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SOME CONVERSES OF FUNCTIONAL HÖLDER–TYPE INEQUALITIES

RABIA BIBI ∗ AND HUSNAIN RAZA

(Communicated by S. Varošanec)

Abstract. In this paper we obtain some new converses of the Hölder and Minkowski inequalities
for positive linear functionals. Our results also provide new converses in case of sums, integrals
and time scales integrals. Further we obtain a converse of integral Minkowski’s inequality on
time scales.

1. Introduction

Hölder’s inequality has numerous applications in various areas, including measure
theory, probability theory, Fourier analysis, numerical analysis, social science and cul-
tural science as well as in natural science. It serves as a foundation for other important
inequalities, such as the Minkowski inequality and the Young inequality. Extensions
and generalizations of Hölder’s inequality have been developed to accommodate more
general settings and conditions on the exponents, leading to a rich theory with broader
applications in mathematics and its applications. In case of positive linear functionals,
Hölder’s and Minkowski’s inequalities and some of their converses, given below, can
be found in [11].

DEFINITION 1. Let E be a nonempty set and L be a linear class of real-valued
functions f : E → R having the following properties:

(L1 ) If f ,g ∈ L and a,b ∈ R , then (a f +bg)∈ L .

(L2 ) If f (t) = 1 for all t ∈ E , then f ∈ L.

A positive linear functional is a functional A : L → R having the following properties:

(A1 ) If f ,g ∈ L and a,b ∈ R, then A(a f +bg) = aA( f )+bA(g).

(A2 ) If f ∈ L and f (t) � 0 for all t ∈ E , then A( f ) � 0.
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THEOREM 1. Let L satisfy conditions L1 , L2 , and A satisfy conditions A1,A2 on
a base set E . Let p > 1 and p−1 +q−1 = 1 . If w, f ,g � 0 on E such that w f p , wgq ,
w f g ∈ L, then we have

A(w fg) � A1/p (wf p)A1/q (wgq) . (1)

In the case 0 < p < 1 and A(wgq) > 0 (or p < 0 and A(wf p) > 0 ), the inequality (1)
is reversed.

THEOREM 2. Let L satisfy conditions L1 , L2 , and A satisfy conditions A1,A2 on
a base set E . If p > 1 and w, f ,g � 0 on E such that w f p , wgp , w( f +g)p ∈ L, then
we have

A
1
p (w( f +g)p) � A1/p (wf p)+A1/p (wgp) . (2)

If 0 < p < 1 or p < 0 and A(wf p) , A(wgp) > 0 , then the inequality (2) is reversed.

THEOREM 3. For p �= 1 let q = p/(p− 1) . Assume w, f , g are nonnegative
functions such that w f p , wgq , w f g ∈ L. Suppose

0 < m � f (t)g−q/p(t) � M for all t ∈ E.

If p > 1 , then

A(w fg) � K(p,m,M)A
1
p (wf p)A

1
q (wgq) , (3)

where

K(p,m,M) = |p|1/p|q|1/q (M−m)1/p|mMp−Mmp|1/q

|Mp −mp| . (4)

If 0 < p < 1 or p < 0 , then (3) is reversed provided either A(wf p) > 0 or A(wgq) > 0 .

THEOREM 4. For p �= 1 let q = p/(p− 1) . Assume w, f , g are nonnegative

functions such that w f p , wgp , w( f + g)p ∈ L. Let 0 < m < f ( f + g)
−q
p � M and

0 < m < g( f +g)
−q
p � M. If p > 1 , then

A
1
p (w( f +g)p) � K(p,m,M)

(
A

1
p (wf p)+A

1
p (wgp)

)
(5)

holds where K(p,m,M) is defined as in (4).
If 0 < p < 1 or p < 0 , then the inequality (5) is reversed provided A(w( f +g)p) >

0 for p < 0 .

