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INEQUALITIES FOR DIAGONALLY DOMINANT MATRICES

VINAYAK GUPTA, GARGI LATHER ∗ AND R. BALAJI

(Communicated by I. Perić)

Abstract. Let A = (ai j) and H = (hi j) be positive semidefinite matrices of the same order. If
ai j � |hi j | for all i, j ; A is diagonally dominant and all row sums of H are equal to zero, then
we show that the sum of all k×k principal minors of A is greater than or equal to the sum of all
k× k principal minors of H .

1. Introduction

This paper is inspired by the following result in [1].

THEOREM 1. Let G be a connected graph on n vertices. If L(G) and |L(G)|
are the Laplacian and the signless Laplacian matrices of G, then the sum of all k× k
principal minors of |L(G)| is greater than or equal to the sum of all k× k principal
minors of L(G) .

Let c j(A) denote the sum of all j× j principal minors of an n×n matrix A . Then
the characteristic polynomial of A can be written as

tn− c1(A)tn−1 + · · ·+(−1)ncn(A).

Now, the above result says that

c j(L(G)) � c j(|L(G)|) j = 1, . . .c,n.

Theorem 1 has significance in deriving certain powerful inequalities connecting
the eigenvalues of L(G) and |L(G)| . These eigenvalue inequalities follow immedi-
ately from a remarkable result of Efroymson, Swartz and Wendroff [4] on elementary
symmetric functions which in particular says the following.
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THEOREM 2. Let n ∈ N , k ∈ {1, . . .c,n} and 0 <  � 1 . For each non-negative
vector x = (x1, . . .c,xn)′, define

f1(x) =
n


i=1

xi s1(x) =
n


i=1

xi

f2(x) =
i< j

xix j s2(x) =
i< j

(xix j)

...

fn(x) =
n


j=1

x j sn(x) =
n


j=1

xj .

If p and q are non-negative vectors such that

fk(p) � fk(q) k = 1, . . .c,n,

then
sk(p) � sk(q) k = 1, . . .c,n.

In this paper, we obtain a significantly broader result on diagonally dominant ma-
trices encompassing Theorem 1 as a special case.

THEOREM 3. Let A= (ai j) and H = (hi j) be n×n positive semidefinite matrices.
If ai j � |hi j| for all i, j ; A is diagonally dominant and all row sums of H are equal to
zero, then

ck(A) � ck(H) k = 1, . . .c,n.

In other words, if

tn −1t
n−1 + · · ·+(−1)nn and tn −1t

n−1 + · · ·+(−1)nn

are the characteristic polynomials of A and H respectively, then

k � k k = 1, . . .c,n.

We prove Theorem 3 by employing arguments similar to those in Theorem 1 with
necessary modifications, and utilizing standard matrix-theoretic techniques. The con-
sequences of Theorem 3 are discussed in Section 5.

2. Preliminaries

We shall use the following notations and definitions.

(a) We consider only simple graphs. The vertices of a graph G with n vertices will
be labelled 1, . . .c,n and each edge will be denoted by (i, j) , where i < j . We
use V (G) and E(G) to denote the set of all vertices and edges of G .
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(b) Let G be a graph with n vertices and m edges. If each edge e∈ E(G) is assigned
some positive number w(e) , then we say that G is weighted and w(e) is the
weight of e . The weighted incidence vector of the edge e = (i, j) is defined by
q(e) := (q1(e), . . .c,qn(e))′, where

qk(e) :=

⎧⎪⎨
⎪⎩
√

w(e) k = i

−√w(e) k = j

0 otherwise.

The weighted incidence matrix of G is now constructed by arranging its weighted
incidence vectors as distinct columns. If F ⊆ E(G) , then 〈F〉 will denote the
subgraph of G with vertex set containing all the end vertices of edges in F and
E(〈F〉) = F . As usual, Kn will be the complete graph on n vertices.

(c) Let A = (ai j) be an n× n matrix with real entries. We say that A is diagonally
dominant if

|aii| � 
{ j: j �=i}

|ai j| i = 1, . . .c,n.

If U is an n× n matrix, then ck(U) will denote the sum of all k× k principal
minors of U . If U is symmetric, then we denote and arrange its eigenvalues by

1(U) � · · · � n(U).

