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HARDY–STEKLOV OPERATORS ON TOPOLOGICAL MEASURE SPACES

KAIRAT T. MYNBAEV

(Communicated by L. E. Persson)

Abstract. We give necessary and sufficient conditions on non-negative weights u,v and mea-
sures  , in the inequality(∫


|T f (x)|qu(x)d(x)

)1/q

� C

(∫

| f (x)|p v(x)d(x)

)1/p

.

Here the integral operator T is a Hardy-Steklov type operator associated with a family of
open subsets (t) of an open set  in a Hausdorff topological space X ;  , are  -additive
Borel measures, and 1 < p < , 0 < q < . The integration in T is over domains of type
(b(t))\(a(t)) where a,b are non-negative, increasing, continuous functions on [0,) that
vanish at zero, tend to  at  and satisfy a(t) < b(t) for t ∈ (0,) . Previously such results
have been known for an operator on a subset of a Euclidean space.

1. Introduction

We consider a multi-dimensional version of the Hardy-Steklov inequality[∫ 

0

∣∣∣∣∫ b(x)

a(x)
f d
∣∣∣∣q u(x)d (x)

]1/q

� C

(∫ 

0
| f |p vd

)1/p

where the functions a,b are non-negative, increasing, continuous and satisfy

a(0) = b(0) = 0, a(x) < b(x) for x ∈ (0,) , a() = b() = .

Much of the history of the weighted Hardy inequality has been covered in [3]–[6]. The
ideas and results developed for the Hardy inequality have been applied to study the
Hardy-Steklov inequality. In the one-dimensional case necessary and sufficient con-
ditions on the weights u,v have been obtained in [2] (see a special case in [1]). A
full account of their results can also be found in [5]. [15] have developed a different
approach to the same problem, giving the criterion in simpler terms. They also pro-
vided a compactness criterion. See also [9] for further developments, especially for the
results in an integral form for the case q < p . The case of starshaped regions in the
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Euclidean space has been considered in [13]. Here we follow [15] as their method is
most amenable to extending to our situation.

We obtain a far-reaching generalization of the results just described. Our domains
(b(x))\(a(x)) are subsets of a Hausdorff topological space X where the dimension
notion is generally not defined. The assumptions on the sets (t) are the same as in
[8] and are close to those in [14]. Our results have been made possible by theorems on
the Hardy inequality in [8] and the investigation of ordered cores done in [14].

[10], [11] and [12] contain the Hardy inequality on homogeneous groups, con-
nected Lie groups, hyperbolic spaces and Cartan-Hadamard manifolds. Our Theorems
3–4 below hold in these cases too.

ASSUMPTION 1. (on (t)) Let  be an open set in a Hausdorff topological
space X with  -finite Borel measures  ,. The measures are defined on the same  -
algebra M that contains Borel-measurable sets. The domains (t) ⊂  are assumed
to be parameterized by t � 0 and satisfy monotonicity (total orderedness)

for t1 < t2, (t1) is a proper subset of (t2). (1)

We assume that

(0) = ∩t>0(t) = ∅,  (\∪t>0(t)) = 0.

Denote (t) = (t)∩ (\(t)) the boundary of (t) in the relative topology. We
require the boundaries to be disjoint and cover almost all :

(t1)∩(t2) = ∅, t1 �= t2, (\∪t>0(t)) = 0.

This implies that for  -almost each y ∈  there exists a unique (y) > 0 such that
y ∈ ((y)) . On the set 0 ⊂  of those y for which (y) is not defined we can put
(0) = /0. Passing to a different parametrization, if necessary, we can assume that
 (\∪t�N (t)) > 0 for any N < .

For a set  on R we can define a set  [] = {y ∈ :  (y) ∈ } . In particular,
with  = [a((x)),b((x))] the main integral operator we consider is

T f (x) =
∫
[a((x)),b((x))]

f d, x ∈,

for any non-negative M-measurable f .

Notation

Lp(vd,) denotes the space with the norm ‖ f‖Lp(vd,) = (
∫
 | f |pvd)1/p where

v is a (non-negative) weight function. ‖T‖ = ‖T‖Lp(vd,)→Lq(ud,) is the norm of a
linear operator T acting from Lp(vd,) to Lq(ud ,) . Our task is to estimate ‖T‖
where the weights u,v are non-negative and finite almost everywhere. As usual, it is
enough to consider non-negative f , so ‖T‖ is the least constant C in the inequality[∫



(∫
[a((x)),b((x))]

f d
)q

u(x)d(x)
]1/q

� C

(∫


f pvd
)1/p

. (2)
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We write A 	 B to mean that c1A � B � c2A with positive constants c1,c2 that do not
depend on weights and measures. A lower case c, with or without subscripts, denotes
various constants whose values do not matter.