I. İşcan in [9] generalized Hölder’s inequality in the following way.

THEOREM 5. Let L satisfy conditions L1 , L2 , and A satisfy conditions A1 , A2

on a base set E . Let p > 1 and p−1 + q−1 = 1 . If , ,w, f ,g � 0 on E , w fg,
w fg, wf p , wgq , wf p , wgq , w f g ∈ L and  + = 1 on E , then we have

A(w fg) � A1/p (wf p)A1/q (wgq)+A1/p (wf q)A1/q (wgq) (6)

and

A1/p (wf p)A1/q (wgq)+A1/p (wf p)A1/q (wgq) � A1/p (wf p)A1/q (wgq) . (7)
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In order to obtain the converses of Hölder’s inequality we use Young’s inequality
[8, 10, 12, 13] with Specht’s ratio:

If a,b > 0, 1
p + 1

q > 1 with p > 1, then the following converse of Young’s in-
equality holds

s
(a

b

)
a

1
p b

1
q � a

p
+

b
q
, (8)

where s is Specht’s ratio defined by

s(x) =
x

1
x−1

e logx
1

x−1

for x > 0, x �= 1, and s(1) = 1.

REMARK 1. (i) lim
x→1

s(x) = 1 and s(x) = s( 1
x ) for x > 0.

(ii) s(x) is a monotone increasing function on (1,) .

(iii) s(x) is a monotone decreasing function on (0,1) .

2. Converses of functional Hölder’s and Minkowski’s inequalities

Our first result provides the converse of functional Hölder’s inequality (1).

THEOREM 6. Let L satisfy conditions L1 , L2 and A satisfy conditions A1 , A2 .
If p > 1 , q = p/(p − 1) , and w, f ,g are positive functions such that w f p , wgq ,

s
(

A(wgq) f p

A(w f p)gq

)
w fg ∈ L, then we have

A

(
s

(
A(wgq) f p

A(wf p)gq

)
w fg

)
� A

1
p (wf p)A

1
q (wgq), (9)

where s is Specht’s ratio.

Proof. By taking a = w f p

A(w f p) and b = wgq

A(wgq) in (8), we get

s

(
A(wgq) f p

A(wf p)gq

)
w fg

A
1
p (wf p)A

1
q (wgq)

� 1
p

(
wf p

A(wf p)

)
+

1
q

(
wgq

A(wgq)

)
.

Now applying the positive linear functional A on both sides, we get

1

A
1
p (wf p)A

1
q (wgq)

A

(
s

(
A(wgq) f p

A(wf p)gq

)
w fg

)
� 1

p

(
A(wf p)
A(wf p)

)
+

1
q

(
A(wgq)
A(wgq)

)
= 1,

which leads to the required result. �
When w(t) = 1 in Theorem 6 we obtain the following result.
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COROLLARY 1. Let L satisfy conditions L1 , L2 and A satisfy conditions A1 ,
A2 . If p > 1 , q = p/(p − 1) , and f ,g are positive functions such that f p , gq ,

s
(

A(gq) f p

A( f p)gq

)
f g ∈ L, then we have

A

(
s

(
A(gq) f p

A( f p)gq

)
f g

)
� A

1
p ( f p)A

1
q (gq), (10)

where s is Specht’s ratio.

Next theorem gives the reverse case for p < 0 and 0 < p < 1.

THEOREM 7. Let all the assumptions of Theorem 6 are satisfied.

(i) If p < 0 , then we get

A
1
q

(
s

(
A(w fg) f p−1

A(wf p)g

)
wgq

)
A

1
p (wf p) � A(w fg).

(ii) If 0 < p < 1 , then we get

A
1
p

(
s

(
A(wgq) f

A(w fg)gq−1

)
wf p

)
A

1
q (wgq) � A(w fg).

Proof.

(i) For p < 0 let P = −p
q , Q = 1

q , F = f−q and G = f qgq . Then P,Q > 1, 1/P+
1/Q = 1 and F,G are positive functions. By replacing p,q, f ,g with P,Q,F,G
in (9), we get

A

(
s

(
A(wGQ)FP

A(wFP)GQ

)
wFG

)
� A

1
P (wFP)A

1
Q (wGQ).

By substituting values of P,Q,F and G in the above inequality, we get

A

(
s

(
A(w fg) f p

A(wf p) f g

)
wgq

)
� A

−q
p (wf p)Aq(w fg).

