INEQUALITIES FOR DIAGONALLY DOMINANT MATRICES

Vinayak Gupta，Gargi Lather＊and R．Balaji

（Communicated by I．Perić）

Abstract

Let $A=\left(a_{i j}\right)$ and $H=\left(h_{i j}\right)$ be positive semidefinite matrices of the same order．If $a_{i j} \geqslant\left|h_{i j}\right|$ for all $i, j ; A$ is diagonally dominant and all row sums of H are equal to zero，then we show that the sum of all $k \times k$ principal minors of A is greater than or equal to the sum of all $k \times k$ principal minors of H ．

1．Introduction

This paper is inspired by the following result in［1］．

THEOREM 1．Let G be a connected graph on n vertices．If $L(G)$ and $|L(G)|$ are the Laplacian and the signless Laplacian matrices of G ，then the sum of all $k \times k$ principal minors of $|L(G)|$ is greater than or equal to the sum of all $k \times k$ principal minors of $L(G)$ ．

Let $c_{j}(A)$ denote the sum of all $j \times j$ principal minors of an $n \times n$ matrix A ．Then the characteristic polynomial of A can be written as

$$
t^{n}-c_{1}(A) t^{n-1}+\cdots+(-1)^{n} c_{n}(A)
$$

Now，the above result says that

$$
c_{j}(L(G)) \leqslant c_{j}(|L(G)|) \quad j=1, \ldots c, n
$$

Theorem 1 has significance in deriving certain powerful inequalities connecting the eigenvalues of $L(G)$ and $|L(G)|$ ．These eigenvalue inequalities follow immedi－ ately from a remarkable result of Efroymson，Swartz and Wendroff［4］on elementary symmetric functions which in particular says the following．

[^0]THEOREM 2. Let $n \in \mathbb{N}, k \in\{1, \ldots c, n\}$ and $0<\alpha \leqslant 1$. For each non-negative vector $x=\left(x_{1}, \ldots c, x_{n}\right)^{\prime}$, define

$$
\begin{gathered}
f_{1}(x)=\sum_{i=1}^{n} x_{i} \\
s_{1}(x)=\sum_{i=1}^{n} x_{i}^{\alpha} \\
f_{2}(x)=\sum_{i<j} x_{i} x_{j} \\
s_{2}(x)=\sum_{i<j}\left(x_{i} x_{j}\right)^{\alpha} \\
\vdots \\
f_{n}(x)=\prod_{j=1}^{n} x_{j}
\end{gathered} s_{n}(x)=\prod_{j=1}^{n} x_{j}^{\alpha} .
$$

If p and q are non-negative vectors such that

$$
f_{k}(p) \leqslant f_{k}(q) \quad k=1, \ldots c, n
$$

then

$$
s_{k}(p) \leqslant s_{k}(q) \quad k=1, \ldots c, n
$$

In this paper, we obtain a significantly broader result on diagonally dominant matrices encompassing Theorem 1 as a special case.

THEOREM 3. Let $A=\left(a_{i j}\right)$ and $H=\left(h_{i j}\right)$ be $n \times n$ positive semidefinite matrices. If $a_{i j} \geqslant\left|h_{i j}\right|$ for all $i, j ; A$ is diagonally dominant and all row sums of H are equal to zero, then

$$
c_{k}(A) \geqslant c_{k}(H) \quad k=1, \ldots c, n
$$

In other words, if

$$
t^{n}-\alpha_{1} t^{n-1}+\cdots+(-1)^{n} \alpha_{n} \text { and } t^{n}-\beta_{1} t^{n-1}+\cdots+(-1)^{n} \beta_{n}
$$

are the characteristic polynomials of A and H respectively, then

$$
\alpha_{k} \geqslant \beta_{k} \quad k=1, \ldots c, n
$$

We prove Theorem 3 by employing arguments similar to those in Theorem 1 with necessary modifications, and utilizing standard matrix-theoretic techniques. The consequences of Theorem 3 are discussed in Section 5.