2. Auxiliary results on Hardy inequality

For 0 � a < b �  we need results on validity of the inequalities[∫
[a,b]

(∫
[a,(x)]

f d
)q

u(x)d(x)
]1/q

� C

(∫
[a,b]

f pvd
)1/p

and [∫
[a,b]

(∫
[(x),b]

f d
)q

u(x)d(x)
]1/q

� C∗
(∫

[a,b]
f pvd

)1/p

from [8]. For segments 1,2 ⊆ [0,) denote

(1,2) =
(∫

[1]
ud

)1/q(∫
[2]

v−p′/pd
)1/p′

, p � q,

(1,2) =
(∫

[1]
ud

)r/p(∫
[2]

v−p′/pd
)r/p′

, q < p.

When appropriate, we also include in the notation the dependence on u or both u and
v, as in (1,2,u), etc. Everywhere we assume 1 < p < . For q < p we put
1/r = 1/q−1/p.

THEOREM 1. a) If 1 < p � q < , then C 	 supx∈[a,b]([ (x) ,b] , [a, (x)]).
b) If 0 < q < p, 1 < p < , then we have

C 	
(∫

[a,b]
([ (x) ,b] , [a, (x)])u(x)d (x)

)1/r

.

THEOREM 2. a) If 1 < p � q <  then C∗ 	 supx∈[a,b]([a, (x)], [ (x) ,b]).
b) If 0 < q < p, 1 < p <  then

C∗ 	
(∫

[a,b]
([a, (x)], [ (x) ,b])u(x)d (x)

)1/r

.

3. Main results

The sets  [a( (x)) ,b( (x))] do not satisfy monotonicity (1) yet the character-
ization of the weights can be obtained with the help of Theorems 1–2. We use the
block-diagonal method from [15]. [2] do not have a statement on compactness of T
which we provide. [9, 15] do have such a statement but their indirect argument (valid
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for Banach function spaces on a real line) does not apply in our case. We explicitly con-
struct a finite-rank approximation to T. Note that the method in [9] is based on what
they call a fairway function. The use of the fairway function requires differentiation
and is not possible in our situation.

In addition to Assumption 1 we use the following condition:

ASSUMPTION 2. (on the link between a,b and  ) a) We suppose that  ((t))<
 for all t > 0 and with some c > 0 we have for all 0 < s < t < 

 ([s, t]) � c ([a(s) ,a(t)]) and  ([s,t]) � c ([b(s) ,b(t)]) . (3)

b) Let  be of a special type, namely: suppose  is all or a part of the unit
sphere {x ∈ Rn : |x| = 1} and let  = {x ∈ Rn : x/ |x| ∈ , 0<́ |x| < } be a cone pro-
vided with Lebesgue measure. In this case, instead of (3) we assume that a,b are
differentiable.

Lemma 1 and Remark 1 below explain why we need this assumption. Everywhere
Assumptions 1 and 2 are assumed to hold and are not explicitly mentioned.

Take m0 = 1 and define recursively mk+1 = a−1(b(mk)), k ∈ Z. Then mk <
mk+1, a(mk+1) = b(mk) for k ∈ Z, and limk→mk = , limk→−mk = 0. Throughout
the rest of the paper we will use the notations

k = (mk,mk+1], ak = a(mk), bk = b(mk), k = (ak,bk].

THEOREM 3. a) If 1 < p � q < then for the best constant in (2) we have C 	K
where

A(x) = sup
{t>0: a((x))�b(t)�b((x))}

([t, (x)], [a( (x)) ,b(t)])

K = sup
x∈

A(x) .

b) If 0 < q < p, 1 < p <, then for the best constant in (2) we have C 	 K1 +K2

where

K1 =

(

k

∫
[k]

([mk, (x)] , [a( (x)) ,a(mk+1)])u(x)d (x)

)1/r

,

K2 =

(

k

∫
[k]

([ (x) ,mk+1] , [b(mk) ,b( (x))])u(x)d (x)

)1/r

.

Denote

li = limsup
(x)→i

A(x) , for i = 0 or i = , l = max{l0, l} .

