athematical
nequalities
& Papplications
Volume 27, Number 3 (2024), 647-658 doi:10.7153/mia-2024-27-44

INEQUALITIES FOR DIAGONALLY DOMINANT MATRICES
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(Communicated by I. Peric)

Abstract. Let A= (a;;) and H = (h;;) be positive semidefinite matrices of the same order. If
aij > |hjj| forall i,j; A is diagonally dominant and all row sums of H are equal to zero, then
we show that the sum of all k x k& principal minors of A is greater than or equal to the sum of all
k x k principal minors of H .

1. Introduction

This paper is inspired by the following result in [1].

THEOREM 1. Let G be a connected graph on n vertices. If L(G) and |L(G)]
are the Laplacian and the signless Laplacian matrices of G, then the sum of all k X k
principal minors of |L(G)| is greater than or equal to the sum of all k X k principal
minors of L(G).

Let ¢j(A) denote the sum of all j x j principal minors of an n x n matrix A. Then
the characteristic polynomial of A can be written as

"= (A" (= 1) e, (A).
Now, the above result says that
¢i(L(G)) < ¢j(L(G)) j=1,...c:m.

Theorem 1 has significance in deriving certain powerful inequalities connecting
the eigenvalues of L(G) and |L(G)|. These eigenvalue inequalities follow immedi-
ately from a remarkable result of Efroymson, Swartz and Wendroff [4] on elementary
symmetric functions which in particular says the following.
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THEOREM 2. Let n €N, k€ {1,...c,n} and 0 < o < 1. For each non-negative
vector x = (x1,...c,x,), define

filx) = ixi si(x) = fo‘

A =xx;  sb) =3 xx)"

i<j i<j

n
L =TT st =TI«
j=1
If p and q are non-negative vectors such that

filp) < filg) k=1,...c,m,

then
se(p) <selg) k=1,...c,n.

In this paper, we obtain a significantly broader result on diagonally dominant ma-
trices encompassing Theorem 1 as a special case.

THEOREM 3. Let A= (a;j) and H = (hij) be n x n positive semidefinite matrices.
If ajj > |hij| forall i,j; A is diagonally dominant and all row sums of H are equal to
zero, then

In other words, if
" —oyt" e (1) and "= Byt 4 (= 1)"B,
are the characteristic polynomials of A and H respectively, then
o =P k=1,...c,n.

We prove Theorem 3 by employing arguments similar to those in Theorem 1 with
necessary modifications, and utilizing standard matrix-theoretic techniques. The con-
sequences of Theorem 3 are discussed in Section 5.

2. Preliminaries
We shall use the following notations and definitions.

(a) We consider only simple graphs. The vertices of a graph G with n vertices will
be labelled 1,...c,n and each edge will be denoted by (i, j), where i < j. We
use V(G) and E(G) to denote the set of all vertices and edges of G.
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Let G be a graph with n vertices and m edges. If each edge e € E(G) is assigned
some positive number w(e), then we say that G is weighted and w(e) is the
weight of e. The weighted incidence vector of the edge e = (i, j) is defined by

g(e) :=(qi(e),...c,qn(e))’, where

we) k=i
qr(e) == —/wle) k=
0 otherwise.

The weighted incidence matrix of G is now constructed by arranging its weighted
incidence vectors as distinct columns. If F C E(G), then (F) will denote the
subgraph of G with vertex set containing all the end vertices of edges in F and
E((F)) =F. As usual, K, will be the complete graph on n vertices.

Let A = (a;;) be an n x n matrix with real entries. We say that A is diagonally
dominant if
|aii] > 2 laij| i=1,...c,n.
(i}
If U is an n x n matrix, then ¢;(U) will denote the sum of all k x k principal
minors of U. If U is symmetric, then we denote and arrange its eigenvalues by

MU) = = A (U).

Let B = (b;j) be an n x m matrix. Then, |B| will denote the matrix (|b;;|). If
T C{l,...c,n} and SC{1,...c,m}, then B[T,S] will denote the submatrix of B
obtained by selecting the rows corresponding to 7 and the columns correspond-
ingto S.

3. Intermediate results

To prove our main result, we need a weighted version of Theorem 7.4 in [3]. Let G

be a weighted graph with n vertices. For non-empty subsets X C V(G) and ¥ C E(G)
such that |X| = |Y|, we say that the pair (X,Y) has property (x), if the following
conditions hold:

()
(i)
(iii)

Every vertex in X is incident with at least one edge in Y.
Every component of (Y) is a tree.

If T is a component of (Y), then V(T)~ X contains exactly one vertex.

We now have the following lemma.