2. Preliminaries

We shall use the following notations and definitions.
(a) We consider only simple graphs. The vertices of a graph G with n vertices will be labelled $1, \ldots c, n$ and each edge will be denoted by (i, j), where $i<j$. We use $V(G)$ and $E(G)$ to denote the set of all vertices and edges of G.
(b) Let G be a graph with n vertices and m edges. If each edge $e \in E(G)$ is assigned some positive number $w(e)$, then we say that G is weighted and $w(e)$ is the weight of e. The weighted incidence vector of the edge $e=(i, j)$ is defined by $q(e):=\left(q_{1}(e), \ldots c, q_{n}(e)\right)^{\prime}$, where

$$
q_{k}(e):=\left\{\begin{array}{cl}
\sqrt{w(e)} & k=i \\
-\sqrt{w(e)} & k=j \\
0 & \text { otherwise }
\end{array}\right.
$$

The weighted incidence matrix of G is now constructed by arranging its weighted incidence vectors as distinct columns. If $F \subseteq E(G)$, then $\langle F\rangle$ will denote the subgraph of G with vertex set containing all the end vertices of edges in F and $E(\langle F\rangle)=F$. As usual, K_{n} will be the complete graph on n vertices.
(c) Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix with real entries. We say that A is diagonally dominant if

$$
\left|a_{i i}\right| \geqslant \sum_{\{j: j \neq i\}}\left|a_{i j}\right| \quad i=1, \ldots c, n
$$

If U is an $n \times n$ matrix, then $c_{k}(U)$ will denote the sum of all $k \times k$ principal minors of U. If U is symmetric, then we denote and arrange its eigenvalues by

$$
\lambda_{1}(U) \geqslant \cdots \geqslant \lambda_{n}(U)
$$

Let $B=\left(b_{i j}\right)$ be an $n \times m$ matrix. Then, $|B|$ will denote the matrix $\left(\left|b_{i j}\right|\right)$. If $T \subseteq\{1, \ldots c, n\}$ and $S \subseteq\{1, \ldots c, m\}$, then $B[T, S]$ will denote the submatrix of B obtained by selecting the rows corresponding to T and the columns corresponding to S.

3. Intermediate results

To prove our main result, we need a weighted version of Theorem 7.4 in [3]. Let G be a weighted graph with n vertices. For non-empty subsets $X \subseteq V(G)$ and $Y \subseteq E(G)$ such that $|X|=|Y|$, we say that the pair (X, Y) has property $(*)$, if the following conditions hold:
(i) Every vertex in X is incident with at least one edge in Y.
(ii) Every component of $\langle Y\rangle$ is a tree.
(iii) If T is a component of $\langle Y\rangle$, then $V(T) \backslash X$ contains exactly one vertex.

We now have the following lemma.
Lemma 1. Suppose (X, Y) has property $(*)$. Let T be a component of $\langle Y\rangle$, $\{b\}:=V(T) \backslash X$ and $e:=(a, b) \in E(T)$. Then, $(X \backslash\{a\}, Y \backslash\{e\})$ will have property (*).

Proof. Let $T_{1}, \ldots c, T_{m}$ be the components of $\langle Y\rangle$ and $T:=T_{1}$. Define $\Omega_{1}:=$ $X \backslash\{a\}$ and $\Omega_{2}:=Y \backslash\{e\}$. We claim that the pair $\left(\Omega_{1}, \Omega_{2}\right)$ satisfy (i), (ii) and (iii). Let $v \in \Omega_{1}$. To show that v is incident with an edge in Ω_{2}, it suffices to show that v is not incident with $e=(a, b)$. If this happens, then $v=b$. However, since $b \notin X$, we conclude that $v \notin \Omega_{1}$. This contradicts $v \in \Omega_{1}$. Thus, (i) holds. While (ii) follows immediately, to show (iii), we consider the following possibilities.
(I) If both a and b are pendant vertices, then T_{1} contains only one edge (a, b). Thus, the components of $\left\langle\Omega_{2}\right\rangle$ are precisely T_{2}, \ldots, T_{m}.
(II) If both a and b are not pendant, then the components of $\left\langle\Omega_{2}\right\rangle$ are $R_{a}, R_{b}, T_{2}, \ldots c, T_{m}$, where R_{a} and R_{b} are subtrees of $\left\langle\Omega_{2}\right\rangle$ containing vertices a and b respectively. Moreover,

$$
V\left(R_{a}\right) \backslash \Omega_{1}=\{a\} \text { and } V\left(R_{b}\right) \backslash \Omega_{1}=\{b\}
$$

