athematical
nequalities
& Papplications

Volume 27, Number 3 (2024), 529-548 doi:10.7153/mia-2024-27-36

APPROXIMATION BY DE LA VALLEE POUSSIN
TYPE MARCINKIEWICZ MATRIX TRANSFORM
MEANS OF WALSH-FOURIER SERIES

ISTVAN BLAHOTA

(Communicated by I. Peric)

Abstract. In the present paper, we discuss the rate of the approximation by the de la Vallée
Poussin type Marcinkiewicz matrix transform of Walsh-Fourier series in LP(G?) spaces (1 <
p <o) and in C(Gz). Namely, we prove

2
Ho-rz;,n(f) _pr < C;le;') <f72—\m\>

in some special cases. Moreover, we give an application for functions in Lipschitz classes
Lip(a,p,G?) (o> 0, 1 < p <o) and Lip(a,C(G?)) (o >0).

1. Definitions and notations

Let P be the set of positive natural numbers and N := PU{0}. Let denote the
discrete cyclic group of order 2 by Z,. The group operation is the modulo 2 addition.
Let every subset be open. The normalized Haar measure @ on Z, is given in the
way that u({0}) = u({1}) = 1/2. That is, the measure of a singleton is 1/2. G :=

kXOZ2, which is called the Walsh group. The elements of Walsh group G are the 0,1
sequences. That is, x = (xo,X1,...,Xk,...) with x; € {0,1} where k € N.

The group operation on G is the coordinate-wise addition (denoted by +), the
normalized Haar measure p is the product measure and the topology is the product
topology. For an other topology on the Walsh group see e.g. [10].

Dyadic intervals are defined in the usual way

Ih(x):=G, Li(x):={yeG:y=(x0,--sXn—1,Yn,Ynt1,---) }

for x € G, n € P. They form a base for the neighbourhoods of G. Let 0:=(0:i €
N) € G denote the null element of G and I, := I,,(0) for n € N.
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Now, we introduce some concepts of Walsh-Fourier analysis. The Rademacher
functions are defined as
re(x) = (=1)%,

where x € G and k € N. The sequence of the Walsh-Paley functions is the product
system of the Rademacher functions. Namely, every natural number n can uniquely be
expressed in the number system based 2, in the form

n= Zni2i, n; € {0,1},
i=0

where only a finite number of #;’s different from zero. Let the order of n € P be
denoted by |n| := max{j € N:n; # 0}. It means 2"l < n < 2/"*1. The Walsh-Paley
functions are wg := 1 and for n € P

H 7 — Zk 0"k

Two dimensional Fourier-coefficients, partial sum of the Fourier series and the nth
Dirichlet kernel is defined as

f(n',n? /fx A (w2 (P )du(xt x?),
G2
L_1n2-1

Snl,nz(f;xlﬁx2) = 2 2 f(] 2 J ) ( l)wjz(xz)a

In dimension 2, the Marcinkiewicz kernels are defined as follows
1 n
Hp(xtx?) = " Y Di(x")Di(x?)
k=1

Let T := (tx),,_, be a doubly infinite matrix of non-negative numbers. It is
always supposed that matrix T is triangular, so # , := 0 if kK > n. We also introduce
the notation Aty , :=tr , — 41,0, Where k € {1,...,n}.

Let us define the de la Vallée Poussin type Marcinkiewicz matrix transform means
and kernels as follows:

mn(fx x2 ztknskk fx x)
mnk m
K},;n(x )C ZtknDk )

mnk m
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where Ty, = Y7, tkn -
It is very easy to verify that

0 (i) = [, FOOK] (u-+ 2)dp(w)
where x := (x',x?) and u := (u',u?).
For two-dimensional variable (x',x>) € G* we use the notations

for any n € N.
Let us denote the set of Walsh polynomials P, with order less than n by &,
where

n—1
Pn = 2 CrWk
k=0

and ¢, k € {0,...,n— 1} complex numbers.
The two-dimensional Walsh polynomials are defined analogically. That is,

nl—1n?—1
Pn17nz(x1,x2) =y Y cj17jzwj1(xl)wjz(x2)
j1=0j2=0

and ¢ p, jtedfo,....n' =1}, j>€{0,...,n* — 1} complex numbers. Let us denote
the set of two-dimensional Walsh polynomials with order less than (n',1?) by Dot 2

Let L”(G?) denote the usual Lebesgue spaces on G> (with the corresponding
norm ..

