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SUBSPACE–HYPERCYCLIC CONDITIONAL WEIGHTED

COMPOSITION OPERATORS ON Lp –SPACES
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(Communicated by S. Varošanec)

Abstract. A conditional weighted composition operator Tu : Lp() → Lp(A ) (1 � p <  ), is
defined by Tu( f ) := EA (u f ◦ ) , where  : X → X is a measurable transformation, u is a
weight function on X and EA is the conditional expectation operator with respect to A . In
this paper, we study the subspace-hypercyclicity of Tu with respect to Lp(A ) . First, we show
that if  is a periodic nonsingular transformation, then Tu is not Lp(A ) -hypercyclic. The
necessary conditions for the subspace-hypercyclicity of Tu are obtained when  is non-singular
and finitely non-mixing. For the sufficient conditions, the normality of  is required. The
subspace-weakly mixing and subspace-topologically mixing concepts are also studied for Tu .
Finally, we give an example which is subspace-hypercyclic while is not hypercyclic.

1. Introduction and preliminaries

Suppose that T is a bounded linear operator on a topological vector space X .
If there is a vector x ∈ X such that the orbit orb(T,x) := {Tnx : n = 0,1,2, . . .} is
dense in X , then T will be hypercyclic and x is called a hypercyclic vector. Here, Tn

stands for the n -th iterate of T and T 0 is the identity map I . Let M be a closed and
non-trivial subspace of X . An operator T is subspace-hypercyclic with respect to M
(M -hypercyclic), if there is a a vector x ∈ X such that orb(T,x)∩M is dense in M .
Also an operator T is subspace-transitive with respect to M , if for any non-empty open
set U,V ⊆M , there exists an n∈ N such that T−n(U)∩V contains an open non-empty
subset of M . An operator T is subspace-topologically mixing with respect to M , if
for any non-empty open set U,V ⊆ M , there exists an N ∈ N such that T−n(U)∩V
contains an open non-empty subset of M for each n � N . It is called subspace-weakly
mixing if T ⊕T is subspace-hypercyclic with respect to M⊕M .

The study of subspace-hypercyclic linear operators was initiated by B. F. Madore
and R. A. Martı́nez-Avendaño [25]. They found out that subspace-hypercyclicity like
as hypercyclicity, can occur only on infinite-dimensional spaces and even subspaces.
Also, they proved an interesting Kitai’s type subspace-hypercyclicity criterion on a
topological vector space as follows.

Assume that there exist D1 and D2 , dense subsets of M , and an increasing se-
quence of positive integers (nk) such that
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• Tnkx → 0 for all x ∈ D1 ;

• for each y∈D2 , there exists a sequence {xk} in M such that xk → 0 and Tnkxk →
y ;

• M is an invariant subspace for Tnk for all k ∈ N .

Then T is subspace-transitive and hence is subspace-hypercyclic [25, Theorem 3.6].
But the converse is not true, see [24, 29] for more details. Further, it is showed that the
compact or hyponormal operators are not subspace-hypercyclic.

For the dynamics of linear operators the survey articles [1], [8], [25], [28], [30],
[32] and the books [6], [17] are useful.

Let (X ,,) be a complete  -finite measure space and A is a  -finite subalge-
bra of  . For each 1 � p <  , the Banach space Lp(X ,A ,|A ) is denoted by Lp(A )
simply. All comparisons between two functions or two sets are to be interpreted as
holding up to a  -null set. The support of any -measurable function f is defined by
( f ) = {x ∈ X : f (x) 	= 0} . The characteristic function of any set A and the class of
all A -measurable and simple functions on X with finite supports will be denoted by
A and SA (X) , respectively.

A -measurable transformation  : X → X is called non-singular whenever  ◦
−1 is absolutely continuous with respect to  , which is symbolically shown by  ◦
−1 
  . In this case, Radon-Nikodym property is denoted by h := d◦−1

d .
A -measurable transformation  : X → X is called periodic if m = I for some

m ∈ N . It is called aperiodic, if it is not periodic. Also, if for each subset F ∈  with
finite measure, there exists an N ∈ N such that F ∩n(F) = /0 for every n > N , then
 is called finitely non-mixing.