Let B = (bi j) be an n×m matrix. Then, |B| will denote the matrix (|bi j|) . If
T ⊆{1, . . .c,n} and S⊆{1, . . .c,m}, then B[T,S] will denote the submatrix of B
obtained by selecting the rows corresponding to T and the columns correspond-
ing to S .

3. Intermediate results

To prove our main result, we need a weighted version of Theorem 7.4 in [3]. Let G
be a weighted graph with n vertices. For non-empty subsets X ⊆V (G) and Y ⊆ E(G)
such that |X | = |Y | , we say that the pair (X ,Y ) has property (∗) , if the following
conditions hold:

(i) Every vertex in X is incident with at least one edge in Y .

(ii) Every component of 〈Y 〉 is a tree.

(iii) If T is a component of 〈Y 〉 , then V (T )�X contains exactly one vertex.

We now have the following lemma.

LEMMA 1. Suppose (X ,Y ) has property (∗) . Let T be a component of 〈Y 〉 ,
{b} :=V (T )�X and e := (a,b) ∈ E(T ) . Then, (X �{a},Y �{e}) will have property
(∗) .



650 V. GUPTA, G. LATHER AND R. BALAJI

Proof. Let T1, . . .c,Tm be the components of 〈Y 〉 and T := T1 . Define 1 :=
X �{a} and 2 := Y �{e} . We claim that the pair (1,2) satisfy (i), (ii) and (iii).
Let v ∈ 1 . To show that v is incident with an edge in 2 , it suffices to show that
v is not incident with e = (a,b) . If this happens, then v = b . However, since b /∈ X ,
we conclude that v /∈1 . This contradicts v ∈ 1 . Thus, (i) holds. While (ii) follows
immediately, to show (iii), we consider the following possibilities.

(I) If both a and b are pendant vertices, then T1 contains only one edge (a,b) .
Thus, the components of 〈2〉 are precisely T2, . . . ,Tm .

(II) If both a and b are not pendant, then the components of 〈2〉 are Ra,Rb,T2, . . .c,Tm,
where Ra and Rb are subtrees of 〈2〉 containing vertices a and b respectively.
Moreover,

V (Ra)�1 = {a} and V (Rb)�1 = {b}.

(III) If a is pendant and b is not pendant, then the components of 〈2〉 are Rb,T2, . . .c,Tm,
where Rb is the subtree of 〈2〉 containing b and V (Rb)�1 = {b} .

(IV) If b is pendant and a is not pendant, then the components of 〈2〉 are Ra,T2, . . .c,Tm,
where Ra is the subtree of 〈2〉 containing a and V (Ra)�1 = {a} .

Since
V (Ti)�1 = V (Ti)�X i = 2, . . .c,m,

and each V (Ti)�X has exactly one vertex, (iii) is satisfied. The proof is complete. �

LEMMA 2. Let Q be a weighted incidence matrix of G. Then, Q[X ,Y ] is non-
singular if and only if (X ,Y ) has property (∗) .

Proof. Suppose Q[X ,Y ] is non-singular. Items (i) and (iii) of property (∗) are
proven in the same way as [3, Theorem 7.4]. To prove (ii), consider a component of
〈Y 〉 . Suppose this component contains a cycle Cm = {v1,e1,v2,e2, . . . ,em−1,vm,em,v1} ,
where 1 � v1 < · · · < vm � n are vertices and e1, . . .c,em are edges. Define

(z1, . . .c,zm) :=

(
1√

w(e1)
, . . .c,

1√
w(em−1)

,− 1√
w(em)

)′
.

It is easy to verify that
m


j=1

z jq(e j) = 0.

Thus, q(e1), . . .c,q(em) are linearly dependent and hence the columns of Q[X ,Y ] are
linearly dependent, which is a contradiction to our assumption. The necessary condition
is proved.