‖T‖ess = inf‖T −S‖ , where S runs over the set of all finite-rank operators, denotes the
essential norm of T.
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THEOREM 4. a) If 1 < p � q < , then ‖T‖ess 	 l. In particular, T is compact
if and only if l = 0.

b) If 1 < q < p < and ‖T‖ <, then T is compact.

4. Proofs

The proofs of Theorems 3–4 will be preceded with auxiliary statements. The next
lemma reveals the importance of the analysis of ordered cores [14] for the problem at
hand.

LEMMA 1. If condition (3) holds, then there exists a positive linear map Ra such
that ∫

[s,t]
ud =

∫
[a(s),a(t)]

Raud

for all u that are  -integrable on  [s,t] and all 0 < s < t <. The action of Ra on the
weight u obviously induces a transformation of the functionals , : (1,2,Rau)=
(a−1 (1) ,2,u), (1,2,Rau) = (a−1 (1) ,2,u). Replacing everywhere a by
b we obtain the corresponding property for Rb.

Proof. In [14, Theorem 4.6] put (P,P,) = (T,T ,) = (,M,) . The family
A = {(t) : t � 0} is a  -bounded ordered core, that is, it is totally ordered, ∪t�0(t)
is a subset of, say, ∪

n=1(n) , and  ((t)) <  for all t > 0. Define r ((t)) =

(
a−1 (t)

)
. Since a−1 is monotone, r is order-preserving. It is also bounded by (3):

for 0 < s < t <  :

 (r ((t))\r ((s))) = 
(

(
a−1 (t)

)\(a−1 (s)
))

� c ((t)\(s)) .

By Theorem 4.6 there exists a positive linear map Ra satisfying∫
[s,t]

Raud =
∫
[a−1(s),a−1(t)]

ud ,

∫
[s,t]

|Rau|d �
∫
[a−1(s),a−1(t)]

|u|d .

This gives us what we need. �

In simple cases the map Ra can be constructed explicitly, as the next Remark
shows.

REMARK 1. Let  be all or a part of the unit sphere {x ∈ Rn : |x| = 1} and let
= {x ∈ Rn : x/ |x| ∈ , 0<́ |x| < } be a cone providedwith Lebesgue measure. Sup-
pose a is differentiable. Using polar coordinates and replacing r = a−1() we can use
the equation

∫
[l,m]

u(x)dx =
∫ m

l

∫

u(r)drn−1dr =

∫ a(m)

a(l)

∫

Rau(a−1())dd
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instead of Lemma 1. Here

Rau(a−1()) = u
(
a−1()

)(a−1()


)n−1
d
d

a−1(), | | = 1.

This Ra is not positive, which is not an obstacle for our applications.

This Remark explains why we call Lemma 1 a change-of-variable type result. In
applications based on this example one assumes differentiability of a,b instead of (3).

We use the block-diagonal method from [15], see also [9, Lemma 2.1]. In

T f (x) =
k

(k)T f (x)

for x ∈(k) we have ak � a( (x)) � ak+1 = bk � b( (x)) � bk+1. This implies

[a( (x)) ,b( (x))] = [a( (x)) ,ak+1]∪ [bk,b( (x))]

where [a( (x)) ,ak+1] ⊆ k and [bk,b( (x))] ⊆ k+1. Hence, for x ∈(k)∫
[a((x)),b((x))]

f d =
∫
[a((x)),ak+1]

f [k]d +
∫
[bk,b((x))]

f [k+1]d.

This translates to a decomposition

T f (x) =
k

(Tk +Sk) ,

Tk = (k)

∫
[bk,b((x))]

f [k+1]d, Sk = (k)

∫
[a((x)),ak+1]

f [k]d.

We denote

‖Tk‖ = ‖Tk‖Lp(vd,[k+1])→Lq(ud,(k)), ‖Sk‖ = ‖Sk‖Lp(vd,[k])→Lq(ud,(k)).