Set  =
⋂

n=1−n() and suppose that h is  -measurable. The assumption
 ◦−1 
  implies that  ◦−n 
  for all n ∈ N and then

hn : =
d ◦−n

d
=

d ◦−n

d ◦−(n−1) · · ·
d ◦−1

d

= (h ◦−(n−1)) · · · (h ◦0) =
n−1


i=0

h ◦−i.

Note that always h ◦ > 0 and hn = hn whenever h ◦ = h . When it is restricted to a

 -subalgebra A , is denoted by hA
n = d(◦−n|A )

d(|A ) .
The change of variable formula∫

−n(A)
f ◦nd =

∫
A
hn f d , A ∈ , f ∈ L1(),

will be used frequently.
When () ⊆  and  ◦ 
  , then a measure  is called normal with respect

to  and in this case h� = d◦
d is defined. Now, consider that

h� =
(

d
d ◦

)−1

=
(

d ◦−1

d
◦

)−1

=
1

h ◦
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and

h�
n : =

d ◦n

d
= (h� ◦(n−1)) · · · (h� ◦0) =

n−1


i=0

h� ◦ i =
n


i=1

(h ◦ i)−1,

h�
n ◦ > 0, h�

n+1 = h�h�
n ◦ .

Let 1 � p �  . For any non-negative -measurable functions f or for any f ∈
Lp() , Radon-Nikodym theorem, ensures the existence of a unique A -measurable
function EA ( f ) such that

∫
A
EA ( f )d =

∫
A

f d , for all A ∈ A .

A contractive projection EA : Lp() → Lp(A ) is called a conditional expectation op-
erator associated with the  -finite subalgebra A .

Here, we list some useful properties of the conditional expectation operator:

• EA (1) = 1;

• If g is A -measurable, then EA ( f g) = EA ( f )g ;

• |EA ( f )|p � EA (| f |p) ;
• For each f � 0, ( f ) ⊆ (EA ( f )) ;

• Monotonicity: If f and g are real-valued with f � g , then EA f � EA g ;

• For each f � 0,EA ( f ) � 0.

• hn+1 = hE−1()(hn)◦−1 = hnE−n()(h)◦−1 [20].

A detailed information of the condition expectation operator may be found in [19, 23,
26, 27].

A weighted composition operator uC : Lp() → Lp() defined by f �→ u f ◦
is bounded if and only if J ∈ L() , where J := hEA (|u|p) ◦−1 , and in this case
‖uC‖p = ‖J‖ (see [20, 21, 31]).

Now, we are ready to define a conditional weighted composition operator Tu by:

Tu : Lp() → Lp(A )

Tu f := EA ◦ uC( f ) = EA (u f ◦).

For the fundamental properties of the conditional type operators, the reader is refereed
to [13, 14, 15, 16].

The hypercyclicity of the well-known operators such as weighted shifts, weighted
translations, conditional weighted translations and weighted composition operators in
different settings has been studied in [1, 3, 4, 5, 7, 8, 11, 30, 32]. Recently, the space-
ability of the set of hypercyclic vectors for shift-like operators has been studied in [12].

Separability and infinite-dimension are two essential objects for the underlying
space to admit a hypercyclic vector [6, 17]. To that end, it is important to know that
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Lp(X ,,) is separable if and only if (X ,,) is separable, i.e., there exists a count-
able  -subalgebra F ⊆  such that for each  > 0 and A ∈  we have (AB) < 
for some B ∈ F . For more details consult [26].

In this paper, we will survey the dynamics of a conditional weighted composition
operator Tu = EA (u f ◦) on Lp() spaces. First, we prove that Tu cannot be Lp(A )-
hypercyclic if  is a periodic non-singular transformation. In addition, the necessary
conditions for the subspace-hypercyclicity of Tu are then given provided that  is non-
singular and finitely non-mixing. For the sufficient conditions, we also require that 
is normal. The subspace-weakly mixing and subspace-topologically mixing concepts
are also studied for Tu . At the end, about what we argued, an examples is given.

2. Subspace-hypercyclicity of Tu on Lp()

In this section, the Lp(A )-hypercyclicity of a conditional weighted composition
operator Tu is studied. When  is periodic transformation, it is seen that Tu is not
Lp(A )-hypercyclic. But, when it is aperiodic, by Kitai’s subspace-hypercyclicity cri-
terion we obtain some necessary and then sufficient conditions for Tu to be subspace-
hypercyclic. We are thankful to the techniques used in [11, 30].