Hence

A

(
s

(
f pA(w fg)
f gA(wf p)

)
wgq

)
A

q
p (wf p) � Aq(w fg).

Now taking power 1
q on both sides we obtain the required result.

(ii) If 0 < p < 1, then q < 0 and we let P = 1
p , Q = −q

p , F = f pgp and G = g−p .
Now by replacing p,q, f ,g with P,Q,F,G in (9), and then substituting the values
of P,Q,F and G , we get

A

(
s

(
A(wgq) f

A(w fg)gq−1

)
wf p

)
� Ap(w fg)A

−p
q (wgq) .

After some calculation, we obtain the required result. �
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Next two results give converses of the inequalities (6) and (7), respectively.

THEOREM 8. Let all the assumptions of Theorem 6 be satisfied. Further assume
that , > 0 on E such that w fg, w fg, wf p , wgq , wf p , wgq ∈ L and
 + = 1 on E . Then we get

s

(
A(wf p)A(wgq)
A(wgq)A(wf p)

)
A

1
p (wf p)A

1
q (wgq) (11)

+ s

(
A(wf p)A(wgq)
A(wgq)A(wf p)

)
A

1
p (wf p)A

1
q (wgq)

� A
1
p (wf p)A

1
q (wgq) .

Proof. Using (10), we get

s

(
up

1

(
vq
1 + vq

2

)
vq
1

(
up

1 +up
2

)
)

u1v1 + s

(
up

2

(
vq
1 + vq

2

)
vq
2

(
up

1 +up
2

)
)

u2v2 �
(
up

1 +up
2

) 1
p +
(
vq
1 + vq

2

) 1
q . (12)

Let

u1 = A
1
p (wf p) , v1 = A

1
q (wgq) ,

u2 = A
1
p (wf p) , v2 = A

1
q (wgq) .

Substituting these values in equation (12), we obtain the inequality (11). �

THEOREM 9. Let all the assumptions of Theorem 8 be satisfied. If

s

(
A(wgq) f p

A(wf p)gq

)
 + s

(
A(wgq) f p

A(wf p)gq

)
 � s

(
A(wgq) f p

A(wf p)gq

)
, (13)

then we have

A

(
s

(
A(wgq) f p

A(wf p)gq

)
w fg

)
� A

1
p (wf p)A

1
q (wgq)+A

1
p (wf p)A

1
q (wgq) .

Proof. Multiplying the both sides of (13) by w fg , applying the positive linear
functional A on it and then applying reverse Hölder’s inequality (9), we obtain

A

(
s

(
A(wgq) f p

A(wf p)gq

)
w fg

)

� A

((
s

(
A(wgq) f p

A(wf p)gq

)
+ s

(
A(wgq) f p

A(wf p)gq

)

)

w fg

)

= A

(
s

(
A(wgq) f p

A(wf p)gq

)
w fg

)
+A

(
s

(
A(wgq) f p

A(wf p)gq

)
w fg

)

� A
1
p (wf p)A

1
q (wgq)+A

1
p (wf p)A

1
q (wgq) .
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Hence the result follows. �

In the following result, we obtain another converse of the improved Hölder in-
equalities (6) and (7).

THEOREM 10. Let all the assumptions of Theorem 8 be satisfied. Suppose K be
defined as in (4) and

0 < m � f (t)g−q/p(t) � M for all t ∈ E.

If p > 1 , then

A(w fg) � K(p,m,M)
(
A1/p (wf p)A1/q (wgq)+A1/p (wf p)A1/q (wgq)

)
(14)

and

A1/p (wf p)A1/q (wgq)+A1/p (wf p)A1/q (wgq)

� K(p,m,M)A
1
p (wf p)A

1
q (wgq) . (15)

Proof. By using reverse Hölder’s inequality (3), we get

A(w fg) = A(w fg+w fg) = A(w fg)+A(w fg)

� K(p,m,M)
(
A1/p (wf p)A1/q (wgq)+A1/p (wf p)A1/q (wgq)

)
,

which is the required inequality (14).
Now using discrete form of the inequality (3), we get

u1v1 +u2v2 � K(p,m,M)
(
up

1 +up
2

) 1
p
(
vq
1 + vq

2

) 1
q . (16)

Let

u1 = A
1
p (wf p) , v1 = A

1
q (wgq) ,

u2 = A
1
p (wf p) , v2 = A

1
q (wgq) .