Then the problem of estimating ‖T‖ is reduced to the problem of estimating ‖Tk‖ and
‖Sk‖ because [9, Lemma 2.1]

‖T‖ = max

{
sup

k
‖Tk‖ ,sup

k
‖Sk‖

}
, p � q, (4)

‖T‖ 	
(

k

‖Tk‖r +
k

‖Sk‖r

)1/r

, q < p. (5)

LEMMA 2. a) If 1 < p � q <  then

‖Tk‖ 	 sup
(x)∈k

([ (x) ,mk+1], [b(mk) ,b( (x))]), (6)

‖Sk‖ 	 sup
(x)∈k

([mk, (x)], [a( (x)) ,a(mk+1)]). (7)
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b) If 0 < q < p, 1 < p < , then

‖Tk‖ 	
(∫

[k]
([ (x) ,mk+1] , [b(mk) ,b( (x))])u(x)d (x)

)1/r

,

‖Sk‖ 	
(∫

[k]
([mk, (x)] , [a( (x)) ,a(mk+1)])u(x)d (x)

)1/r

.

Proof. We illustrate the proof for Sk , the proof for Tk being similar. By Lemma 1

[∫
[mk,mk+1]

(∫
[a((y)),a(mk+1)]

f d
)q

u(y)d (y)
]1/q

=
[∫

[a(mk),a(mk+1)]

(∫
[(x),a(mk+1)]

f d
)q

Rau(x)d (x)
]1/q

where  (y)∈ [mk,mk+1] is mapped to  (x) = a( (y))∈ [a(mk) ,a(mk+1)] . Therefore,
if p � q then by Theorem 2a) and Lemma 1

sup
a(mk)�(x)�a(mk+1)

([a(mk) , (x)], [ (x) ,a(mk+1)] ,Rau)

= sup
a(mk)�(x)�a(mk+1)

([mk,a
−1 ( (x))], [ (x) ,a(mk+1)] ,u)

(replacing  (y) = a−1 ( (x)) )

= sup
mk�(y)�mk+1

([mk, (y)], [a( (y)) ,a(mk+1)] ,u).

If q < p, then Theorem 2b) and a double application of Lemma 1 show that

(∫
[a(mk),a(mk+1)]

([a(mk) , (x)], [ (x) ,a(mk+1)] ,Rau)Rau(x)d (x)
)1/r

=
(∫

[a(mk),a(mk+1)]
([mk,a

−1 ( (x))], [ (x) ,a(mk+1)] ,u)Rau(x)d (x)
)1/r

=
(∫

[mk,mk+1]
([mk, (y)], [a( (y)) ,a(mk+1)] ,u)u(y)d(y)

)1/r

. �

Proof of Theorem 3. The upper bound immediately follows from (4) and Lemma
2 if we note that both quantities (6) and (7) do not exceed K.

To prove the lower bound, suppose that t �  (x) and a( (x)) � b(t) . Take u0 �
u, v0 � v such that u0,v

−p′/p
0 are integrable and put f (y) = [a((x)),b(t)](y)v

−p′/p
0 (y).

Then using the fact that t �  (s) �  (x) implies [a( (x)) ,b(t)] ⊂ [a( (s)) ,b( (s))]
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we see that (∫
[t,(x)]

u0d
)1/q(∫

[a((x)),b(t)]
v−p′/p
0 d

)
=
[∫

[t,(x)]

(∫
[a((x)),b(t)]

f d
)q

u0(s)d (s)
]1/q

�
[∫



(∫
[a((s)),b((s))]

f d
)q

u(s)d (s)
]1/q

� C

(∫


f pvd
)1/p

= C

(∫
[a((x)),b(t)]

v−p′/p
0 d

)1/p

.

Since v−p′/p
0 is integrable, this leads to ([t, (x)], [a( (x)) ,b(t)] ,u0,v0) �C. Letting

u0 ↑ u, v0 ↓ v we obtain K � C.

If q < p, the statement follows directly from (5) and Lemma 2. �

For the proof of Theorem 4 we need the following proposition.

LEMMA 3. Let 1 < p � q <  . If l >  > 0 then there exists a sequence { fn}
such that

‖T ( fn − fm)‖Lq(ud,) > 21/q, ‖ fn − fm‖Lp(vd,) = 21/p.

Proof. Suppose l0 >  > 0. Then there exist sequences {xn} , {tn} such that
 (xn) → 0, tn ∈

[
b−1 (a( (xn))) , (xn)

]
and A(xn) > . Denote

Un = [tn, (xn)] , Vn = [a( (xn)) ,b(tn)] , Wn = [a(tn) ,b( (xn))] .