THEOREM 1. Let  be a periodic non-singular transformation and −1A ⊆
A . Then a conditional weighted composition operator Tu : Lp() → Lp(A ) is not
subspace-hypercyclic with respect to Lp(A ) , for each 1 � p <  .

Proof. Suppose that there exists an m ∈ N such that m = I . Since −1A ⊆ A ,
the orbit of Tu at each f ∈ Lp() is written as follows:

orb(Tu, f ) = { f ,Tu f , · · · ,Tm
u f}∪{Tm+1

u f ,T m+2
u f , · · · ,T 2m

u f}∪ · · ·
∪{Tkm+1

u f ,T km+2
u f , · · · ,T (k+1)m

u f}∪ · · ·

=
{

f ,EA (u f ◦),EA (u)EA (u f ◦)◦ , · · ·,
m−2


i=0

EA (u)◦ iEA (u f ◦)◦m−1}

∪{m−1


i=0

EA (u)◦ iEA (u f ◦),
m−1


i=0

EA (u)◦ iEA (u)EA (u f ◦)◦ , · · · ,
m−1


i=0

EA (u)◦ i
m−2


i=0

EA (u)◦ iEA (u f ◦)◦m−1}

∪{
(
m−1


i=0

EA (u)◦ i)2EA (u f ◦),(
m−1


i=0

EA (u)◦ i)2EA (u)EA (u f ◦)◦ , · · · ,

(
m−1


i=0

EA (u)◦ i)2
m−2


i=0

EA (u)◦ iEA (u f ◦)◦m−1}∪
...
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Now we consider that ‖m−1
i=0 EA (u) ◦  i‖ � 1. Since ‖Tu‖ � ‖J‖1/p

 , ‖Tn
u ‖ �

‖Tu‖n � ‖J‖n/p
 , and for each n ∈ N we have

‖Tn
u f‖p � max{‖ f‖p,‖EA (u f ◦)‖p,‖EA (u)EA (u f ◦)◦‖p, · · · ,

‖
m−2


i=0

EA (u)◦ iEA (u f ◦)◦m−1‖p}

� ‖ f‖p max{1,‖J‖
1
p
,‖J‖

2
p
 , · · · ,‖J‖

m−1
p

 }.

Therefore, orb(Tu, f ) is a bounded subset and cannot be dense in Lp(A ) .
In the second case ‖m−1

i=0 EA (u)◦ i‖ > 1, assume that Tu is subspace-hyper-
cyclic with respect to Lp(A ) . Then there exists a subset F ∈ A with 0 < (F) < 
for each  > 0, such that |m−1

i=0 EA (u)◦ i|> 1. Then there is a subspace-hypercyclic
vector f ∈ Lp(A ) and n ∈ N such that

‖ f −2F‖p <  and ‖(Tm+1
u )n f‖p < .

We set S = {t ∈ F : | f (t)| < 1} and note that S � S| f − 2| � S| f − 2F | . Thus,
(S) <  p . On the other hand,

 p > ‖(Tm
u )n f )‖p

p =
∫

X
|
mn−1


i=0

EA (u)◦ i f ◦mn|pd

=
∫

X
|
m−1


i=0

EA (u)◦ i|np| f |pd �
∫

F−S
| f |pd � (F−S).

Therefore, (F) = (S)+ (F−S) < 2 p , which is a contradiction. �

REMARK 1. If  is a periodic non-singular transformation, −1A ⊆ A and
u = 1, then a conditional composition operator Tu f = EA ( f ◦ ) is not subspace-
hypercyclicwith respect to Lp(A ) either. Since its orbit at f ∈ Lp() i.e., orb(Tu, f ) =
{ f ,EA ( f ◦),EA ( f ◦)◦ ,EA ( f ◦)◦2 · · · ,EA ( f ◦)◦m−1} is a bounded sub-
set. Indeed,

‖Tn
u f‖p � ‖ f‖p max{1,‖h‖

1
p
,‖h‖

2
p
 , · · · ,‖h‖

m−1
p

 }.