For the sake of brevity in notation, we agree to write L™ (G?) instead of C(G?) and
set || f]|- := sup{|f(x)| : x € G*}. Of course, it is clear that the space L*(G?) is not the
same as the space of continuous functions on G2, i.e. it is a proper subspace of it. But
since in the case of continuous functions the supremum norm and the L (G?) norm are
the same, for convenience we hope the reader will be able to tolerate this simplification
in notation.

The partial modulus of continuity for f € L?(G?) are defined by

w;(f,é) ‘= sup Hf(xl +t7x2) _f(xlvxz)Hlﬂ

[t|<d

W2 (f,8) = sup F (o2 1) = f ),

with the notation
= X
x| := E{)F forall x € G,
=

and § > 0. In the case f € C(G?) we change p by oo.
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We define the mixed modulus of continuity as follows

0, (f,61,8)
= sup{[[ (. +x' s +2) = fAx ) = D)+ £ < 81 1P < S,

where 81,06, > 0.
The i-th Lipschitz classes in L”(G?) (for each o > 0) are defined as

Lip(cr,p.i,G) := {f € LP(G?) : w}(.8) = O(5%) as § — 0},

where i € {1,2}.

2. Historical overview

In classical book of F. Schipp, W. R. Wade, P. Simon, and J. Pal [28], on p. 191.
we can read inequality

s—1
los () = fllx <0 (£,27) + ¥ 270 (£,274), (M
k=0

where o is the Fejér mean operator, X is a homogeneous Banach space (for example
any LP space, where 1 < p < oo and the space of continuous functions C) and )
is the modulus of continuity for functions in X. Our paper is motivated by the work
of Moricz and Siddiqi [23] on the Walsh-Norlund summation method and the result
of Méricz and Rhoades [22] on the Walsh weighted mean method. Méricz and Siddiqi
[23], and later Méricz and Rhoades [22] in these papers proved their generalized results
in an analogous form to inequality (1). That was our aim in this paper, too, as you can
see in Lemma 13.

As special cases, Méricz and Siddiqi obtained the earlier results given by Yano
[35], Jastrebova [18] and Skvortsov [29] on the rate of the approximation by Cesaro
means. The approximation properties of the Walsh-Cesaro means of negative order
were studied by Goginava [16], the Vilenkin case was investigated by Shavardenidze
[27] and Tepnadze [31]. A common generalization of these two results of Mdricz and
Siddiqi [23] and Méricz and Rhoades [22] was given by Nagy and the author [6].

In 2008, Fridli, Manchanda and Siddiqi generalized the result of Méricz and Sid-
diqi for homogeneous Banach spaces and dyadic Hardy spaces [15]. Recently, the
author, Baramidze, Gat, Memic, Persson, Tephnadze and Wall presented some results
with respect to this topic [2, 9, 21]. See [14, 33], as well. For the two-dimensional
results see [8, 24, 25].

Matrix transforms means are common generalizations of several well-known sum-
mation methods. It follows by simple consideration that the Norlund means, the Fejér
(or the (C,1)) and the (C, o) means are special cases of the matrix transform summa-
tion method introduced above.

For matrix transforms means with respect to trigonometric system see e.g. results
of Chandra [12] and Leindler [20], to Walsh system see paper of Blyumin [11].
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‘We mention, that Iofina and Volosivets obtained similar — but one dimensional —
results on Vilenkin systems with similar assumptions using different methods (inde-
pendently form technics of Fridli, Méricz, Rhoades, Siddiqi and others) with respect to
matrix transform means in [17].

For Marcinkiewicz means and other two-dimensional results on Walsh-Paley sys-
tem see e.g. [5, 8, 25, 26].