Now, consider two non-empty subsets X ⊆ V (G) and Y ⊆ E(G) such that |X | =
|Y | and (X ,Y ) has property (∗) . Let  := |X |= |Y | . By induction on  , we show that
Q[X ,Y ] is non-singular. Suppose  = 1. In view of (i), X = {a} and Y = {e} , where
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e is incident with the vertex a . In this case, the conclusion follows immediately as
Q[X ,Y ] = (±√w(e)) . Suppose the result is true for all X and Y with  < k . Assume,
 = k . Let T1, . . . ,Tm be the components of 〈Y 〉 . Since we can relabel, by (iii), we may
assume V (T1)�X = {2} , e := (1,2) ∈ E(T1) and q(e) is the first column of Q[X ,Y ] .
Define 1 := X �{1} and 2 := Y �{e}. As q(e) = (

√
w(e),0, . . .c,0)′ ,

det Q[X ,Y ] =
√

w(e) det Q[1,2]. (3.1)

By Lemma 1, (1,2) has property (∗) . Induction hypothesis now implies that
Q[1,2] is non-singular and so is Q[X ,Y ] by (3.1). The proof is complete. �

LEMMA 3. Let X ⊆ V (G) and Y ⊆ E(G) be such that |X | = |Y | . If M = |Q| ,
where Q is a weighted incidence matrix of G, then

(det M[X ,Y ])2 � (det Q[X ,Y ])2.

Proof. It suffices to show the result when Q[X ,Y ] is non-singular. In view of
previous lemma, (X ,Y ) will have property (∗) . Let  := |X | = |Y | . We prove by
induction on  . If  = 1, then by item (i) of property (∗) , X = {a} and Y = {e} ,
where e is incident with a ; hence

Q[X ,Y ] = (±
√

w(e)) and M[X ,Y ] = (
√

w(e)).

The inequality holds here. Assuming the result for all  < k , we now prove for  = k .
By item (ii) of property (∗) , all the components of 〈Y 〉 are trees. Let T be a component
of 〈Y 〉 . Item (iii) of property (∗) implies that V (T )�X contains precisely one vertex
and let this be equal to {r} . In T, let r be adjacent to s ∈ X . Put e := (r,s) , u :=
Q[X ,{e}] , 1 := X �{s} and 2 := Y �{e} . As

u =

{
−√w(e)  = s

0  ∈ X �{s},
we see that

(det Q[X ,Y ])2 = w(e)(det Q[1,2])2. (3.2)

Similarly,
(det M[X ,Y ])2 = w(e)(det M[1,2])2. (3.3)

In view of Lemma 1, (1,2) has property (∗) . By induction hypothesis,

(det Q[1,2])2 � (det M[1,2])2. (3.4)

Now (3.2), (3.3) and (3.4) imply (det Q[X ,Y ])2 � (det M[X ,Y ])2 . The proof is com-
plete. �

REMARK 1. A parallel step of Lemma 3 in [1] uses a result of Poincaré [3, Propo-
sition 5.3] which asserts that every square submatrix of an incidence matrix has deter-
minant equal to 0 or ±1. This property does not extend to weighted incidence matrices.
Hence, the proof of Lemma 3 is completed by an induction argument.
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The previous lemmas imply the following.

LEMMA 4. Let S = (si j) be an n×n symmetric matrix such that all off-diagonal
entries are negative and the row sums are all equal to zero. Then

ck(|S|) � ck(S) k = 1, . . . ,n.

Proof. Consider the complete graph Kn with the edge set E(Kn) := {(i, j) : 1 �
i < j � n}. To each edge e := (i, j) ∈ E(Kn) , assign the weight w(e) := |si j| . Then,
S = QQ′ , where each column of Q is a weighted incidence vector of some edge in Kn .
Corresponding to an edge e = (i, j) , define M(e) = (p1, . . .c, pn)′ where

pk :=

{√
w(e) k = i, j

0 otherwise.

Then, |S| = MM′, where each column of M is given by M( f ) for some f ∈ E(Kn) .
For 1 � k � n , define

 := {X ⊆V (Kn) : |X | = k} and  := {Y ⊆ E(Kn) : |Y | = k}.

As ck(S) is the sum of all k× k principal minors of S , we have

ck(S) = 
X∈

det S[X ,X ].

Since S = QQ′ , by Cauchy-Binet formula,

ck(S) = 
X∈,Y∈

(det Q[X ,Y ])2.

Similarly,
ck(|S|) = 

X∈,Y∈
(det M[X ,Y ])2.

In view of Lemma 3, if X ∈ and Y ∈  , then

(det M[X ,Y ])2 � (det Q[X ,Y ])2.

Therefore, ck(|S|) � ck(S) . �

The following result is well-known (see [5, Corollary 4.3.12]).

THEOREM 4. Let A and B be n×n symmetric matrices. If B is positive semidef-
inite, then

k(A) � k(A+B) k = 1, . . .c,n.
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4. Main result

We recall the main result that needs to be proved.