COROLLARY 1. Suppose that A = −1 and  is a periodic non-singular trans-
formation. Then

orb(Tu, f ) =
{

f ,E−1(u) f ◦ ,E−1(u)E−1(u)◦ f ◦2, · · · ,
m−1


i=0

E−1(u)◦ i f
}

and hence Tu is not subspace-hypercyclic with respect to Lp(−1) , for each 1 � p <
 .
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THEOREM 2. Let  : X → X be a non-singular and finitely non-mixing transfor-
mation and −1A ⊆ A . Suppose that Tu : Lp() → Lp(A ) is subspace-hypercyclic
with respect to Lp(A ) . Then for each subset F ∈ A with 0 < (F) <  , there exists
a sequence of A -measurable sets {Vk} ⊆ F such that (Vk) → (F) as k →  , and
there is a sequence of integers (nk) such that

lim
k→

‖(
nk−1


i=0

EA (u)◦ i)−1|Vk‖ = 0

and

lim
k→

‖ p
√

hA
nk

[E−nk (A )(
nk−1


i=0

EA (u)◦ i)]◦−nk |Vk‖ = 0.

Proof. Let F ∈ A be an arbitrary set with 0 < (F) <  and let  > 0 be an
arbitrary. A transformation  is finitely non-mixing and hence, there is an N ∈ N such
that F ∩n(F) = /0 for each n > N . Choose 1 such that 0 < 1 < 

1+ . Since the set
of all subspace-hypercyclic vectors for Tu , is dense in Lp(A ) , there exist a subspace-
hypercyclic vector f ∈ Lp(A ) and m ∈ N with m > N such that

‖ f − F‖p < 2
1 and ‖Tm

u f − F‖p < 2
1 .

Put P1 = {t ∈ F : | f (t)−1| � 1} and R1 = {t ∈ X −F : | f (t)| � 1} . Then we have

2p
1 > ‖ f − F‖p

p =
∫

X
| f − F |pd

�
∫

P1

| f (x)−1|pd(x)+
∫
R1

| f (x)|pd(x)

�  p
1 ((P1)+ (R1)).

Then, max{(P1),(R1)} <  p
1 . Set Sm,1 = {t ∈ F : |m−1

i=0 EA (u) ◦ i f ◦m(t)−
1| � 1} and now consider the following relationships:

2p
1 > ‖Tm

u f − F‖p
p

=
∫

X
|
m−2


i=0

EA (u)◦ iEA (u f ◦)◦m−1− F |pd

�
∫

Sm,1

|
m−2


i=0

EA (u)◦ iEA (u f ◦)◦m−1(t)−1|pd(t)

�
∫

Sm,1

|
m−1


i=0

EA (u)◦ i f ◦m(t)−1|pd(t)

�  p
1 (Sm,1)

to deduce that (Sm,1) <  p
1 . But for an arbitrary t ∈ F , it is readily seen that m(t) /∈

F because of F ∩−m(F) = /0 . Hence, for each t ∈ F − (Sm,1 ∪−m(R1)) , we have

|(
m−1


i=0

EA (u)◦ i)−1(t)| < | f ◦m(t)|
1− 1

<
1

1− 1
< .
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Now, let Um,1 = −m({t ∈ F : p
√

hA
m (t) |E−m(A )(m−1

i=0 EA (u)◦ i)◦−m(t) f (t)| �
1}) . Here, we remind that m−1

i=0 EA (u) ◦ i ◦−m = m
i=1 EA (u) ◦−i on (hA

m ) .
Use the change of variable formula to obtain that

2p
1 > ‖Tm

u f − F‖p
p

=
∫

X
|
m−1


i=0

EA (u)◦ i f ◦m− F |pd

�
∫

X
|E−m(A )(

m−1


i=0

EA (u)◦ i) f ◦m−E−m(A )(F)|pd

�
∫
Um,1

|E−m(A )(
m−1


i=0

EA (u)◦ i) f ◦m|pd

�
∫
m(Um,1 )

|E−m(A )(
m−1


i=0

EA (u)◦ i)◦−m f |phA
m d

�  p
1 (m(Um,1)),

which implies in turn that (m(Um,1)) <  p
1 . That E−m(A )(F) = 0 is concluded of

the fact that F ∩−m(F) = /0 . Note that for each t ∈ F − (m(Um,1)∪P1) , we have

p
√

hm(t) |E−m(A )(
m−1


i=0

EA (u)◦ i)◦−m(t) f (t)| < 1
1− 1

< .