 (s) ∈Un implies a(tn) � a( (s)) � a( (xn)) , b(tn) � b( (s)) � b( (xn)) which
gives

 (s) ∈Un ⇒Vn ⊆ [a( (s)) ,b( (s))] ⊆Wn. (8)

If n is fixed, by increasing m we can achieve Wn ∩Wm = /0 and Un ∩Um = /0. Put

fn (y) =
(∫

[Vn] v
−p′/pd

)−1/p
[Vn] (y)v−p′/p (y) . Then ‖ fn − fm‖Lp(vd,) = 21/p,

‖T ( fn − fm)‖q
Lq(ud,) �

∫
[Un]

∣∣∣∣∫[a((s)),b((s)) ]
( fn − fm)d

∣∣∣∣q u(s)d (s)

+
∫
[Um]

∣∣∣∣∫[a((s)),b((s)) ]
( fn − fm)d

∣∣∣∣q u(s)d (s) .
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By (8) in the first integral we have [a( (s)) ,b( (s)) ]∩Wm = /0 and in the second
one [a( (s)) ,b( (s)) ]∩Wn = /0. Hence,

‖T ( fn − fm)‖q
Lq(ud,) �

∫
[Un]

(∫
[Vn]

fnd
)q

ud+
∫
[Um]

(∫
[Vm]

fmd
)q

ud

=
(∫

[Un]
ud

)(∫
[Vn]

v−p′/pd
)q/p′

+
(∫

[Um]
ud

)(∫
[Vm]

v−p′/pd
)q/p′

> 2q.

The case l >  is handled in the same way. �
Proof of Theorem 4. Part a). Lower bound. When proving ‖T‖ess � cl we can

assume that ‖T‖ess < , implying ‖T‖ <  and, by Theorem 3, K < . Without loss
of generality we can also assume that l > 0. Let  = l/2 and suppose that S is any
finite-rank operator. Passing to a subsequence, if necessary, we can assume that {S fn}
converges for the sequence from Lemma 3. By Lemma 3

‖(T −S)( fn − fm)‖Lq(ud,) � ‖T ( fn − fm)‖Lq(ud,)

−‖S ( fn − fm)‖Lq(ud,) > 21/q−1l

for large n,m. Since ‖ fn − fm‖Lp(vd,) = 21/p, this implies ‖T −S‖� cl and ‖T‖ess �
cl.

Upper bound. In the proof we can assume that l <  and we have to produce a
finite-rank approximation to

T f (y) =
∫
(b((y)))

f d−
∫
(a((y)))

f d ≡ T+ f (y)−T− f (y) .

Such approximations will be developed for T+, T−. With the partition (0,) = ∪kk

used in the proof of Theorem 3 we have  (y) ∈ k ⇒ a( (y)) ∈ k, b( (y)) ∈ k+1.
This means that we need to approximate T+ on k+1 and T− on k. Let k1 � k � k2

for some fixed integers k1,k2 ∈ Z, k1 < k2.
Approximation for T+. The points tk j = mk+1 + j (mk+2 −mk+1)/n, j = 0, . . . ,n,

lead to partitions of k+1 and  [k+1] , consisting of sets

+
k j = (tk j,tk, j+1], +

k j = 
[
+

k j

]
, j = 0, . . . ,n−1,

resp. Putting +
n (t) = n−1

j=0 b
(
tk j
)
+

k j
(t) we have

+
n ( (x)) = b

(
tk j
)

� b( (x)) � b
(
tk, j+1

)
, x ∈+

k j.

Define

T+
n f (y) =

∫
(+

n ((y)))
f d =

n−1


j=0

∫
(b(tk j))

f d+
k j

(y) ,  (y) ∈ k+1.
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Then for the restriction to k+1 we have

T+ f (y)−T+
n f (y) =

n−1


j=0

∫
[b(tk j),b((y))]

f d+
k j

(y) .

By the argument used in Lemma 2 for one term in this sum we have[∫
+

k j

(∫
[b(tk j),b((y))]

f d

)q

u(y)d (y)

]1/q

� cCbk j

(∫
[b(tk j),b(tk, j+1)]

f pvd

)1/p

(9)
where

Cbk j = sup
tk j�(x)�tk, j+1

(
[
 (x) ,tk, j+1

]
,
[
b
(
tk j
)
,b( (x))

]
).