THEOREM 5. Let A= (ai j) and H = (hi j) be n×n positive semidefinite matrices.
If A is diagonally dominant, all row sums of H are equal to zero, and

ai j � |hi j| i, j = 1, . . .c,n

then
ck(A) � ck(H) k = 1, . . .c,n.

Proof. We first prove the result by assuming that all off-diagonal entries of H are
non-zero. Define L := (li j) , where

li j =

⎧⎨
⎩

−|hi j| i �= j


{k:k �=i}

|hik| i = j.

We begin by proving that

ck(A) � ck(|L|) k = 1, . . .c,n.

Let W := A− |L| with (i, j)th entry equal to wi j . Since ai j � |hi j|, it follows that
ai j > 0, ai j � |li j| and therefore, wi j � 0 for all i, j . As A = (ai j) is diagonally
dominant with positive entries,

aii− 
{ j: j �=i}

ai j � 0 i = 1, . . .c,n.

Since ai j = wi j + |li j| for all i, j ,

lii +wii− 
{ j:i�= j}

(|li j|+wi j) � 0 i = 1, . . .c,n.

Because lii = 
{ j:i�= j}

|li j| , from the above inequality, we get

wii − 
{ j:i�= j}

wi j � 0 i = 1, . . .c,n.

Moreover, each wi j � 0. So, W is diagonally dominant. To this end, we have A = |L|+
W , where |L| and W are diagonally dominant. Since diagonally dominant matrices
with non-negative diagonal entries are positive semidefinite, |L| and W are positive
semidefinite. By Theorem 4,

 j(A) �  j(|L|) j = 1, . . .c,n. (4.1)
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We recall that if S is an n×n matrix, then

c1(S) =
n


j=1

 j(S)

c2(S) =
i< j

i(S) j(S)

...

cn(S) =
n


j=1

 j(S).

(4.2)

Since A and L are positive semidefinite, (4.1) and (4.2) imply ck(A) � ck(|L|) and
hence by Lemma 4, we get ck(A) � ck(L) . Now, we show that ck(L) � ck(H) . Define
B := L−H . All row sums of H and L are zero. Hence, each row sum of B is zero.
Since the off-diagonal entries of B are non-positive, we see that the diagonal entries of
B are non-negative and B is diagonally dominant. Therefore, B is positive semidefinite.
Applying Theorem 4 to L = H +B , we have  j(L) �  j(H) for all j = 1, . . .c,n . Since
L and H are positive semidefinite, by (4.2), it now follows that ck(L) � ck(H), and
therefore, ck(A) � ck(H) .

Suppose some off-diagonal entries of H are zero. For each m ∈ N , define

 (m)
i j :=

⎧⎪⎪⎨
⎪⎪⎩

− 1
m li j = 0 and i �= j

0 li j �= 0 and i �= j


{k:i�=k}

| (m)
ik | i = j,

Am = (a(m)
i j ) := (ai j + | (m)

i j |) and Hm = (h(m)
i j ) := (hi j + (m)

i j ) . Then, Am is diagonally
dominant, sum of all the entries in any row of Hm is zero, each off-diagonal entry of

Hm is negative and a(m)
i j � |h(m)

i j | . Therefore, ck(Am) � ck(Hm) for all m ∈ N . By
continuity, ck(A) � ck(H) . The proof is complete. �

EXAMPLE 1. In general, positive semidefinite matrices are not diagonally domi-
nant. The conclusion of Theorem 5 does not hold if A is only assumed to be positive
semidefinite. For example, if

A =

⎡
⎢⎢⎣

3 1 2 1
1 13 4 8
2 4 6 1
1 8 1 10

⎤
⎥⎥⎦ and H =

⎡
⎢⎢⎣

3 −1 −1 −1
−1 13 −4 −8
−1 −4 6 −1
−1 −8 −1 10

⎤
⎥⎥⎦ ,

then c2(A) = 268, whereas c2(H) = 271.
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5. Corollary

The following is an immediate consequence of Theorem 2 and Theorem 5.