LEMMA 1. Suppose (X,Y) has property (x). Let T be a component of (Y),

{b}:=V(T)\X and e := (a,b) € E(T). Then, (X ~{a},Y ~ {e}) will have property
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Proof. Let Ti,...c,T,, be the components of (Y) and T :=T;. Define Q; :=
X~ {a} and Q; :=Y ~ {e}. We claim that the pair (Q;,Q,) satisfy (i), (ii) and (iii).
Let v € Q. To show that v is incident with an edge in €;, it suffices to show that
v is not incident with e = (a,b). If this happens, then v = b. However, since b ¢ X,
we conclude that v ¢ Q. This contradicts v € Q;. Thus, (i) holds. While (ii) follows
immediately, to show (iii), we consider the following possibilities.

(I) If both a and b are pendant vertices, then T; contains only one edge (a,b).
Thus, the components of (€,) are precisely T5,...,T,.

(I) Ifboth a and b are not pendant, then the components of (€,) are Ry, Ry, 15, ...c¢, Ty,
where R, and R, are subtrees of (Q,) containing vertices a and b respectively.
Moreover,

V(Ru) NQp = {a} and V(Rh) NQp = {b}

(II) If a is pendant and b is not pendant, then the components of (Q,) are Ry, T, ...c, Ty,
where R, is the subtree of (Q,) containing b and V(R,) \ Q; = {b}.

(IV) If b is pendant and « is not pendant, then the components of (Q,) are R,, T, ...c, Ty,
where R, is the subtree of (Q,) containing a and V(R,) \ Q| = {a}.

Since
VILH)NQ =V (T)\X i=2,...c;m,

and each V(T;) \. X has exactly one vertex, (iii) is satisfied. The proof is complete. [

LEMMA 2. Let Q be a weighted incidence matrix of G. Then, Q[X,Y] is non-
singular if and only if (X,Y) has property ().

Proof. Suppose Q[X,Y] is non-singular. Items (i) and (iii) of property (x) are
proven in the same way as [3, Theorem 7.4]. To prove (ii), consider a component of
(Y). Suppose this component contains a cycle Cp, = {vi,€1,V2,€2,...,€m—1,Vm,€m, V1 }»
where 1 <v; <--- <wv, <n are vertices and ey,...c,e, are edges. Define

!/
( c2m) 1 . 1 1
Ly CyZm) i= | —,...c, , .
" w(er) Vwlem—1)  /wl(em)
It is easy to verify that

2 zjq(e;) =0.
Jj=1

Thus, g(ey),...c,q(em) are linearly dependent and hence the columns of Q[X,Y] are
linearly dependent, which is a contradiction to our assumption. The necessary condition
is proved.

Now, consider two non-empty subsets X C V(G) and Y C E(G) such that |[X| =
|Y] and (X,Y) has property (). Let o := |X| = |Y|. By induction on ¢, we show that
Q[X,Y] is non-singular. Suppose o = 1. In view of (i), X = {a} and Y = {e}, where
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e is incident with the vertex a. In this case, the conclusion follows immediately as
O[X,Y] = (++/w(e)). Suppose the result is true for all X and Y with o < k. Assume,
a=k. Let 1i,.. Tm be the components of (Y). Since we can relabel, by (iii), we may
assume V(T}) \X {2}, e:=(1,2) € E(T1) and q( ) is the first column of Q[X,Y].
Define Q) :=X \ {1} and Q; :=Y ~ {e}. As g(e) = (y/w(e),0,.

det Q[X,Y] = /w(e) det Q[Qy, ). (3.1)

By Lemma 1, (Q,Q;) has property (). Induction hypothesis now implies that
0[Q1,Q;,] is non-singular and so is Q[X,Y] by (3.1). The proof is complete. [

LEMMA 3. Let X CV(G) and Y C E(G) be such that |X| = |Y|. If M = |0,
where Q is a weighted incidence matrix of G, then

(det M[X,Y])? > (det Q[X,Y])>.

Proof. 1t suffices to show the result when Q[X,Y] is non-singular. In view of
previous lemma, (X,Y) will have property (x). Let o := |X| =|Y|. We prove by
induction on o. If @ =1, then by item (i) of property (x), X = {a} and Y = {e},
where e is incident with a; hence

Y] = (£+/wle)) and M[X,Y] = (/w(e)).

The inequality holds here. Assuming the result for all & < k, we now prove for o0 = k.
By item (ii) of property (x), all the components of (Y) are trees. Let T be a component
of (Y). Item (iii) of property () implies that V(7') \ X contains precisely one vertex
and let this be equal to {r}. In 7, let r be adjacent to s € X. Put e := (r,5), u:=
0[X,{e}], Qi :=X~{s} and Q; :=Y ~ {e}. As

_J=vwle) v=s
“ o veXx{s}
we see that
(det Q[X,Y])* = w(e)(det Q[Q1,Q2]). (32)
Similarly,
(det M[X,Y])? = w(e)(det M[Q,Q,])%. (3.3)

In view of Lemma 1, (2;,£2,) has property (*). By induction hypothesis,
(det Q[Q1,Q2]) < (det M[Qy,Q0])°. (3.4)

Now (3.2), (3.3) and (3.4) imply (det Q[X,Y])? < (det M[X,Y])?. The proof is com-
plete. U

REMARK 1. A parallel step of Lemma 3 in [1] uses a result of Poincaré [3, Propo-
sition 5.3] which asserts that every square submatrix of an incidence matrix has deter-
minant equal to 0 or £1. This property does not extend to weighted incidence matrices.
Hence, the proof of Lemma 3 is completed by an induction argument.
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The previous lemmas imply the following.