(III) If a is pendant and b is not pendant, then the components of $\left\langle\Omega_{2}\right\rangle$ are $R_{b}, T_{2}, \ldots c, T_{m}$, where R_{b} is the subtree of $\left\langle\Omega_{2}\right\rangle$ containing b and $V\left(R_{b}\right) \backslash \Omega_{1}=\{b\}$.
(IV) If b is pendant and a is not pendant, then the components of $\left\langle\Omega_{2}\right\rangle$ are $R_{a}, T_{2}, \ldots c, T_{m}$, where R_{a} is the subtree of $\left\langle\Omega_{2}\right\rangle$ containing a and $V\left(R_{a}\right) \backslash \Omega_{1}=\{a\}$.

Since

$$
V\left(T_{i}\right) \backslash \Omega_{1}=V\left(T_{i}\right) \backslash X \quad i=2, \ldots c, m
$$

and each $V\left(T_{i}\right) \backslash X$ has exactly one vertex, (iii) is satisfied. The proof is complete.
Lemma 2. Let Q be a weighted incidence matrix of G. Then, $Q[X, Y]$ is nonsingular if and only if (X, Y) has property $(*)$.

Proof. Suppose $Q[X, Y]$ is non-singular. Items (i) and (iii) of property $(*)$ are proven in the same way as [3, Theorem 7.4]. To prove (ii), consider a component of $\langle Y\rangle$. Suppose this component contains a cycle $C_{m}=\left\{v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{m-1}, v_{m}, e_{m}, v_{1}\right\}$, where $1 \leqslant v_{1}<\cdots<v_{m} \leqslant n$ are vertices and $e_{1}, \ldots c, e_{m}$ are edges. Define

$$
\left(z_{1}, \ldots c, z_{m}\right):=\left(\frac{1}{\sqrt{w\left(e_{1}\right)}}, \ldots c, \frac{1}{\sqrt{w\left(e_{m-1}\right)}},-\frac{1}{\sqrt{w\left(e_{m}\right)}}\right)^{\prime}
$$

It is easy to verify that

$$
\sum_{j=1}^{m} z_{j} q\left(e_{j}\right)=0
$$

Thus, $q\left(e_{1}\right), \ldots c, q\left(e_{m}\right)$ are linearly dependent and hence the columns of $Q[X, Y]$ are linearly dependent, which is a contradiction to our assumption. The necessary condition is proved.

Now, consider two non-empty subsets $X \subseteq V(G)$ and $Y \subseteq E(G)$ such that $|X|=$ $|Y|$ and (X, Y) has property $(*)$. Let $\alpha:=|X|=|Y|$. By induction on α, we show that $Q[X, Y]$ is non-singular. Suppose $\alpha=1$. In view of (i), $X=\{a\}$ and $Y=\{e\}$, where
e is incident with the vertex a. In this case, the conclusion follows immediately as $Q[X, Y]=(\pm \sqrt{w(e)})$. Suppose the result is true for all X and Y with $\alpha<k$. Assume, $\alpha=k$. Let T_{1}, \ldots, T_{m} be the components of $\langle Y\rangle$. Since we can relabel, by (iii), we may assume $V\left(T_{1}\right) \backslash X=\{2\}, e:=(1,2) \in E\left(T_{1}\right)$ and $q(e)$ is the first column of $Q[X, Y]$. Define $\Omega_{1}:=X \backslash\{1\}$ and $\Omega_{2}:=Y \backslash\{e\}$. As $q(e)=(\sqrt{w(e)}, 0, \ldots c, 0)^{\prime}$,

$$
\begin{equation*}
\operatorname{det} Q[X, Y]=\sqrt{w(e)} \operatorname{det} Q\left[\Omega_{1}, \Omega_{2}\right] \tag{3.1}
\end{equation*}
$$

By Lemma 1, $\left(\Omega_{1}, \Omega_{2}\right)$ has property $(*)$. Induction hypothesis now implies that $Q\left[\Omega_{1}, \Omega_{2}\right]$ is non-singular and so is $Q[X, Y]$ by (3.1). The proof is complete.