Summation of these bounds gives(∫
[k+1]

∣∣T+ f −T+
n f
∣∣q ud

)1/q

� c sup
0� j�n−1

Cbk j

(∫
[k+1]

f pvd
)1/p

. (10)

Approximation for T−. The points sk j = mk + j (mk+1−mk)/n, j = 0, . . . ,n, give
rise to partitions of k and  [k] , consisting of sets

−
k j = (sk j,sk, j+1], −

k j =
[
−

k j

]
, j = 0, . . . ,n−1,

resp. Putting −
n (t) = n−1

j=0 a
(
sk, j+1

)
−k j

(t) we have

a
(
sk j
)

� a( (x)) � a
(
sk, j+1

)
= −

n ( (x)) , x ∈−
k j.

For T+, b was approximated from below; here, for T− , a is approximated from above.
Define

T−
n f (y) =

∫
(−n ((y)))

f d =
n−1


j=0

∫
(a(sk, j+1))

f d−
k j

(y) .

Then for the restriction to k we have

T−
n f (y)−T− f (y) =

n−1


j=0

∫
[a((y)),a(sk, j+1)]

f d−
k j

(y) .

By a statement similar to Lemma 2 for one term in this sum we have[∫
−

k j

(∫
[a((y)),a(sk, j+1)]

f d

)q

u(y)d (y)

]1/q

� cCak j

(∫
[a(sk j),a(sk, j+1)]

f pvd

)1/p

(11)
where

Cak j = sup
sk j�(x)�sk, j+1

(
[
sk j, (x)

]
,
[
a( (x)) ,a

(
sk, j+1

)]
).



HARDY-STEKLOV OPERATORS 611

By summing these bounds we get(∫
[k]

∣∣T−
n f −T− f

∣∣q ud
)1/q

� c sup
0� j�n−1

Cak j

(∫
[k ]

f pvd
)1/p

. (12)

Approximation for T. Denote

1 =
⋃

k<k1

 [k] , 2 =
⋃

k1�k�k2

 [k] , 3 =
⋃

k>k2

 [k] .

Repeating calculations based on (6) and (7) we obtain(∫
i

(T f )q ud
)1/q

� cK (i)
(∫

i

f pvd
)1/p

, K (i) ≡ sup
x∈i

A(x) , i = 1 or i = 3.

(13)
We can select k1 and k2 to satisfy max{K (1) ,K (3)} < 2l. On 2

sup
k1�k�k2

sup
0� j�n−1

(
Cak j +Cbk j

)
< l

if n is large enough. Then (10), (12), (13) imply ‖T‖ess � ‖T+−T+
n ‖+‖T−−T−

n ‖�
cl.

Part b). If ‖T‖ <  then by Theorem 3 max{K1,K2} < . Therefore for any
 > 0 we can select −< k1 < k2 <  so that(


{k<k1}∪{k>k2}

‖Tk‖r + 
{k<k1}∪{k>k2}

‖Sk‖r

)1/r

< .

Then by Theorem 3 we have(∫
̃

(T f )q ud
)1/q

� c
(∫


f pvd

)1/p

where ̃=
⋃

{k<k1}∪{k>k2} [k] . As in Lemma 2, (9) and (11) are true with

Cak j =

(∫
[sk j ,sk, j+1]

([sk j, (x)],
[
a( (x)) ,a

(
sk, j+1

)]
)u(x)d (x)

)1/r

,

Cbk j =

(∫
[tk j ,tk, j+1]

([ (x) ,tk, j+1],
[
b
(
tk j
)
,b( (x))

]
)u(x)d (x)

)1/r

.

Define bk j = Cbk j/‖Tk‖ , if the denominator is not zero and bk j = 0 otherwise. The
bound ∫

[tk j ,tk, j+1]
([ (x) ,tk, j+1],

[
b
(
tk, j
)
,b( (x))

]
)u(x)d (x)

� 
(
[tk j,tk, j+1],

[
b
(
tk, j
)
,b
(
tk, j+1

)])∫
[tk j ,tk, j+1]

u(x)d (x)
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and continuity of b imply that

n ≡ sup
k1�k�k2

sup
0� j�n−1

bk j → 0, as n → .

Besides, Cbk j � n‖Tk‖ . This bound and (9) lead to the estimate

(∫
2

∣∣T+ f −T+
n f
∣∣q ud

)1/q

� cn

(
k2


k=k1

‖Tk‖r

)1/r(∫
2

f pvd
)1/p

.

This inequality and a similar bound for T−
n f −T− f show that

(∫
2

|T f −Tn f |q ud
)1/q

can be made as small as desired by selecting a sufficiently large n. The conclusion is
that T is compact as a limit of finite-rank operators. �
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