Substituting these values in (16) we obtain

A1/p (wf p)A1/q (wgq)+A1/p (wf p)A1/q (wgq)

� K(p,m,M)(A(wf p)+A(wf p))
1
p (A(wgq)+A(wgq))

1
q .

By using the linearity of A and then using  + = 1, we get the inequality (15). �

Next result gives the converse of functional Minkowski’s inequality.
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THEOREM 11. Let L satisfy conditions L1 , L2 and A satisfy conditions A1 , A2 .
Suppose that p > 1 , q = p/(p−1) , and w, f ,g are positive functions such that w f p ,

wgq , wgp , w( f +g)p , s
(

A(wgq) f p

A(w f p)gq

)
w( f +g)p ∈ L. If s1 � s2,s3 , where

s1 = s

(
A(wgq) f p

A(wf p)gq

)
,

s2 = s

(
A(w( f +g)p) f p

A(wf p) ( f +g)p

)
,

s3 = s

(
A(w( f +g)p)gp

A(wgp)( f +g)p

)
,

then we have

A
1
p (wf p)+A

1
p (wgp) �

[
Ap (s1w( f +g)p)
Ap−1 (w( f +g)p)

] 1
p

.

Proof. s1 � s2 implies that

s1wf ( f +g)p−1 � s2wf ( f +g)p−1.

Similarly s1 � s3 implies that

s1wg( f +g)p−1 � s3wg( f +g)p−1.

By adding the above two inequalities we get

s1w( f +g)p � s2wf ( f +g)p−1 + s3wg( f +g)p−1.

Applying positive linear functional A and then reverse Hölder’s inequality (9), we get

A(s1w( f +g)p) � A
(
s2wf ( f +g)p−1)+A

(
s3wg( f +g)p−1)

� A
1
p (wf p)A

p−1
p (w( f +g)p)+A

1
p (wgp)A

p−1
p (w( f +g)p) .

Dividing both sides with A
p−1
p (w( f +g)p) , we get our required result. �

3. Applications on time scales

In this section we obtain new converses of Hölder’s and Minkowski’s inequalities
on time scales. According to Stefan Hilger’s 1988 PhD thesis, the theory of time scales
combines the science of differential equations and difference equations, extending to
cases “in between”, uniting integral and differential calculus with the calculus of finite
differences, and providing a paradigm for investigating hybrid discrete-continuous dy-
namic systems. It can be used in any field that demands the simultaneous modeling of
discrete and continuous data. Now that the time scales calculus has been introduced,
see [1, 2, 4, 5, 6, 7] for more information.
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Let n ∈ N be fixed. For time scales, Ti, i ∈ {1, . . . ,n} , let

n = T1× . . .×Tn = {x = (x1, . . . ,xn) : xi ∈ Ti, 1 � i � n} (17)

an n -dimensional time scale. Suppose that  is the  -additive Lebesgue -measure
on n and M is the collection of -measurable subsets of n . If A ∈M , (A ,M,)
is a time scale measure space, and s : A → R is a -measurable function, then the
corresponding -integral of s over A is denoted by (see [7, (3.18)])

∫
A

s(x1, . . . ,xp)1x1 . . .pxp,
∫

A
s(x)x,

∫
A

sd,or
∫

A
s(x)d(x).

All theorems of the general Lebesgue integration theory also hold for Lebesgue -
integrals on p .

THEOREM 12. Let (X ,M,) be a time scales measure space. If p > 1 , q =
p/(p−1) , w, f , g are positive -integrable functions such that w f p , wgq , w f g are
-integrable, then we have

∫
X

s

(∫
X w(x)gq(x)d(x) f p(x)∫
X w(x) f p(x)d(x)gq(x)

)
w(x) f (x)g(x)d(x)

�
(∫

X
w(x) f p(x)d(x)

) 1
p
(∫

X
w(x)gq(x)d(x)

) 1
q

, (18)

where s is Specht’s ratio.