Lemma 3. Let $X \subseteq V(G)$ and $Y \subseteq E(G)$ be such that $|X|=|Y|$. If $M=|Q|$, where Q is a weighted incidence matrix of G, then

$$
(\operatorname{det} M[X, Y])^{2} \geqslant(\operatorname{det} Q[X, Y])^{2}
$$

Proof. It suffices to show the result when $Q[X, Y]$ is non-singular. In view of previous lemma, (X, Y) will have property $(*)$. Let $\alpha:=|X|=|Y|$. We prove by induction on α. If $\alpha=1$, then by item (i) of property $(*), X=\{a\}$ and $Y=\{e\}$, where e is incident with a; hence

$$
Q[X, Y]=(\pm \sqrt{w(e)}) \text { and } M[X, Y]=(\sqrt{w(e)})
$$

The inequality holds here. Assuming the result for all $\alpha<k$, we now prove for $\alpha=k$. By item (ii) of property $(*)$, all the components of $\langle Y\rangle$ are trees. Let T be a component of $\langle Y\rangle$. Item (iii) of property $(*)$ implies that $V(T) \backslash X$ contains precisely one vertex and let this be equal to $\{r\}$. In T, let r be adjacent to $s \in X$. Put $e:=(r, s), u:=$ $Q[X,\{e\}], \Omega_{1}:=X \backslash\{s\}$ and $\Omega_{2}:=Y \backslash\{e\}$. As

$$
u_{v}= \begin{cases}-\sqrt{w(e)} & v=s \\ 0 & v \in X \backslash\{s\},\end{cases}
$$

we see that

$$
\begin{equation*}
(\operatorname{det} Q[X, Y])^{2}=w(e)\left(\operatorname{det} Q\left[\Omega_{1}, \Omega_{2}\right]\right)^{2} \tag{3.2}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
(\operatorname{det} M[X, Y])^{2}=w(e)\left(\operatorname{det} M\left[\Omega_{1}, \Omega_{2}\right]\right)^{2} \tag{3.3}
\end{equation*}
$$

In view of Lemma 1, $\left(\Omega_{1}, \Omega_{2}\right)$ has property $(*)$. By induction hypothesis,

$$
\begin{equation*}
\left(\operatorname{det} Q\left[\Omega_{1}, \Omega_{2}\right]\right)^{2} \leqslant\left(\operatorname{det} M\left[\Omega_{1}, \Omega_{2}\right]\right)^{2} \tag{3.4}
\end{equation*}
$$

Now (3.2), (3.3) and (3.4) imply $(\operatorname{det} Q[X, Y])^{2} \leqslant(\operatorname{det} M[X, Y])^{2}$. The proof is complete.

REMARK 1. A parallel step of Lemma 3 in [1] uses a result of Poincaré [3, Proposition 5.3] which asserts that every square submatrix of an incidence matrix has determinant equal to 0 or ± 1. This property does not extend to weighted incidence matrices. Hence, the proof of Lemma 3 is completed by an induction argument.

The previous lemmas imply the following.

LEMMA 4. Let $S=\left(s_{i j}\right)$ be an $n \times n$ symmetric matrix such that all off-diagonal entries are negative and the row sums are all equal to zero. Then

$$
c_{k}(|S|) \geqslant c_{k}(S) \quad k=1, \ldots, n
$$

Proof. Consider the complete graph K_{n} with the edge set $E\left(K_{n}\right):=\{(i, j): 1 \leqslant$ $i<j \leqslant n\}$. To each edge $e:=(i, j) \in E\left(K_{n}\right)$, assign the weight $w(e):=\left|s_{i j}\right|$. Then, $S=Q Q^{\prime}$, where each column of Q is a weighted incidence vector of some edge in K_{n}. Corresponding to an edge $e=(i, j)$, define $M(e)=\left(p_{1}, \ldots c, p_{n}\right)^{\prime}$ where

$$
p_{k}:= \begin{cases}\sqrt{w(e)} & k=i, j \\ 0 & \text { otherwise }\end{cases}
$$

