.2) . Then for any sequence {c j} of real numbers
with c2

j <  , we have
∣∣∣∣∣
j �=k

c jckh
C
jk

∣∣∣∣∣ � C
∗ A( )c2

j ,

and ∣∣∣∣∣j �=k

c jckh
S
jk

∣∣∣∣∣ � S
∗A( )c2

j .

We now write down another result involving {g jk} defined in (1.3). It’s proof is
simple.

THEOREM 3. Let g jk be as in (1.3) . Then for any sequence {c j} of real numbers
with c2

j <  , we have
∣∣∣c jckg

C
jk

∣∣∣ � C
∗ 2 sec(/2)c2

j ,

and ∣∣∣c jckg
S
jk

∣∣∣ � S
∗2 sec(/2)c2

j .



522 P. BURMAN

Here the sums include the diagonal elements.

REMARK 1. The constant A( ) behaves well as long as  stays away from 1.
However, as  approaches 1, A( ) →  . It is not possible to remedy this when  is
near 1 as can be seen when  = 1 and  j = −1

j , and in that case h jk =−( jk)−1/2 .

Take c j = −1/2
j , 1 � j � n and c j = 0 if j > n . The quadratic form with c2

j = 1 is
unbounded since

−
j,k

c jckh jk
/
c2

j = 
n


j=1

−1
j → .

as n →  .

REMARK 2. Focus of this paper is on the case 0 <  < 1. However, when  → 0,
the upper bounds in Theorem 2 become simple. When  → 0, A( ) → 2 , and the
upper bounds are

C
∗ A( ) → 4[w(h)+ |h(1)|], S

∗A( ) → 4[w(h)|+ |h(0)|].
REMARK 3. We are not aware of any nice simple formula for the integral S

given in (2.2) which appears in the expressions for C∗ and S∗ . However, the following
reasoning is suggested by the referee. For each x , x is convex in  , then so is S .
Since S0 = S1 = 1, we have S � 1. Consequently,

C
∗ � (2/)w(h)+ (2/)1− |h(1)|, C

∗ � (2/)w(h)+ (2/)1− |h(0)|.
REMARK 4. When  → 0, the upper bounds given in Theorem 3 converge to the

same limiting quantities listed in Remark 2 However, the bounds diverge to infinity as
 approaches 1. It is not possible to remedy this when  is near 1 as can be seen when

 = 1 and  j = −1
j , and in that case g jk = ( jk)−1/2 . Take c j = −1/2

j , 1 � j � n

and c j = 0 if j > n , then c jckg jk/c2
j is equal to n

j=1
−1
j which diverges to

infinity as n →  .

REMARK 5. Note that h jk = hk j and g jk = gk j . It then follows that we can obtain
Hilbert type inequalities for  j �=k c jdkh jk and c jdkg jk with the same upper bounds
given in Theorems 2 and 3, where c2

j <  and d2
j <  .

3. The proofs

Proof of Theorem 2. Denote j  j by  j , and we know from Lemma 2 that

sup
j
| j| � ∗,

where ∗ has two different expressions for cosines and sines. The proof involves bound-
ing the quadratic form Q = j �=k c jckh jk by the sum of two appropriate quadratic forms:
the first quadratic form uses Theorem 1 and the second quadratic form uses the Hilbert
inequality for {1/( j− k) : j �= k} . Note that h jk is equal to hC

jk in the cosine case, and

hS
jk in the sine case.
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We approximate  j by the geometric mean of  j and k and hence

 j = −
j  j = [−

j − ( jk)−/2] j +( jk)−/2 j

= [−/2
j −−/2

k ]−/2
j  j +( jk)−/2 j.

Therefore

 j −k = [−/2
j −−/2

k ]−/2
j  j +( jk)−/2 j

− [−/2
k −−/2

j ]−/2
k k − ( jk)−/2k

= −[−/2
k −−/2

j ][−/2
j  j +−/2

k k]+ ( jk)−/2( j − k).

We can write

Q = −
j �=k

c jck
−/2

k −−/2
j

j− k
[−/2

j  j +−/2
k k]( jk)/2

+
j �=k

c jck
 j − k
j− k

:= Q1 +Q2. (3.1)

Now denoting  jc j by d j , we have

Q2 = 2
j �=k

c jck
 j

j− k
= 2

j �=k

d jck
1

j− k
.