Finally, put Vm,1 := F − (P1 ∪−m(Rm,1)∪Sm,1 ∪m(Um,1)) . Then, clearly (F −
Vm,1) < 4 p

1 , ‖(m−1
i=0 EA (u)◦ i)−1|Vm,1

‖ <  and

‖ p
√

hm[E−m(A )(
m−1


i=0

EA (u)◦ i)]◦−m|Vm,1
‖ < .

By induction, for each k ∈ N we get a measurable subset Vk ⊆ F and an increasing
subsequence (nk) such that (F −Vk) < 4( 1

k )
p , ‖(nk−1

i=0 EA (u)◦ i)−1|Vk‖ <  and

‖ p
√

hA
nk

[E−nk (A )(nk−1
i=0 EA (u)◦ i)]◦−nk|Vk‖ <  . �

THEOREM 3. Let Tu : Lp() → Lp(A ) be bounded with (u) = X , and let 
be a normal and finitely non-mixing transformation provided that −1A ⊆ A ⊆ 
and supn ‖hA �

n ‖ <  . If for each subset F ∈ A with 0 < (F) <  , there exists a
sequence of A -measurable sets {Vk} ⊆ F such that (Vk) → (F) as k →  , and
there is a sequence of integers (nk) such that

lim
k→

‖(
nk−1


i=0

EA (u)◦ i)−1|Vk‖ = 0

and

lim
k→

‖ p
√

hnk [
nk−1


i=0

EA (u)◦ i]◦−nk|Vk‖ = 0,
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then Tu is subspace-hypercyclic with respect to Lp(A ) .

Proof. Since, SA (X) is dense in Lp(A ) , we may take D1 = D2 = SA (X) in the
subspace-hypercyclicity’s criterion. For an arbitrary f ∈ SA (X) , one can easily find
{Vk}⊆( f ) such that (Vk)→ (( f )) and finds an N1 such that ( f )∩n(( f )) =
/0 for each n > N1 . Now, for each nk > N1 define the vector fk = f◦−nk

[
nk−1
i=0 EA (u)◦ i]◦−nk

.

Since −1A ⊆ A ⊆  , then fk ∈ Lp(A ) and the simple computations show that
Tnk
u fk = f . Now, we will show that ‖Tnk

u f‖p → 0 and ‖ fk‖p → 0 as k →  . For an
arbitrary  > 0, there exist M,N1 ∈ N , sufficiently large such that VN1 ⊆ ( f ) and

(( f )−VN1) <


M‖ f‖p


.

By Egoroff’s theorem, there exists an N2 such that for each nk>N2 , ‖ p
√

hA
nk

[nk−1
i=0 EA (u)

◦ i]◦−nk‖p
 < 

‖ f‖p


on VN1 . So, there exists a non-negative real number M such that

‖ p
√

hA
nk

[nk−1
i=0 EA (u)◦ i]◦−nk‖p

 � M < on ( f ) . Now, by the change of variable

formula, for each nk > N = max{N1,N2} we have

‖Tnk
u f‖p

p =
∫

X
|
nk−2


i=0

EA (u)◦ iEA (u f ◦)◦nk−1|pd

=
∫

X
|
nk−1


i=0

EA (u)◦ i f ◦nk |pd

=
∫
( f )

|
nk−1


i=0

EA (u)◦ i ◦−nk f |phnkd

=
∫
( f )−VN

|
nk−1


i=0

EA (u)◦ i ◦−nk f |phnkd

+
∫
VN

|
nk−1


i=0

EA (u)◦ i ◦−nk f |phnkd

< ‖ p
√

hnk

nk−1


i=0

EA (u)◦ i ◦−nk‖p
‖ f‖p

 (( f )−VN)

+


‖ f‖p

‖ f‖p

 < 2.

By taking into account that supn ‖hA �
n ‖ <  , we have

lim
k→

‖ fk‖p
p = lim

k→

∫
X
| f ◦−nk

nk−1
i=0 EA (u)◦ i ◦−nk

|pd

= lim
k→

∫
( f )

| f

nk−1
i=0 EA (u)◦ i

|ph�
nk

d
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� sup
k
‖hA �

nk
‖( lim

k→

∫
( f )−VN

| f

nk−1
i=0 EA (u)◦ i

|pd

+ lim
k→

∫
VN

| f

nk−1
i=0 EA (u)◦ i

|pd)

= 0.