De la Vallée Poussin means for Walsh-Paley system was introduced in [3], in a
special case. In general see [4]. For de la Vallée Poussin’s means in case of the trigono-
metric system see articles [19] and [30].

It is important to note that in the paper of Chripké [13] some methods and results
with respect to Jacobi-Fourier series gave us some ideas and used in this paper.

3. Auxiliary results

LEMMA 1. (Paley’s lemma [28], p. 7) For n €N

D ( ) 2717 l_f XEI}’H
nlXxX) =
2 0, if xél,.

LEMMA 2. ([28], p. 34.) For j,n € N, j < 2" we have
D2n+j = Don + rnDj.

The next lemma is also a simple one. It can be found in several articles in the
literature. See for example article [1].

LEMMA 3. For j,n € N, j <2" we have
Dzn,j = D2n — Wznlej.
In 2018, Toledo improved Yano’s [34] classical inequality.

LEMMA 4. (Toledo [32]) Forall n € N

17
K|l £ —

holds.

In this paper we will use only the boundedness of ||K,,||; .
The next lemma is a well-known result, for proof see for example [8].

LEMMA 5. (Blahota, Nagy, Tephnadze [8]) There exists a positive constant ¢
such that
%)l < ¢ forallneN.
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In the next lemma, we give a decomposition of the kernels K/ ,(x',x*), which is
performed according to the dyadic blocks within the index range.

LEMMA 6. Let m,n € P and suppose that |m| < |n|. Then we have

olml+1_
2
T I(m n D \mHlDz\mHl 2 t2‘m‘+lfk,n
k=1
almi+1_py 1

1 2
+ Wolm+1_1Walm|+1_4 2 A1‘2"”‘“—k—l.,nk‘}i7€

1 2 m|+1
+W2\m\+1, Wz\m\+171tm,n(2‘ | —m)%\mm

—m
2"”‘4’171/”71
i
_ZD \mHle\mHl > Aty gy KKy
k=1
3—i [m|+1 i
_ZDz\mHle\mHl ’mm(z —m) olml+1_y,
|n|_‘m|_ olml+j+1_4
+ 2 D2\m\+/+lD2\mH1+l 2 tz‘mH/*lJ,-k’n
j=0 k=0
[n|—|m| -2 olml+j+1_1
1 2
+ Y M|+ j+ 1 )+ 1 > Aty it g g gk Hk
j=0 k=1
Il > |41
. mi+jr+b _ .
+ 2 r|m\+j+1r\m|+j+1t2\m\+/+L17n(2 1)'%/2\m\+/+171
Jj=0
2 |n|—|m|-2 lml+j+1_o '
1
+2 2 Dz\mH/HrImHHl 2 At2\”’\+f+1+k,nkKk
i= J k=1
2 I"I—\ml—

[m|+j+1 _ i
+2 2 Dg\mH/Hrlm\+/+1t2\m\ﬂ+2 Ln (2 I)szmwm,l
s

n—2nl n—2lnl
1 2 1.2
FDyu D3 Y, lalpon T Tl Dy Ayl g ok Hi
k=0 k=1

n—2ln
+ ZDz\n\ r|n| 2 At2\"\+k7nkKllc
k=1

= 2 Ki,m,w
i=1

Proof. Divide the kernel function Kf,;n into parts:

olm|+1_1 |n|71 2Jj+1l_

TunKh,= Y u.DIDF+ Y Y tlnDlD,—i— Z t1..D} D}
I=m j=lm|+1 =2/ =2l

Ky, + Ko, +KS.
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Now, we apply Lemma 3 for the expression K7, , and Lemma 2 for K%, and K<. We
get