LEMMA 4. Let S = (sij) be an n x n symmetric matrix such that all off-diagonal
entries are negative and the row sums are all equal to zero. Then

ci(IS)) = er(S) k=1,....n.

Proof. Consider the complete graph K, with the edge set E(K,) := {(i,j) : 1 <
i < j <n}. To each edge e := (i, j) € E(K,), assign the weight w(e) := |s;;|. Then,
S = QQ', where each column of Q is a weighted incidence vector of some edge in K, .
Corresponding to an edge e = (i, j), define M(e) = (p1,...c,pn)’ Where

o {\/w(e) k=1ij
Pk =

0 otherwise.

Then, |S| = MM’, where each column of M is given by M(f) for some f € E(K,).
For 1 <k < n, define

Q:={XCV(K,):|X|=k} and A:={Y CE(K,):|Y|=k}.
As ¢ (S) is the sum of all k x k principal minors of S, we have

ck(S) = det S[X,X].
XeQ

Since § = QQ', by Cauchy-Binet formula,

alS)= Y (detQ[X,Y])%

XeQyea

Similarly,

a(s) =Y, (detMX,¥]?.
XeQYeEA

In view of Lemma 3, if X € Q and Y € A, then
(det M[X,Y])? > (det Q[X,Y])*.

Therefore, ¢, (|S]) = e (S). O

The following result is well-known (see [5, Corollary 4.3.12]).

THEOREM 4. Let A and B be n x n symmetric matrices. If B is positive semidef-
inite, then

A,k(A) < )Lk(A—f'B) k= L...c,n.
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4. Main result

We recall the main result that needs to be proved.

THEOREM 5. Let A= (a;j) and H = (h;;) be n xn positive semidefinite matrices.
If A is diagonally dominant, all row sums of H are equal to zero, and

ajj = |h,‘j‘ i,j=1,...c,n
then

ck(A) = cr(H) k=1,...c,n.

Proof. We first prove the result by assuming that all off-diagonal entries of H are
non-zero. Define L := (I;;), where

— [hij| i
=N Y Jhal i=j.
{k:k#£i}

We begin by proving that
c(A) = e (IL]) k=1,...c,n.
Let W := A —|L| with (i, /)™ entry equal to w;;. Since a;; > |h;], it follows that

aij >0, a;j > |l;;| and therefore, w;; > 0 for all i,j. As A = (a;;) is diagonally
dominant with positive entries,

ai— Y, a;=0 i=1,...cn.
{j:j#i}
Since a;j = wij + |lij| forall i, j,
Litwi— Y ([ljl+wij) =0 i=1,...c,n.
{jiifi}
Because I;; = Y |l;;|, from the above inequality, we get
{7:i#j}
wi— > wij=0 i=1,...cn.
{j:i#j}

Moreover, each w;; > 0. So, W is diagonally dominant. To this end, we have A = |L|+
W, where |L| and W are diagonally dominant. Since diagonally dominant matrices
with non-negative diagonal entries are positive semidefinite, |[L| and W are positive
semidefinite. By Theorem 4,

2(A) = A(ILl) j=1,...con. @1
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We recall that if S is an n X n matrix, then

qmzi%m
2
() = 3 A(S)A,(S)

i<j

4.2)

Since A and L are positive semidefinite, (4.1) and (4.2) imply cx(A) > ci(|L]) and
hence by Lemma 4, we get cx(A) > ¢x(L). Now, we show that ¢ (L) > cx(H). Define
B:=L—H. All row sums of H and L are zero. Hence, each row sum of B is zero.
Since the off-diagonal entries of B are non-positive, we see that the diagonal entries of
B are non-negative and B is diagonally dominant. Therefore, B is positive semidefinite.
Applying Theorem 4 to L= H + B, we have A;(L) > A;(H) forall j=1,...c,n. Since
L and H are positive semidefinite, by (4.2), it now follows that ¢ (L) > ¢x(H), and
therefore, cx(A) > ci(H).