Then, $|S|=M M^{\prime}$, where each column of M is given by $M(f)$ for some $f \in E\left(K_{n}\right)$. For $1 \leqslant k \leqslant n$, define

$$
\Omega:=\left\{X \subseteq V\left(K_{n}\right):|X|=k\right\} \text { and } \Delta:=\left\{Y \subseteq E\left(K_{n}\right):|Y|=k\right\}
$$

As $c_{k}(S)$ is the sum of all $k \times k$ principal minors of S, we have

$$
c_{k}(S)=\sum_{X \in \Omega} \operatorname{det} S[X, X]
$$

Since $S=Q Q^{\prime}$, by Cauchy-Binet formula,

$$
c_{k}(S)=\sum_{X \in \Omega, Y \in \Delta}(\operatorname{det} Q[X, Y])^{2}
$$

Similarly,

$$
c_{k}(|S|)=\sum_{X \in \Omega, Y \in \Delta}(\operatorname{det} M[X, Y])^{2}
$$

In view of Lemma 3, if $X \in \Omega$ and $Y \in \Delta$, then

$$
(\operatorname{det} M[X, Y])^{2} \geqslant(\operatorname{det} Q[X, Y])^{2}
$$

Therefore, $c_{k}(|S|) \geqslant c_{k}(S)$.
The following result is well-known (see [5, Corollary 4.3.12]).

THEOREM 4. Let A and B be $n \times n$ symmetric matrices. If B is positive semidefinite, then

$$
\lambda_{k}(A) \leqslant \lambda_{k}(A+B) \quad k=1, \ldots c, n
$$

4. Main result

We recall the main result that needs to be proved.

THEOREM 5. Let $A=\left(a_{i j}\right)$ and $H=\left(h_{i j}\right)$ be $n \times n$ positive semidefinite matrices. If A is diagonally dominant, all row sums of H are equal to zero, and

$$
a_{i j} \geqslant\left|h_{i j}\right| \quad i, j=1, \ldots c, n
$$

then

$$
c_{k}(A) \geqslant c_{k}(H) \quad k=1, \ldots c, n
$$

Proof. We first prove the result by assuming that all off-diagonal entries of H are non-zero. Define $L:=\left(l_{i j}\right)$, where

$$
l_{i j}=\left\{\begin{aligned}
-\left|h_{i j}\right| & i \neq j \\
\sum_{\{k: k \neq i\}}\left|h_{i k}\right| & i=j
\end{aligned}\right.
$$

We begin by proving that

$$
c_{k}(A) \geqslant c_{k}(|L|) \quad k=1, \ldots c, n
$$

Let $W:=A-|L|$ with $(i, j)^{\text {th }}$ entry equal to $w_{i j}$. Since $a_{i j} \geqslant\left|h_{i j}\right|$, it follows that $a_{i j}>0, a_{i j} \geqslant\left|l_{i j}\right|$ and therefore, $w_{i j} \geqslant 0$ for all i, j. As $A=\left(a_{i j}\right)$ is diagonally dominant with positive entries,

$$
a_{i i}-\sum_{\{j: j \neq i\}} a_{i j} \geqslant 0 \quad i=1, \ldots c, n
$$

Since $a_{i j}=w_{i j}+\left|l_{i j}\right|$ for all i, j,

$$
l_{i i}+w_{i i}-\sum_{\{j: i \neq j\}}\left(\left|l_{i j}\right|+w_{i j}\right) \geqslant 0 \quad i=1, \ldots c, n
$$

Because $l_{i i}=\sum_{\{j: i \neq j\}}\left|l_{i j}\right|$, from the above inequality, we get

$$
w_{i i}-\sum_{\{j: i \neq j\}} w_{i j} \geqslant 0 \quad i=1, \ldots c, n
$$

Moreover, each $w_{i j} \geqslant 0$. So, W is diagonally dominant. To this end, we have $A=|L|+$ W, where $|L|$ and W are diagonally dominant. Since diagonally dominant matrices with non-negative diagonal entries are positive semidefinite, $|L|$ and W are positive semidefinite. By Theorem 4,

$$
\begin{equation*}
\lambda_{j}(A) \geqslant \lambda_{j}(|L|) \quad j=1, \ldots c, n \tag{4.1}
\end{equation*}
$$