olml+1_p,
A 1 2
Km,n - 2 t2‘m‘“—k,nD2\m\+l_sz\mHl_k
k=1
olml+1_
_ 1 1 1 2 2 2
- 2 t2\”1\+l_k’n (Dz\mHl _W2\m\+171Dk> (D2\m\+l _Wz\mHllek)
k=1
olml+1_ olm|+1_,,
_nl 2 1 2 112
- Dz\mHlDz\mHl 2 t2"”‘+17k7n +W2\m\+lilw2\m\+lil 2 t2\m\+17k7nDka
k=1 k=1
2 olmi+1_py
3—1 i i
- zDz\m\+1W2\n1\+171 2 tz\mHl_k’nDk.
i=1 k=1
Using the Abel-transform we obtain for Di, i € {1,2} and D}D?
Z\anl_m z\mHl_m_l
i i m|+1 i
2 tz\mHl_k,nDk = 2 Atz\m\ﬂ_k_LnkKk +tm,n(2‘ I+ m) olml+1_
k=1 k=1
20+, 2lml+l 1
112 _ +1
2 12‘m‘+17k7nDka — 2 At2‘m‘+17kfl,nk% + tm’n (2|m‘ — m)’%‘mHlfm'
k=1 k=1
B
Let us see K, ,
[n[=1 2/—1 )
>y Y Ditkn 2J+kD2/+k
Jj=|m|+1 k=0
[n[—1 2/—1 ) )
— . 1 11l
= X 2 tikn Dy +1iDx) (D3 + D)
=|m|+1 k=0
[n]—1 ) 21 [n|—1 21',1 5
_ 1 ) 1
= Y DD 2 Djyknt > r k 2 i1k nDiDi
Jj=|m|+1 \m|+1 k=1
2 |n|-1 271
3 . i
+Y X rJDZJ Y iknDi
=1 j=|m|+1 k=1
|n|—|m|—2 2lml+j+1_q
_ 1 2
- 2 D2\m\+j+lD2\mHj+l 2 t2""‘+f+1+k7n
j=0 k=0
[n|—|m|—2 olml+j+1_1
+ r r Yt DlD?
[m|+j+1" |m|+j+1 20ml+j+1 4k n Pk k
j= k=1
2 I"Ii‘ml 2\n1\+j+171

i
+ 2 r\m|+1+1D2\m\+J+1 2 Lyl 4 g o Do
i=1 j=0 k=1
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Using the Abel-transform for D, i € {1,2} and D} D?

2\m\+j+1_1
i
Y e Di
k=1
2\m\+j+l_2
_ i m|+j+1 i
= 2 Atz\mHjJrl_,’_k’nkKk+t2\m\+j+2_1’n(2‘ I+ -1) Smli+1_ 1o
k=1
2\n1\+j+171
S i, DiDR
2‘nl‘+j+l+k7n i
k=1
olml+j+1_o
+j+1
= 2 At2\”’\+f+1+k,nk‘%/]€+t2‘m‘+/‘+2—1’n(2‘m| Jrb_ 1)%‘m‘+j+l_l
k=1
Similarly,
n—2ln
C __ 1 2
Ky, = 2 t2‘"‘+k,nD2\n\+kD2\n\+k
k=0
n—2ln
_ 1 1 1 2 2 "2
= Y bliliin (Dzw +’\n\Dk> <D2\n\ +"|n|Dk>
k=0

n—2lnl n—2l
_nl 2 1 2 112
=D, D3 D% il on Tl ) D ol nDDR
fary fary

2 n—2ll

3—1.i i
+2D2\n\ un > Bl Pk
i=1 k=0

Using #,11, =0, for Di, i € {1,2} and D}D} the Abel-transform again, we obtain

n—2ln

n—2lnl—1
i i n 1
];1 t2‘"‘+k,nDk = ,;1 Atz\n\_i_k’nkKk—Ftn’n(n —2l ‘)anz\n\
n—2ln

= 2 At2\"\+k,nkK/i’
k=1

n—2lnl n—2lnl—1
112
Y b DADE = Y, Aty ki tan(n—21") 8,
k=1 k=1
n—2ln

= 2 At2‘"‘+k,nk%'
k=1

It completes the proof of Lemma 6. [J
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LEMMA 7. Let m,n € P and suppose that m < n, but |m| = |n|. Then we have