Finally, it is clear that Tnk
u Lp(A ) ⊆ Lp(A ) for all k ∈ N , because of −1A ⊆ A and

hence Tu satisfies in the subspace-hypercyclicity criterion and is subspace-hypercyclic.
�

PROPOSITION 1. Suppose that  : X → X is a normal and finitely non-mixing
transformation with −1(A ) ⊆ A ⊆  . Let supn ‖h�

n‖ <  and (u) = X . Then
the following conditions are equivalent:

(i) Tu satisfies the subspace-hypercyclic criterion.

(ii) Tu is subspace-hypercyclic with respect to Lp(A ) .

(iii) Tu⊕Tu is subspace-hypercyclic with respect to Lp(A )⊕Lp(A ) .

(iv) Tu is subspace-weakly mixing.

Proof. (i) ⇒ (ii) . Note that if an operator satisfies the subspace-hypercyclic cri-
terion, then it is subspace-transitive and hence is subspace-hypercyclic [25, Theorem
3.5]. For the implication (ii) ⇒ (iii) , we show that Tu ⊕Tu is subspace-topologically
transitive, according [25, Theorem 3.3]. To begin, pick two pairs of non-empty open
sets (A1,B1) and (A2,B2) in Lp(A )⊕ Lp(A ) arbitrarily. For j = 1,2, choose the
functions f j,g j ∈ SA (X) with f j ∈ Aj and g j ∈ Bj . Let F = ( f1)∪( f2)∪(g1)∪
(g2) . Then (F) <  . Assume that {Vk} ⊆ F , {(nk−1

i=0 EA (u) ◦  i)−1} and

{ p
√

hA
nk

E−nk (A )(nk−1
i=0 EA (u) ◦  i) ◦−nk} are as provided by Theorem 2. There

is an N1 ∈ N , such that for all n > N1 , F ∩n(F) = /0 . Moreover, for each  > 0 there

exists N2 ∈N , such that for each k > N2 and nk >N1 , ‖ p
√

hA
nk

E−nk (A )(nk−1
i=0 EA (u)◦

 i)◦−nk|Vk‖p
 < 

‖ f j‖p
p

on Vk . Hence, for k > N2 , we get that

‖Tnk
u ( f jVk)‖p

p =
∫

X
|Tnk

u ( f jVk)|pd

=
∫

X
|
nk−1


i=0

EA (u)◦ i( f jVk)◦nk |p d

=
∫
Vk

|[
nk−1


i=0

EA (u)◦ i]◦−nk f j|phnkd < .

Now, define a map D( f ) = f◦−1

EA (u)◦−1 on the subspace SA (X) . Then for each f ∈
SA (X) , Tnk

u Dnk
 ( f ) = f . Again, we may find an N3 ∈ N such that for each k > N3 and
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nk > N1 , ‖(nk−1
i=0 EA (u) ◦ i)−1‖p

 < 
M‖g j‖p


on Vk , where M = supn ‖hA �

n ‖ <  .

On the other hand, for each k > N3 note that

‖Dnk
 (g jVk)‖p

p =
∫
nk (Vk)

| g j ◦−nk

[nk−1
i=0 EA (u)◦ i]◦−nk

|pd

=
∫
Vk

| g j

nk−1
i=0 EA (u)◦ i

|p h�
nd < .

For each k ∈ N , let f �
j,k = f jVk +Dnk

 (g jVk) . Then we have f �
j,k ∈ Lp(A ) ,

‖ f �
j,k − f j‖p

p � ‖ f j‖p
 (F −Vk)+‖Dnk

 (g jVk)‖p
p

and
‖Tnk

u f �
j,k −g j‖p

p � ‖g j‖p
 (F −Vk)+‖Tnk

u ( f jVk)‖p
p.

Hence, limk→ f �
j,k = f j , limk→ Tnk

u f �
j,k = g j and Tnk

u (Aj)∩Bj 	= /0 for some k ∈ N .