We recall that if S is an $n \times n$ matrix, then

$$
\begin{align*}
c_{1}(S) & =\sum_{j=1}^{n} \lambda_{j}(S) \\
c_{2}(S) & =\sum_{i<j} \lambda_{i}(S) \lambda_{j}(S) \tag{4.2}\\
\vdots & \\
c_{n}(S) & =\prod_{j=1}^{n} \lambda_{j}(S)
\end{align*}
$$

Since A and L are positive semidefinite, (4.1) and (4.2) imply $c_{k}(A) \geqslant c_{k}(|L|)$ and hence by Lemma 4 , we get $c_{k}(A) \geqslant c_{k}(L)$. Now, we show that $c_{k}(L) \geqslant c_{k}(H)$. Define $B:=L-H$. All row sums of H and L are zero. Hence, each row sum of B is zero. Since the off-diagonal entries of B are non-positive, we see that the diagonal entries of B are non-negative and B is diagonally dominant. Therefore, B is positive semidefinite. Applying Theorem 4 to $L=H+B$, we have $\lambda_{j}(L) \geqslant \lambda_{j}(H)$ for all $j=1, \ldots c, n$. Since L and H are positive semidefinite, by (4.2), it now follows that $c_{k}(L) \geqslant c_{k}(H)$, and therefore, $c_{k}(A) \geqslant c_{k}(H)$.

Suppose some off-diagonal entries of H are zero. For each $m \in \mathbb{N}$, define

$$
\beta_{i j}^{(m)}:=\left\{\begin{array}{cl}
-\frac{1}{m} & l_{i j}=0 \text { and } i \neq j \\
0 & l_{i j} \neq 0 \text { and } i \neq j \\
\sum_{\{k: i \neq k\}}\left|\beta_{i k}^{(m)}\right| & i=j
\end{array}\right.
$$

$A_{m}=\left(a_{i j}^{(m)}\right):=\left(a_{i j}+\left|\beta_{i j}^{(m)}\right|\right)$ and $H_{m}=\left(h_{i j}^{(m)}\right):=\left(h_{i j}+\beta_{i j}^{(m)}\right)$. Then, A_{m} is diagonally dominant, sum of all the entries in any row of H_{m} is zero, each off-diagonal entry of H_{m} is negative and $a_{i j}^{(m)} \geqslant\left|h_{i j}^{(m)}\right|$. Therefore, $c_{k}\left(A_{m}\right) \geqslant c_{k}\left(H_{m}\right)$ for all $m \in \mathbb{N}$. By continuity, $c_{k}(A) \geqslant c_{k}(H)$. The proof is complete.

Example 1. In general, positive semidefinite matrices are not diagonally dominant. The conclusion of Theorem 5 does not hold if A is only assumed to be positive semidefinite. For example, if

$$
A=\left[\begin{array}{rrrr}
3 & 1 & 2 & 1 \\
1 & 13 & 4 & 8 \\
2 & 4 & 6 & 1 \\
1 & 8 & 1 & 10
\end{array}\right] \quad \text { and } \quad H=\left[\begin{array}{rrrr}
3 & -1 & -1 & -1 \\
-1 & 13 & -4 & -8 \\
-1 & -4 & 6 & -1 \\
-1 & -8 & -1 & 10
\end{array}\right]
$$

then $c_{2}(A)=268$, whereas $c_{2}(H)=271$.

5. Corollary

The following is an immediate consequence of Theorem 2 and Theorem 5.