COROLLARY 1. Let A = (ai j) and L = (li j) be n× n positive semidefinite ma-
trices. Suppose A is diagonally dominant, all row sums of L are equal to zero and
ai j � |li j| for all i, j . Let xi := i(A) and yi := i(L) . Then, for any  ∈ (0,1] ,

n


i=1

xi �
n


i=1

yi


i< j

(xix j) �
i< j

(yiy j)

...
n


j=1

xj �
n


j=1

yj .

Let G be a weighted graph on n vertices with weight wi j on the edge (i, j) . Then
the weighted Laplacian matrix L(G) = (li j) is the n×n symmetric matrix such that

li j =

⎧⎪⎪⎨
⎪⎪⎩
−wi j if i �= j and (i, j) ∈ E(G)
0 if i �= j and (i, j) /∈ E(G)


{s:s �=i}
wis i = j

The weighted signless Laplacian matrix is |L(G)| . The following result extends Theo-
rem 1 to the weighted case.

COROLLARY 2. If L := L(G) is an n×n weighted Laplacian matrix of G, then

ck(|L|) � ck(L) k = 1, . . .c,n.

In particular, if ai := i(L) and bi := i(|L|) , then for any  ∈ (0,1] ,

n


i=1

ai �
n


i=1

bi


i< j

(aia j) �
i< j

(bib j)

...
n


j=1

aj �
n


j=1

bj .
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Figure 1: G

EXAMPLE 2. To illustrate Corollary 2, consider G . The weighted Laplacian is

L =

⎡
⎢⎢⎢⎢⎣

10 −3 −2 −5 0
−3 10 −7 0 0
−2 −7 14 −1 −4
−5 0 −1 8 −2

0 0 −4 −2 6

⎤
⎥⎥⎥⎥⎦ .

The characteristic polynomials of L and |L| are respectively,

t5−48t4+796t3−5348t2+12520t and t5−48t4 +796t3−5588t2+16152t−16064.

Setting  = 1
2 in the previous corollary, we note the following inequalities:

5


i=1

√
ai < 14 <

5


i=1

√
bi, 

i< j

√
aia j < 67 <

i< j

√
bib j,


i< j<k

√
aia jak < 143 < 

i< j<k

√
bib jbk

and


i< j<k<l

√
aia jakal < 112 < 

i< j<k<l

√
bib jbkbl.

Let G be a connected graph on n vertices. The distance between any two vertices
i and j is the length of the shortest path between them in G . Let this be di j . Then,
D(G) = (di j) is the distance matrix of G . The distance Laplacian matrix DL(G) :=
(i j) is the n×n symmetric matrix such that

i j =

⎧⎨
⎩
−di j if i �= j
n


s=1
dis i = j.

The signless distance Laplacian matrix is then |DL(G)| . Distance Laplacian matrices
are introduced in [2]. We have the following result on distance Laplacians.
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COROLLARY 3. If G is a connected graph on n vertices, then

ck(|DL(G)|) � ck(DL(G)) k = 1, . . .c,n.

In particular, if pi := i(DL(G)) and qi := i(|DL(G)|) , then for any  ∈ (0,1] ,

n


i=1

pi �
n


i=1

qi


i< j

(pip j) �
i< j

(qiq j)

...
n


j=1

pj �
n


j=1

qj .

Proof. To each edge (i, j) of the complete graph Kn on n vertices, assign the
weight di j , which is the distance between i and j in G . The weighted Laplacian of Kn

is then DL(G) . By the previous corollary, we get the desired inequalities. �

EXAMPLE 3. Consider G in Figure 1. The distance Laplacian matrix is then

DL(G) =

⎡
⎢⎢⎢⎢⎣

5 −1 −1 −1 −2
−1 6 −1 −2 −2
−1 −1 4 −1 −1
−1 −2 −1 5 −1
−2 −2 −1 −1 6

⎤
⎥⎥⎥⎥⎦ .

Then,

t5−26t4 +250t3−1054t2 +1645t and t5−26t4 +250t3−1138t2 +2485t−2100

are the characteristic polynomials of DL(G) and |DL(G)| , respectively. Setting  = 1
2 ,

we note the following inequalities:

5


i=1

√
pi < 11 <

5


i=1

√
qi, 

i< j

√
pip j < 39 <

i< j

√
qiq j,


i< j<k

√
pip j pk < 65 < 

i< j<k

√
qiq jqk

and


i< j<k<l

√
pip j pkpl < 41 < 

i< j<k<l

√
qiq jqkql.
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