Moreover, since −1(A ) ⊆ A then Tnk
u (Lp(A )) ⊆ Lp(A ) . So Tu ⊕Tu is subspace-

hypercyclic on Lp(A )⊕Lp(A ) .
To prove the implication (iv) ⇒ (i) , we use Bès-Peris’s approach stated in [6,

Theorem 4.2]. Assume that Tu⊕Tu is subspace-hypercyclic on Lp(A )⊕Lp(A ) with
subspace-hypercyclic vector f ⊕g . Note that for each n ∈ N , the operator I⊕Tn

u has
dense range and commutes with Tu⊕Tu , therefore orb(I⊕Tn

u , f ⊕g)= (I⊕Tn
u )orb(Tu⊕

Tu, f ⊕ g) . Eventually f ⊕Tn
u g is subspace-hypercyclic vector as well. We show that

the subspace-hypercyclic criterion is satisfied by D1 = D2 = orb(Tu ⊕Tu, f ⊕ g) . Let
U be an arbitrary open neighborhood of 0 in Lp(A ) . Hence, one can find a sequence
(gk) ⊆U and an increasing sequence of integers (nk) such that Tnk

u f ⊕Tnk
u gk → 0⊕g

and gk → 0. Clearly, Tnk
u (Lp(A )) ⊆ Lp(A ) . �

COROLLARY 2. Under the assumptions of Proposition 1, the following conditions
are equivalent:

(i) Tu is subspace-topologically mixing on Lp(A ) .

(ii) For each A -measurable subset F ⊆ X with 0 < (F) <  , there exists a se-
quence of A -measurable sets {Vn}⊆ F such that (Vn)→ (F) as n→ and
limn→ ‖(n−1

i=0 EA (u)◦ i)−1|Vn‖= limn→ ‖ p
√

hA
n (n−1

i=0 EA (u)◦ i◦−n)|Vn‖
= 0 .

Proof. By Theorem 3 and Proposition 1 the implication (ii) ⇒ (i) is established,
just use the full sequences instead of subsequences. For the implication (i) ⇒ (ii) ,
let  > 0 and F ∈ A with 0 < (F) <  be arbitrary. Consider a non-empty and
open subset U = { f ∈ Lp(A ) : ‖ f − F‖p < } . Since Tu is subspace-topologically
mixing and  is finitely non-mixing, one may find N ∈ N such that for all n > N ,
Tn
u (U)∩U 	= /0 and F ∩n(F) = /0 . Hence, for each n > N , we can choose a function

fn ∈U such that Tn
u fn ∈U . Then ‖ fn−F‖p <  and ‖Tn

u fn−F‖p <  . The rest of
the proof can be proceed like as Theorem 2. �
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EXAMPLE 1. Let X = R be the real line with Lebesgue measure  on the  -
algebra  of all Lebesgue measurable subsets of R . Let A be the  -subalgebra
generated by the symmetric intervals about the origin. For a positive real number t
define the transformation  : R → R by (x) = x+ t, x ∈ R . Clearly, −1A ⊆ A ⊆
 and in this setting, EA ( f ) = f (x)+ f (−x)

2 , which is the even part of f ∈ Lp() . Fix
r > 1 and define the weight function u on R by

u(x) =

⎧⎨
⎩

2x+ r, 1 � x,
−x2− x

2 +2, −1 < x < 1,
x3 + 1

r , x � −1.

Then, we have

EA (u)(x) =

⎧⎨
⎩

r, 1 � x,

− x2

2 +2, −1 < x < 1,
1
r , x � −1.

For an arbitrary F = [−a,a] , take Vk = (−a+ 1
k ,a− 1

k ) . In this case, one may eas-

ily find a sequence (nk) such that both quantities ‖(nk−1
i=0 EA (u) ◦  i)−1|Vk‖ and

‖ p
√

hA
nk

[nk−1
i=0 EA (u)◦ i]◦−nk |Vk‖ tend zero as k →  . Because, hA

nk
= hA �

nk
= 1

and [nk−1
i=0 EA (u) ◦  i] ◦ −nk = nk

i=1 EA (u) ◦ −i , since  is onto (or (hA
nk

) =
R). Therefore, by Theorem 3, Tu is subspace-hypercyclic with respect to Lp(A )
while it is not hypercyclic on Lp() [5, Theorem 2.3]. For this, just consider that
‖ p
√

hnk [Enk(
nk−1
i=0 u ◦ i)]◦−nk|Vk‖ = ‖nk

i=1 u ◦−i|Vk‖ � 0.
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