2lmlH+1_py
Tm,nKnT; Dz\mHlDi\mHl 2 Lolml+1 _g
k=1
2lml+1_py 1
AWl Wam D Atyjms1 gy ykHi

k=1
1 2 m|+1
+wz\mHl_lWz\mHl_ltm,n(Z‘ | _m)%\mHl_m

olml+1_

2
i 3—i 3—i
- 2 Dz\mHl wz\mHl,l 2 AtZ‘mHl—k—l,nkKk

. [m|+1 3—i
2 DQ\mHlWZ\m\H e )Kz\mHl_m

i=1

Proof. Since ;. , = 0 if k> n, we get from the proof of Lemma 6, that in this case

, 2\m\+171 L \
Tmn[{mn = 2 tlJlDlDl :Km,n' U

l=m

LEMMA 8. (Nagy [24]) Let P € P 5, f € LP(G?), where A\B€ P and 1 <
p < oo, Then there exists a positive constant ¢ such that

l

with the notation x = (x',x*) € G*.

<cllPlhey?(f274,277),

LU0 = Ol ) P3) (o)

p

LEMMA 9. (Blahota and Nagy [7]) Let P € P,a, f € LP(G*) (1 < p <) and
A €P. Then

/G2 (f(A+2) = F()Do (™ ra ()P ) (x)

<2|Pliwy(f.274),
p

where i € {1,2}.

Next two lemmas can be proved similarly to the cases Lemma 8 and Lemma 9, but
using the following method based on Watari’s estimation is simpler.

with the notation x = (x',x*) € G*.

LEMMA 10. Let P € P 5, f € LP(G?), where A,BEP and 1 < p < oo. Then

L0 = PO s ()P ()

<|Plliwy*(f,274,278),
P
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Proof. We carry out proofs of this lemma and the next one in spaces L”(G?) (1 <

p < ). In the space C(G?) the proof is similar, it is even simpler.
Because of the orthonormality of the Walsh-Paley system

/G wansy (3)wame - () P(x)dp(x) =0 )
holds. Since Sy ,s(f) € Py s, using equality (2) twice we obtain
L0 = @) wanir (5 wasir 4 ()P ()
= [ s (6P
= [0 = Sy (3t 3)warer (6 waser (PR,

So, by the generalized Minkowski inequality it follows

L 0= 10w s PRI,

(b

e (6wt (PR du(r))

L a0 =S (Fi1-4.2)

1/p
P
< [ (L lreen-suantru o] au®) " pauco
The two-dimensional version of the Watari-Efimov inequality says
| =Santr)| | <op2r.2%27%),

so this completes the proof of Lemma 10. [

l

where i € {1,2}.

LEMMA 11. Let P € Py5, f € LP(G?) (1 < p <o) and A,B € P. Then

/Gz (F(A4x) = F()Dya1 () wypar y ()P ) (x)

<|Plhop(£,27%),
P

Proof. Using Paley’s lemma (Lemma 1) and the Watari-Efimov inequality this
proof is similar to the proof of Lemma 10. [

The next lemma is a special case of the main result of paper [7], there was named
as Theorem 1. (See also [8]) On the other hand, we use only a part of that statement,
only for non-decreasing 7, sequences. On that paper authors used another definitions
and notations. We cite it with our forms.
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LEMMA 12. (Blahota and Nagy [7]) Let f € LP(G?), where 1 < oo and n €
IP. Let the finite sequences {1, : 1 < k < n} of non-negative numbers be non-decrea-
sing for all n. We suppose that

n
2 tkn = 1
k=1

and
tn,n - O(n_l).
Then
2 |n|— 2
lofu() = fllp < e X, 2 Yty ,0h (£,277) +e X @) (£.277).
i=1 j=0 i—1

The statement of next lemma has mostly analogous form as inequality (1), Lemma
12, results of Méricz, Siddiqi [23] and others.