Suppose some off-diagonal entries of H are zero. For each m € N, define

-1 lij=0andi# j
ﬁ(m) — 0 l,‘,’ 7&0 andi;éj
ij . ’

B =],

Ap = (ag-")) = (aij+ \ﬁi(jm) ) and H,, = (hl(;")) = (hij +Bi(;")). Then, A,, is diagonally
dominant, sum of all the entries in any row of H,, is zero, each off-diagonal entry of
H,, is negative and ag;") > |hl(;")| Therefore, cx(Am) = cx(H,,) for all m € N. By

continuity, cx(A) > cx(H). The proof is complete. ]

EXAMPLE 1. In general, positive semidefinite matrices are not diagonally domi-
nant. The conclusion of Theorem 5 does not hold if A is only assumed to be positive
semidefinite. For example, if

312 1 3 -1 -1 —1
1134 8 1 13 —4 -8
A=1y 46 1| ™ H=| | 4 ¢ 1|
1 81 10 1 -8 —1 10

then ¢, (A) = 268, whereas c;(H) =271.
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5. Corollary

The following is an immediate consequence of Theorem 2 and Theorem 5.

COROLLARY 1. Let A = (a;;) and L = (l;;) be n x n positive semidefinite ma-
trices. Suppose A is diagonally dominant, all row sums of L are equal to zero and
aij = |lij| forall i,j. Let x; := Ai(A) and y; := Ai(L). Then, for any o. € (0,1],

n n

[+ = 117
i

j=1

Let G be a weighted graph on n vertices with weight w;; on the edge (i, j). Then
the weighted Laplacian matrix L(G) = ([;;) is the n X n symmetric matrix such that

—wjj if i#j and (i,j) € E(G)

I if i#j and (i.j) ¢ E(G)
Y owis i=]
{s:s#i}

The weighted signless Laplacian matrix is |L(G)|. The following result extends Theo-
rem | to the weighted case.

COROLLARY 2. If L:= L(G) is an n x n weighted Laplacian matrix of G, then
(L) = a(L) k=1,...c,n.

In particular, if a;:= A;(L) and b; := A;(|L|), then for any o € (0,1],

n

n
Dar <Y
i=1

i=1



656 V. GUPTA, G. LATHER AND R. BALAJI

U1 5 (N
2
3 2 1 Us
4
U2 7 U3
Figure 1: G

EXAMPLE 2. To illustrate Corollary 2, consider G. The weighted Laplacian is

10-3-2-5 0
-310-7 0 O
L=|-2-714-1-4
-5 0-1 8-2
0 0-4-2 6

The characteristic polynomials of L and |L| are respectively,
12 — 484 +7961° — 53482+ 12520 and 1 — 481" + 7961 — 55881% + 161521 — 16064.

Setting o0 = % in the previous corollary, we note the following inequalities:

5 5
Y Va<14< Y /b, Y Jaa; < 61<Y \/bibj,
i=1 i=1

i<j i<j

N Jaaar <143 < Y /bbby

i<j<k i<j<k
and

Y, Vaaiaa <112< Y \/bibjbib;.

i<j<k<l i<j<k<l

Let G be a connected graph on n vertices. The distance between any two vertices
i and j is the length of the shortest path between them in G. Let this be d;;. Then,
D(G) = (d;j) is the distance matrix of G. The distance Laplacian matrix Dy (G) :=
(6;;) is the n x n symmetric matrix such that

—dij i)

J— n
%=\ Sa i=s
s=1

The signless distance Laplacian matrix is then |Dy(G)|. Distance Laplacian matrices
are introduced in [2]. We have the following result on distance Laplacians.
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COROLLARY 3. If G is a connected graph on n vertices, then

Ck(‘DL(G)D > Ck(DL(G)) k=1,...c,n.

In particular, if p; := Ai(Dr(G)) and q; := Ai(|DL(G)]), then for any a € (0,1],

=

n
[1r5 <1145
=1 =1

Proof. To each edge (i,j) of the complete graph K, on n vertices, assign the
weight d;;, which is the distance between i and j in G. The weighted Laplacian of K,
O

is then Dy (G). By the previous corollary, we get the desired inequalities.

EXAMPLE 3. Consider G in Figure 1. The distance Laplacian matrix is then

5-1-1-1-2
~1 6-1-2-2
DL(G)=|—-1-1 4—-1-1
~1-2-1 5-1
—2-2-1-1 6

Then,
5 — 261" + 2508 — 105412 4 1645t and > —261* + 250> — 11387% + 2485t — 2100

are the characteristic polynomials of Dy (G) and |D;(G)|, respectively. Setting o = 3,

we note the following inequalities:

5 5
2\/5<11<Z\/@7 Z‘/pipj<39<2,/qiqj7
i=1 i=1 j i<j

i<j

N, /PiPipk <65< Y \/qiq;dx
i<j<k i<j<k

and
Y, ppipp <A< Y \/aid;qxdi
i<j<k<l i<j<k<l
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