Use the Hilbert inequality for {( j− k)−1, j �= k} to get

|Q2| � 2
(
d2

j

)1/2 (
c2

j

)1/2 � 2∗c2
j . (3.2)

Noting that (−/2
k −−/2

j )/( j− k) > 0 for all j �= k , and denoting j− 1/2 by j1 ,
we have

|Q1| � 
j �=k

|c jck|
−/2

k −−/2
j

j− k

∣∣∣−/2
j  j +−/2

k k
∣∣∣( jk)/2

� ∗
j �=k

|c jck|
−/2

k −−/2
j

j− k
[−/2

j +−/2
k ]( jk)/2

= ∗
j �=k

|c jck|
−

k −−
j

j− k
( jk)/2

= ∗
j �=k

|c jck|k
−
1 − j−1

j− k
( j1k1)/2

= ∗
j �=k

|c jck|H( j1,k1),
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where

H(x,y) =
y− − x−

x− y
(xy)/2

Note that H is a nonnegative kernel of order  =−1 and H(x,x) = /x . We will show
that H satisfies conditions in part (b) of Theorem 1. In that case we will have

|Q1| � ∗
∫ 

0
H(1,y)y−1/2dy c2

j , (3.3)

where

∫ 

0
H(1,y)y−1/2dy =

∫ 

0

y− −1
1− y

y/2−1/2dy

=
∫ 

0

y−/2−1/2− y/2−1/2

1− y
dy

= 2
∫ 1

0

y−/2−1/2− y/2−1/2

1− y
dy := 2 J.

We now obtain an exact expression for J. Making a variable transformation y = exp(−t) ,
we have

J =
∫ 

0

exp((1/2+/2)t)− exp((1/2−/2)t)
1− exp(−t)

exp(−t)dt

=
∫ 

0

exp(−(1/2−/2)t)− exp(−(1/2+/2)t)
1− exp(−t)

dt

=
∫ 

0

[
exp(−t)

t
− exp(−(1/2+/2)t)

1− exp(−t)

]
dt

−
∫ 

0

[
exp(−t)

t
− exp(−(1/2−/2)t)

1− exp(−t)
−

]
dt.

Note that each of the two integrals above has Gauss’s integral representation of digamma
function  . Thus

J = (1/2+/2)−(1/2−/2)
= (1− (1/2−/2))−(1/2−/2)
=  cot((1/2−/2)) =  tan(/2),

where the last equality follows because of the reflection principle of digamma function,
ie,

(1− x)−(x) =  cot(x).

Therefore ∫ 

0
H(1,y)y−1/2dy = 2 tan(/2). (3.4)

Our result follows from (3.2), (3.3) and (3.4).
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What remains to show is that H(1,y)y−1/2 is decreasing and convex in y . Since
H(x,y) = H(y,x) , it follows that H(y,1)y−1/2 is also decreasing and convex in y .

Note that

H(1,y)y−1/2 =
y− −1
1− y

y/2−1/2 = f (y)g(y), with

f (y) =
y− −1
1− y

and g(y) = y/2−1/2.

Clearly, both f and g are non-negative. If we can show that both f and g are de-
creasing and convex, then their product f g is also convex by Lemma 1. Clearly, g is
decreasing and convex. We now show that f is also decreasing and convex.

The remainder theorem of calculus states that for any differentiable function p
with a continuous derivative p′ ,

p(x+h)− p(x) = h
∫ 1

0
p′(t(x+h)+ (1− t)x)dt.

Let p(x) = x− . Taking x = 1 and h = y−1, we have

y− −1 = (y−1)(− )
∫ 1

0
[ty+1− t]−−1dt

= (1− y)
∫ 1

0
[ty+1− t]−−1dt.

Hence

f (y) =
y− −1
1− y

= 
∫ 1

0
[ty+1− t]−−1dt.