LEMMA 13. Let f € LP(G?), where 1 < p < oo and m,n € P, where |m| < |n|.
Let the finite sequences of non-negative numbers {t , : m < k < n} be non-increasing
for all n. We suppose that

= 0(m™) ©)
hold. Then
2 |n|—|m|-2 ) -
H mn f” 2 2 2|m\+/+ tz\mHJH ;;(fazi‘mliji )

+c2w§, (f,2*‘m|>.
i=1

Proof. We prove the lemma for LP(G?) spaces 1 < p < . For C(G?) the proof
is similar. Let us set f € LP(G?). It follows

o) 11, = ([ lorﬁ,n<f;x>—f<x>|pdu<x>>'l’
U

<> /G i 0 (F(+1) = £ ()

==

pdu(X))

[ K0~ )

p

immn-

Using generalized Minkowski’s inequality [36, vol. 1, p. 19] and inequality
feetu) = fOOI IO +ul o +0) = f o)+ ul2%) = fad 02|
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we write that for any j € N

L, Do D ()4 10) = £))dn )

p
1

< [ 2a ) ([t =g an(s)) duto

2 . .
<Y (£,27). 4)
i=1

Applying inequality (4), Lemma 1 for the expressions i, lomn and Iigm,n, we
obtain that

olml+1_

m 2
i —|m|—1
Il,m,n < 2 t2\m\+l,k7n 2 (Dp (faz | )
k=1 i=1
2 2\m\+1_1
i —|m|—1
<Y o, (f,2 | ) Y ten
i=1 k=m
2 .
< Ty 3, 00 (fI""‘) :
i=1
2 |n|—|m|-2 olm|+j+1_1
. ml—ie1
Iomn < ), @) (f 27 ) D ity
i=1 j=0 k=0
2 |n[=|m|-2 - -
< 2 (1);7 <f»2_‘m|_j_ ) 2‘m|+j+ t2\m\+j+l.’n
i=1 j=0

and

n—2lnl 2

It < 2 Lol e Zw; (f’2—|"|>
k=0 i=1

2 n
<Y o), <f,2_‘n‘> Y ten
i=1

k=2lnl
2 .
< Tun Y, 0 (f,zflm\) )
i=1

We discuss expressions 19, ,,110,m,, and I3 ,,, based on Lemma 4 and Lemma

9.
We get

2 \n\7|m\722\m\+i+1,2

. Ciml—i1 .
Ig’m.’n é Cz 2 At2‘m‘+j+1+k7n k(l);, (f,2 |m‘ J ) HK;CHI

i=1 j=0 k=1

2 \n\7|m\722\m\+i+1,2
i —|m|—j—1

S C 2 Atz‘n7‘+j+l+k7n kwp (f,Z I ‘ J ) .

=1 j=0 k=1
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We write
olml+j+1_» olml+j+1_»
_ m|+j+1
> ‘Atz\mwmrk,n k=3 tz\m\+i+1+k,n_(2| I —2)bymitita_y
k=1 k=1
2\m\+j+172
+j+1
< t2\m\+/+1+kn 2\m| T tz\mHjJrlJl
k=1
and

2 |nl=ml—

2
1 . il i1
19"’”’" < Cz 2 2|m\+]+ t2\m\+]+1,nwll7 (faz Iml=J > .

=1 j=0

Since Dmftj+2_1 5 S Dimf+ji1 5 €3SY 1O see that

2 |n|—|ml|—

il | j—1
homn<€Y Y oy, — 1o <f2 ] — j— )H L lHl
=1 j=0

2 |nl=ml—

2
+j+l ' —|m]|—j—1
<X X e (£27).

i=1  j=0
Now, we estimate the expression /13 ;. -
2 p—2lnl

Il3mn Cz 2 ‘At2\"\+kn

i=1 k=1

2 2\ |
<eY o) (f,z—\n\> )Atz‘nukﬁ
i=1

We obtain

n— 2‘"‘ n—2ll

)Atz\"hrkn
i1

Z byl s kom

< 2 lkn = Tm,n
k=m

and

2
Il3,m,n < CTmJ, 2 (D;, (f’2*|"|>
i=1

2
< Ty Y 0} (f,ylm\) .
i=1

k.

o} (1:27)

541

&)