Proof. The result follows from Theorem 6 and the fact that delta integral is a
positive linear functional. �

REMARK 2. Some specific cases of time scales are taken below to obtain con-
verses, otherwise we can also obtain these inequalities for other important time scales,
e.g., for T = hZ and T = qN .

(i) Let n = 1 in (17). If 1 = T1 = [a,b] ⊆ R and L = L[a,b] , then the inequality
(18) becomes

∫ b

a
s

(∫ b
a w(x)gq(x)d(x) f p(x)∫ b
a w(x) f p(x)d(x)gq(x)

)
w(x) f (x)g(x)d(x)

�
(∫ b

a
w(x) f p(x)d(x)

) 1
p
(∫ b

a
w(x)gq(x)d(x)

) 1
q

.

(ii) Let n = 2 in (17). If 2 = T1×T2 = [a,b]× [c,d]⊆R
2 and L = L([a,b]× [c,d]) ,
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then the inequality (18) becomes

∫ b

a

∫ d

c
s

(∫ b
a

∫ d
c w(x,y)gq(x,y)d(x)d(y) f p(x,y)∫ b

a

∫ d
c w(x,y) f p(x,y)d(x)d(y)gq(x,y)

)
×

×w(x,y) f (x,y)g(x,y)d(x)d(y)

�
(∫ b

a

∫ d

c
w(x,y) f p(x,y)d(x)d(y)

) 1
p

×

×
(∫ b

a

∫ d

c
w(x,y)gq(x,y)d(x)d(y)

) 1
q

.

(iii) Let n = 1 in (17). If T1 = {1,2, . . . ,n} , f (r) = fr, g(r) = gr , and w(r) = wr

where r = 1, . . . ,n , then the inequality (18) becomes

n


r=1

s

((
n

r=1 wrg
q
r
)

f p
r(

n
r=1 wr f p

r
)
gq

r

)
wr frgr �

(
n


r=1

wr f p
r

) 1
p
(

n


r=1

wrg
q
r

) 1
q

.

THEOREM 13. Let all the assumptions of Theorem 12 are satisfied.

(i) If p < 0 , then we get

(∫
X

s

(∫
X w(x) f (x)g(x)d(x) f p−1(x)∫

X w(x) f p(x)d(x)g(x)

)
w(x)gq(x)d(x)

) 1
q

×

×
(∫

X
w(x) f p(x)d(x)

) 1
p

�
∫

X
w(x) f (x)g(x)d(x).

(ii) If 0 < p < 1 , then we get

(∫
X

s

( ∫
X w(x)gq(x))d(x) f (x)∫

X w(x) f (x)g(x)d(x)gq−1(x)

)
w(x) f p(x)d(x)

) 1
p

×

×
(∫

X
w(x)gq(x)d(x)

) 1
q

�
∫

X
w(x) f (x)g(x)d(x).

Proof. The result follows from Theorem 7 and the fact that delta integral is a
positive linear functional. �

THEOREM 14. Let all the assumptions of Theorem 12 be satisfied. Further as-
sume that , > 0 on X such that w fg, w fg, wf p , wgq , wf p , wgq are
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-integrable and + = 1 on X . Then we get

s

(
(
∫
X (x)w(x) f p(x)d(x))

1
p (
∫
X w(x)gq(x)d(x))

1
q

(
∫
X w(x) f p(x)d(x))

1
p (
∫
X (x)w(x)gq(x)d(x))

1
q

)
×

×
(∫

X
(x)w(x) f p(x)d(x)

) 1
p
(∫

X
(x)w(x)gq(x)d(x)

) 1
q

+ s

(
(
∫
X  (x)w(x) f p(x)d(x))

1
p (
∫
X w(x)gq(x)d(x))

1
q

(
∫
X w(x) f p(x)d(x))

1
p (
∫
X  (x)w(x)gq(x)d(x))

1
q

)
×

×
(∫

X
 (x)w(x) f p(x)d(x)

) 1
p
(∫

X
 (x)w(x)gq(x)d(x)

) 1
q

�
(∫

X
w(x) f p(x)d(x)

) 1
p
(∫

X
w(x)gq(x)d(x)

) 1
q

.