Corollary 1. Let $A=\left(a_{i j}\right)$ and $L=\left(l_{i j}\right)$ be $n \times n$ positive semidefinite matrices. Suppose A is diagonally dominant, all row sums of L are equal to zero and $a_{i j} \geqslant\left|l_{i j}\right|$ for all i, j. Let $x_{i}:=\lambda_{i}(A)$ and $y_{i}:=\lambda_{i}(L)$. Then, for any $\alpha \in(0,1]$,

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i}^{\alpha} \geqslant \sum_{i=1}^{n} y_{i}^{\alpha} \\
& \sum_{i<j}\left(x_{i} x_{j}\right)^{\alpha} \geqslant \sum_{i<j}\left(y_{i} y_{j}\right)^{\alpha} \\
& \vdots \\
& \prod_{j=1}^{n} x_{j}^{\alpha} \geqslant \prod_{j=1}^{n} y_{j}^{\alpha}
\end{aligned}
$$

Let G be a weighted graph on n vertices with weight $w_{i j}$ on the edge (i, j). Then the weighted Laplacian matrix $L(G)=\left(l_{i j}\right)$ is the $n \times n$ symmetric matrix such that

$$
l_{i j}= \begin{cases}-w_{i j} & \text { if } i \neq j \text { and }(i, j) \in E(G) \\ 0 & \text { if } i \neq j \text { and }(i, j) \notin E(G) \\ \sum_{\{s: s \neq i\}} w_{i s} & i=j\end{cases}
$$

The weighted signless Laplacian matrix is $|L(G)|$. The following result extends Theorem 1 to the weighted case.

COROLLARY 2. If $L:=L(G)$ is an $n \times n$ weighted Laplacian matrix of G, then

$$
c_{k}(|L|) \geqslant c_{k}(L) \quad k=1, \ldots c, n
$$

In particular, if $a_{i}:=\lambda_{i}(L)$ and $b_{i}:=\lambda_{i}(|L|)$, then for any $\alpha \in(0,1]$,

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i}^{\alpha} \leqslant \sum_{i=1}^{n} b_{i}^{\alpha} \\
& \sum_{i<j}\left(a_{i} a_{j}\right)^{\alpha} \leqslant \sum_{i<j}\left(b_{i} b_{j}\right)^{\alpha} \\
& \vdots \\
& \prod_{j=1}^{n} a_{j}^{\alpha} \leqslant \prod_{j=1}^{n} b_{j}^{\alpha}
\end{aligned}
$$

Figure 1: G

Example 2. To illustrate Corollary 2, consider G. The weighted Laplacian is

$$
L=\left[\begin{array}{rrrrr}
10 & -3 & -2 & -5 & 0 \\
-3 & 10 & -7 & 0 & 0 \\
-2 & -7 & 14 & -1 & -4 \\
-5 & 0 & -1 & 8 & -2 \\
0 & 0 & -4 & -2 & 6
\end{array}\right]
$$

The characteristic polynomials of L and $|L|$ are respectively, $t^{5}-48 t^{4}+796 t^{3}-5348 t^{2}+12520 t$ and $t^{5}-48 t^{4}+796 t^{3}-5588 t^{2}+16152 t-16064$. Setting $\alpha=\frac{1}{2}$ in the previous corollary, we note the following inequalities:

$$
\begin{gathered}
\sum_{i=1}^{5} \sqrt{a_{i}}<14<\sum_{i=1}^{5} \sqrt{b_{i}}, \quad \sum_{i<j} \sqrt{a_{i} a_{j}}<67<\sum_{i<j} \sqrt{b_{i} b_{j}} \\
\sum_{i<j<k} \sqrt{a_{i} a_{j} a_{k}}<143<\sum_{i<j<k} \sqrt{b_{i} b_{j} b_{k}}
\end{gathered}
$$

and

$$
\sum_{i<j<k<l} \sqrt{a_{i} a_{j} a_{k} a_{l}}<112<\sum_{i<j<k<l} \sqrt{b_{i} b_{j} b_{k} b_{l}}
$$

Let G be a connected graph on n vertices. The distance between any two vertices i and j is the length of the shortest path between them in G. Let this be $d_{i j}$. Then, $D(G)=\left(d_{i j}\right)$ is the distance matrix of G. The distance Laplacian matrix $D_{L}(G):=$ $\left(\theta_{i j}\right)$ is the $n \times n$ symmetric matrix such that

$$
\theta_{i j}=\left\{\begin{array}{cl}
-d_{i j} & \text { if } i \neq j \\
\sum_{s=1}^{n} d_{i s} & i=j
\end{array}\right.
$$

The signless distance Laplacian matrix is then $\left|D_{L}(G)\right|$. Distance Laplacian matrices are introduced in [2]. We have the following result on distance Laplacians.