For estimating expressions 17, ,,18 ., and I12,,, we will use Lemma 12 and



542 1. BLAHOTA

Lemma 8. At first

In|—Jm|—22lm+1
I7,1n,n < 2 2 ‘Atz\mHjHJrkﬂ

kop? (f,27 I 27y g

j=0 k=1
|n|—|m|—2 olml+j+1_n
12 —|m|—j—1 ~—|m|—j—1
<c 2 ®, (f,z m|—j 2 m|—j ) 2 Atz‘mHjHJrkﬁ k,
j=0 k=1

and using inequality (5) follows

|n|—|m|=2

+j+1 1,2 —|m|—j—1 ~A—|m|—j—1
I7,m7n <c 2 2|m‘ 7 t2"’"+/+1’nw ’ (f,2 Im|—j 72 |m[—j ) .
Jj=0

Let us see Ig ,,, ,. We obtain

|| —m|=2

j+1
Ig mn <c 2 t2‘m‘+j+271,n <2|m\+./+ _ 1)
Jj=0

< o2 (ﬂz—\ml—j—l,2—\’"|—f"1> (| g1 ||

|| —|m|—2

m|+j+1 1,2 —|m|—j—1 ~A—|m|—j—1
< Y ,ﬂmwﬂﬁnzw it ) <f72 ml=j=1 ol )
Jj=0

Let us investigate the expression 12, ,, .

n—2ln
IlZ,rn,n <c 2 ‘At2‘”‘+k,n
k=1

ko (7,271,270 g

n—2ll

< cw;’z (f’2—|"|’2—|"|> 2 )Afg\nuk.n
=1 '

As in case 113 ,,,,, We obtain

k.

1127"17" < CTm,nw;Q <f727|m\727|m‘> .

For proving estimates of 15 ,,, and I3, we will use Lemma 5 and Lemma 10.

2lml+1 1
12 - -
ban<e X Bty kop? (£27 270 gl
k=1
almi+1 1
12 - -
<C(Dp’ (f,2 Im‘,z Im‘) 2 ‘Atﬂ’"‘“—k—l,n k.
k=1
We have
2lmlH 1 2lml+l 2
1
> ’At2"”\+17k71,n k=— Y tz\rnHLlcq,n"‘fm.,n(zlmH —m—1)
k=0 k=0

<t (2"”‘“ —m— 1),
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from condition (3)
Doyn < cth,ma);’2 (f,z—\’“|’2—|m\>
< cTaop? (f,27 0, 270)
and

Bopn < Ctm7n(2‘m|+1 _ m)wlil (f,zf\m|’2’|m\> ||<}£/2\m\+1_m||1

< Clymor}? (f,T"“‘ ,2"’”')
< cTya0)? (f.27,271).

Last two parts are Iy, , and s, ,. Their estimations are based on Lemma 4 and
Lemma 11. Indeed,

2 2lml+l_py_q
Lymn <, ‘Atﬂm‘“fkfl,n
=1 k=1

2 2+l

op(r27") 3 I%\m\mkq,n

1 k=1

koo (.27 |1l

k,

<c

1

which is a similar expression what we obtained in case I ,,, ,, so analogously

2
I4,m,n < CTm,n 2 w[z) (f72_|m‘> .
i=1
Since

2 .
Ismn < Cz‘ztm.,n(z‘ml-‘rl - m)wll’ (f’z_w) H’%"’"“—mul
i=1

2

< Cztm,nmwlig (f72_|m‘> )

i=1

from condition (3) we get

2
B < T Y0 (£,277)
i=1

immediately, as in case 13 ., -
At the end, inequality

2
w2 (f2742) <Y o) (£,274)
i=1

(it needs in cases 1 5,13 mn> 17, mn-18 mn and Iy ) completes the proof of Lemma
13. 0O
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4. The rate of the approximation by 7 -means

COROLLARY 1. Let f € LP(Gz)7 1 < p <o and mn €P, where m < n. Let the
finite sequences {1y, : m < k < n} of nonnegative numbers be non-decreasing for all
n. We suppose that

=00 ©

holds. Then

loma () =11, cZw (£:27).