Proof. The result follows from Theorem 8 and the fact that delta integral is a
positive linear functional. �

THEOREM 15. Let all the assumptions of Theorem 14 be satisfied. If

s

(∫
X (x)w(x)gq(x)d(x) f p(x)∫
X (x)w(x) f p(x)d(x)gq(x)

)
(x)+s

(∫
X  (x)w(x)gq(x)d(x) f p(x)∫
X  (x)w(x) f p(x)d(x)gq(x)

)
 (x)

� s

(∫
X w(x)gq(x)d(x) f p(x)∫
X w(x) f p(x)d(x)gq(x)

)
,

then we have

∫
X

s

(∫
X w(x)gq(x)d(x) f p(x)∫
X w(x) f p(x)d(x)gq(x)

)
w(x) f (x)g(x)d(x)

�
(∫

X
(x)w(x) f p(x)d(x)

) 1
p
(∫

X
(x)w(x)gq(x)d(x)

) 1
q

+
(∫

X
 (x)w(x) f p(x)d(x)

) 1
p
(∫

X
 (x)w(x)gq(x)d(x)

) 1
q

.

Proof. The result follows from Theorem 9 and the fact that delta integral is a
positive linear functional. �

THEOREM 16. Let all the assumptions of Theorem 14 be satisfied. Suppose

0 < m � f (t)g−q/p(t) � M for all t ∈ X .
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If p > 1 , then∫
x
w(x) f (x)g(x)d(x) (19)

� K(p,m,M)

((∫
X
(x)w(x) f p(x)d(x)

) 1
p
(∫

X
(x)w(x)gq(x)d(x)

) 1
q

+
(∫

X
 (x)w(x) f p(x)d(x)

) 1
p
(∫

X
 (x)w(x)gq(x)d(x)

) 1
q
)

and (∫
X
(x)w(x) f p(x)d(x)

) 1
p
(∫

X
(x)w(x)gq(x)d(x)

) 1
q

(20)

+
(∫

X
 (x)w(x) f p(x)d(x)

) 1
p
(∫

X
 (x)w(x)gq(x)d(x)

) 1
q

� K(p,m,M)
(∫

X
w(x) f p(x)d(x)

) 1
p
(∫

X
w(x)gq(x)d(x)

) 1
q

hold where K(p,m,M) is defined as in (4).

Proof. The result follows from Theorem 10 and the fact that delta integral is a
positive linear functional. �

THEOREM 17. Let all the assumptions of Theorem 12 be satisfied. If s1 � s2,s3 ,
where

s1 = s

(∫
X w(x)gq(x)d(x) f p(x)∫
X w(x) f p(x)d(x)gq(x)

)
,

s2 = s

(∫
X w(x)( f (x)+g(x))pd(x) f p(x)∫
X w(x) f p(x)d(x)( f (x)+g(x))p

)
,

s3 = s

(∫
X w(x)( f (x)+g(x))pd(x)gp(x)∫
X w(x)gp(x)d(x)( f (x)+g(x))p

)
,

then we have

(∫
X

w(x) f p(x)d(x)
) 1

p

+
(∫

X
w(x)gp(x)d(x)

) 1
p

�
[

(
∫
X s1w(x)( f (x)+g(x))pd(x))p

(
∫
X s1w(x)( f (x)+g(x))pd(x))p−1

] 1
p

.

Proof. The result follows from Theorem 11 and the fact that delta integral is a
positive linear functional. �



624 R. BIBI AND H. RAZA

REMARK 3. In a similar way as in Remark 2, we can also obtain the specific
cases of all results of this section. These reverses are new even in the case of sums and
integrals.

4. Reverse of integral Minkowski’s inequality

In this section we obtain a converse of improved integral Minkowski’s inequality
(see [3]) on time scale.

THEOREM 18. Let (X ,M,) and (Y,L,d) be time scale measure spaces and
let u,v, and f be nonnegative functions on X ,Y, and X ×Y , respectively. Suppose

0 < m � f (x,y)∫
X f (x,y)v(y)d(y)

� M.