Corollary 3. If G is a connected graph on n vertices, then

$$
c_{k}\left(\left|D_{L}(G)\right|\right) \geqslant c_{k}\left(D_{L}(G)\right) \quad k=1, \ldots c, n
$$

In particular, if $p_{i}:=\lambda_{i}\left(D_{L}(G)\right)$ and $q_{i}:=\lambda_{i}\left(\left|D_{L}(G)\right|\right)$, then for any $\alpha \in(0,1]$,

$$
\begin{gathered}
\sum_{i=1}^{n} p_{i}^{\alpha} \leqslant \sum_{i=1}^{n} q_{i}^{\alpha} \\
\sum_{i<j}\left(p_{i} p_{j}\right)^{\alpha} \leqslant \sum_{i<j}\left(q_{i} q_{j}\right)^{\alpha} \\
\vdots \\
\prod_{j=1}^{n} p_{j}^{\alpha} \leqslant \prod_{j=1}^{n} q_{j}^{\alpha} .
\end{gathered}
$$

Proof. To each edge (i, j) of the complete graph K_{n} on n vertices, assign the weight $d_{i j}$, which is the distance between i and j in G. The weighted Laplacian of K_{n} is then $D_{L}(G)$. By the previous corollary, we get the desired inequalities.

Example 3. Consider G in Figure 1. The distance Laplacian matrix is then

$$
D_{L}(G)=\left[\begin{array}{rrrrr}
5 & -1 & -1 & -1 & -2 \\
-1 & 6 & -1 & -2 & -2 \\
-1 & -1 & 4 & -1 & -1 \\
-1 & -2 & -1 & 5 & -1 \\
-2 & -2 & -1 & -1 & 6
\end{array}\right]
$$

Then,

$$
t^{5}-26 t^{4}+250 t^{3}-1054 t^{2}+1645 t \text { and } t^{5}-26 t^{4}+250 t^{3}-1138 t^{2}+2485 t-2100
$$

are the characteristic polynomials of $D_{L}(G)$ and $\left|D_{L}(G)\right|$, respectively. Setting $\alpha=\frac{1}{2}$, we note the following inequalities:

$$
\begin{gathered}
\sum_{i=1}^{5} \sqrt{p_{i}}<11<\sum_{i=1}^{5} \sqrt{q_{i}}, \quad \sum_{i<j} \sqrt{p_{i} p_{j}}<39<\sum_{i<j} \sqrt{q_{i} q_{j}} \\
\sum_{i<j<k} \sqrt{p_{i} p_{j} p_{k}}<65<\sum_{i<j<k} \sqrt{q_{i} q_{j} q_{k}}
\end{gathered}
$$

and

$$
\sum_{i<j<k<l} \sqrt{p_{i} p_{j} p_{k} p_{l}}<41<\sum_{i<j<k<l} \sqrt{q_{i} q_{j} q_{k} q_{l}} .
$$

REFERENCES

[1] S. Akbari, E. Ghorbani, J. H. Koolen, and M. R. Oboudi, A relation between the Laplacian and signless Laplacian eigenvalues of a graph, J. Algebraic Comb., 32, (2010), 459-464.
[2] M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl., 439, (2013), 21-33.
[3] N. Biggs, Algebraic Graph Theory, Cambridge University Press, New York, 1993.
[4] G. A. Efroymson, B. Swartz, and B. Wendroff, A new inequality for symmetric functions, Adv. Math., 38, (1980), 109-127.
[5] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 2013.

Gargi Lather
Department of Mathematics IIT Madras, Chennai-600036
e-mail: gargilather@gmail.com
R. Balaji

Department of Mathematics
IIT Madras, Chennai-600036
e-mail: balaji5@smail.iitm.ac.in

[^0]: Mathematics subject classification（2020）：15A45．
 Keywords and phrases：Diagonally dominant matrix，weighted Laplacian，signless Laplacian and in－ cidence matrix，Cauchy－Binet formula．
 ＊Corresponding author．