Proof. The proof is a simple consequence of Lemma 12.
Namely, in the statement of Lemma 12 let us choose t1, 1= ... :=t,_1, = 0.
Then, using monotony and condition (6) we get

o7 (f) = Fllp = 0L u(F) = flp

2 |n|—1 ' - | , |
s Tnn ) 20 Yty ,0, (f,277) +c Y o (f’2*|n|>
T i=1
2 |n|— , |
T 2 2 ZJZ‘QJH 1,n p(f; )-i-cZwIl) (f,Z*\”\>
M =1 j=|m| P

2 2
C ; _ ; _
<7- nt,,,n'§ o (f,z |’”‘)+c.§j o (f,z |"|)

m,n

<cS o (r2 ) +eop (r27)

i=1
2
Z <f - Im\> O
LEMMA 14. Let f € LP(G?), where 1 < p < oo and m,n € P, where m < n,

but |m| = |n|. Let the finite sequences of non-negative numbers {ty, :m <k < n} be
non-increasing for all n. We suppose that

holds. Then

loma(H =11, cZw (r.27).

Proof. Tt is trivial, according to Lemma 7 and the proof of Lemma 13 in cases
Il7m,na~~~7157m,n' U



APPROXIMATION BY DE LA VALLEE POUSSIN TYPE MARCINKIEWICZ... 545

THEOREM 1. Let f € LP(G?), where 1 < p < e and m,n € P, where |m| < |n|.

Let the finite sequences {ty, : m < k < n} of nonnegative numbers be non-increasing
for all n. We suppose that

Z‘m,n

Tm,n

=0(m~ 1)
holds. Then

lom, (=11, cZw (£27).

Proof. The proof is a consequence of Lemma 13.
We using inequality

2lml+j

Dimlj+1 , <2 2 Lylml+iyin
i=1

2\m|+j+l

for je{l,...,|n|—|m|—2} and

2lml
1
2‘m|+ tz\mHl’n g mtm7n + 2 t2\n1\+i’n~
i=m—2lml 41
So
|n|—|m|—2 - . 2lm| || —|m|—22Im+i
i+
2 2" ey <mtmnt D b2 DD i
j=0 i=m—2lml 11 =1 =l
2lnl=1
< CTm,n +2 2 Ikn
k=m
< T+ 2T, = cThy .
It implies that
[ N2
T— 2 Z‘ml jt lz\n7\+1+l 2(1) (f 2 |m‘7/ ) < CE:(!)II7 (f 2 |m‘> D
m,n j=0

At the end of this section we summarize our results.

COROLLARY 2. Let f € Lp(Gz), where 1 < p < e and m,n € P, where m < n.
Let the members of the finite sequences {ty, : m < k < n} be non-negative numbers. If
the finite sequence {1, : m < k < n} is nondecreasing for all n, then we suppose

thn -1
— =0(n
Ton (n™)
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and if the finite sequence {ty, : m < k <n} is nonincreasing for all n, then we suppose

Then
2 .
HGmT,n(f) _pr < CZ w; (f’zflm\>
=1

holds, where ¢ depends only on p.

5. Application

THEOREM 2. Let f € Lip(a, p,G?), where 1 < p < oo for some o >0 or f €

Lip(a,C(G?)). For the de la Vallée Poussin type Marcinkiewicz matrix transform o,

we suppose that the corresponding conditions in Corollary 2 are satisfied. Then

[0mn(f) = fIl, = O(m™).

Proof. Ttis a simple consequence of Corollary 2 for Lipschitz functions. [

A very specific case can be formulated as a statement - or rather as an example -
one may say, concerning de la Vallée Poussin means.

EXAMPLE 1. As a special case, let

lin =

9

(gm)~!, ifm<k<n,
0, otherwise ,

where ¢ >0 and n:= |(¢+ 1)m| — 1. In this case we get the rate of the norm conver-
gence of de la Vallée Poussin mean for Lipschitz functions, namely if f € Lip(ct, p,G),
then

=0(m™%).
P

1 n
q—mIZ;nSk,k(f) —f

Proof. This statement is a simple corollary of Theorem 2. [

Although outside the scope of this manuscript, we believe that the methods of this
paper could be used to investigate the almost everywhere convergence of the corre-
sponding means. For the specific case of de la Vallée Poussin’s means (for the trigono-
metric system) in question, see articles [19] and [30].

Acknowledgement. The author would like to thank the anonymous reviewer for
his/her valuable help improving the article.
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