If p � 1 , then (∫
X

(∫
Y

f (x,y)v(y)d(y)
)p

u(x)d(x)
) 1

p

(21)

�
(∫

X

(∫
Y

f (x,y)v(y)d(y)
)p

u(x)d(x)
) p−1

p

B

� K2(p,m,M)
∫
Y

(∫
X

f p(x,y)u(x)d(x)
) 1

p

v(y)d(y)

holds provided all integrals in (21) exists, where

B = K(p,m,M)
∫
Y

((∫
X
(x) f p(x,y)u(x)d(x)

) 1
p

×

×
(∫

X
(x)Hp(x)u(x)d(x)

) p−1
p

+
(∫

X
 (x) f p(x,y)u(x)d(x)

) 1
p

×

×
(∫

X
 (x)Hp(x)u(x)d(x)

) p−1
p

⎞
⎠v(y)d(y).

Proof. Let H(x) =
∫
Y f (x,y)v(y)d(y). By using Fubini’s theorem and inequal-

ities (19) and (20), we get∫
X

Hp(x)u(x)d(x)

=
∫

X
H(x)Hp−1(x)u(x)d(x)

=
∫

X

(∫
Y

f (x,y)v(y)d(y)
)

Hp−1(x)u(x)d(x)

=
∫
Y

(∫
X

f (x,y)Hp−1(x)u(x)d(x)
)

v(y)d(y)
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� K(p,m,M)
∫
Y

((∫
X
(x) f p(x,y)u(x)d(x)

) 1
p

×

×
(∫

X
(x)Hp(x)u(x)d(x)

) p−1
p

+
(∫

X
 (x) f p(x,y)u(x)d(x)

) 1
p

×

×
(∫

X
 (x)Hp(x)u(x)d(x)

) p−1
p

⎞
⎠v(y)d(y)

� K2(p,m,M)
∫
Y

(∫
X

f p(x,y)u(x)d(x)
) 1

p
(∫

X
Hp(x)u(x)d(x)

) p−1
p

v(y)d(y)

= K2(p,m,M)
∫
Y

(∫
X

f p(x,y)u(x)d(x)
) 1

p

v(y)d(y)
(∫

X
Hp(x)u(x)d(x)

) p−1
p

.

Now dividing by (
∫
X Hp(x)u(x)d(x))

p−1
p , we obtain the required result. �

REMARK 4. (i) If X ⊆ [a,b] , Y ⊆ [c,d] , then the inequality (21) becomes(∫
X

(∫
Y

f (x,y)v(y)d(y)
)p

u(x)d(x)
) 1

p

�
(∫

X

(∫
Y

f (x,y)v(y)d(y)
)p

(x)u(x)d(x)
) p−1

p

B

� K2(p,m,M)
∫
Y

(∫
X

f p(x,y)u(x)d(x)
) 1

p

v(y)d(y),

where

B = K(p,m,M)
∫
Y

((∫
X
(x) f p(x,y)u(x)d(x)

) 1
p

×

×
(∫

X
(x)Hp(x)u(x)d(x)

) p−1
p

+
(∫

X
 (x) f p(x,y)u(x)d(x)

) 1
p

×

×
(∫

X
 (x)Hp(x)u(x)d(x)

) p−1
p

⎞
⎠v(y)d(y).

(ii) If X ,Y ⊆N such that w(r) = wr , g(r) = gr and f (r,s) = fr,s , r,s ∈ {1,2, . . . ,n} ,
then the inequality (21) becomes(

n


r=1

(
n


s=1

fr,svs

)p

ur

) 1
p

�
(

n


r=1

(
n


s=1

fr,svs

)p

ur

) p−1
p

B

� K2(p,m,M)
n


s=1

(
n


r=1

f p
r,sur

) 1
p

vs,
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where

B = K(p,m,M)
n


s=1

⎛
⎝( n


r=1

(x) f p
r,sur

) 1
p
(

n


r=1

(x)Hp
r ur

) p−1
p

+

(
n


r=1

 (x) f p
r,sur

) 1
p
(

n


r=1

 (x)Hp
r ur

) p−1
p
⎞
⎠vs.
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