For each t , [ty+ 1− t]−−1 is decreasing and convex in y , and therefore
∫ 1
0 [ty+ 1−

t]−−1dt is decreasing and convex in y . This completes the proof of the theorem. �

Proof of Theorem 3. If we follow the same notations in the proof of Theorem 2,
and denote c jckg jk by Q and ckk by dk , then

Q = 2c jdk
/2

j −/2
k

j1 + k1
= 2c jdkH( j1,k1),

and thus

|Q| � 2∗ |c j||ck|H( j1,k1)

where H(x,y) = x/2y−/2/(x+ y) . It is easy to check that the conditions of part (b)
of Theorem 1 hold. The result now follows from Theorem 1b once we use Euler’s
reflection formula to get

∫ 

0
H(1,y)y−1/2dy = Beta((1− )/2,(1+ )/2)= ((1+ )/2)((1− )/2)

= /sin((1+ )/2) =  sec(/2). �
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Proof of Lemma 2. We will give a detailed proof for the cosine case, and indicate
how the proof for sines is slightly different. In both cases  jC

j and  j S
j are split into

j integrals. The last integral for the cosine case involves approximation of h by h(1) ,
whereas the first integral in the sine case involves estimating h by h(0) . In each case,
the remaining j−1 integrals are approximated by using Hölder continuity of h .

For the cosine case, note that

 jC
j =

∫  j

0
h(x/ j)cos(x)dx =

j−1


t=1

It + I j, where

It =
∫ t

(t−1)
h(x/ j)cos(x)dx, I j =

∫ ( j−1/2)

( j−1)
h(x/ j)cos(x)dx. (3.5)

The last integral involves approximating h(x/ j) by h(1).
For the sine case, we split the integral  j S

j a bit differently

 j S
j =

∫  j

0
h(x/ j)sin(x)dx

=
∫ 1

0
h(x/ j)sin(x)+

j


t=2

∫ t

t−1

h(x/ j)sin(x)dx.

In the first integral h(x/ j) is approximated by h(0) .
We now provide details for the cosine case and write C

j as  j for notational
simplicity. We prove the case for j � 2 since the case for j = 1 is simple.

For any 1 � t � j−1, in (3.5) make a transformation x→ x− (t−1/2) = x−t

to get

It =
∫ t

(t−1)
h(x/ j)cos(x)dx

=
∫ /2

−/2
h(x/ j +t/ j)cos(x+t)dx

= (−1)t
∫ /2

−/2
h(x/ j +t/ j)sin(x)dx

= (−1)t
∫ /2

−/2
[h(x/ j +t/ j)−h(t/ j)]sin(x)dx.

Since ∣∣h(x/ j +t/ j)−h(t/ j)
∣∣ � w(h)|x/ j|

we have

|It | � w(h)−
j

∫ /2

−/2
|x| |sin(x)|dx = 2w(h)−

j

∫ /2

0
x sin(x)dx. (3.6)

Now consider the last term in (3.5). Making a variable transformation x → x− j , we
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get

I j =
∫ ( j−1/2)

( j−1)
h(x/ j)cos(x)dx (1)

=
∫ 0

−/2
h(x/ j +1)cos(x+ j)dx

= (−1) j
∫ 0

−/2
h(x/ j +1)sin(x)dx

= (−1) j
∫ 0

−/2
[h(x/ j +1)−h(1)]sin(x)dx+(−1) jh(1)

∫ 0

−/2
sin(x)dx

= (−1) j
∫ 0

−/2
[h(x/ j +1)−h(1)]sin(x)dx+(−1) j−1h(1). (3.7)

The integral in the last line of the displayed equation above can be bounded as

∣∣∣∣
∫ 0

−/2
[h(x/ j +1)−h(1)]sin(x)dx

∣∣∣∣
� w(h)−

j

∫ 0

−/2
|x sin(x)|dx = w(h)−

j

∫ /2

0
x sin(x)dx. (3.8)

Thus we have from (3.7) and (3.8)

∣∣I j
∣∣ � w(h)−

j

∫ /2

0
x sin(x)dx+ |h(1)|. (3.9)

From the upper bounds in (3.6) and (3.9), and the expression in (3.5), and denoting the

integral
∫ /2
0 x sin(x)dx by S we have

| j j| �
j−1


t=1

|It |+
∣∣I j

∣∣
� ( j−1)2w(h)S−

j +w(h)S−
j + |h(1)|

= 2( j−1/2)w(h)S−
j + |h(1)|

= (2/)w(h)S1−
j + |h(1)|.

Thus

j | j| � (2/)w(h)S +−1
j |h(1)| � (2/)w(h)S +(2/)1− |h(1)|. �
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