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ON THE CALCULATIONS OF THE GENERALIZED VON
NEUMANN-JORDAN CONSTANTS C\")(L.(Q,%, 1) AND C\)(L.(Q,Z, 1))

A. AMINI-HARANDI AND S. KHOSRAVANI

(Communicated by S. Varosanec)

Abstract. In this paper, we calculate Cl(\,pj) (L(Q,%,u)) and C‘,(V’;) (Lo (Q,Z, 1)), where (Q,2,u)
is a measure space and r > 1.

1. Introduction

Let X be a real normed space with the unit ball By = {x € X : ||x|| < 1} and the
unit sphere Sy = {x € X : ||x|| = 1}.

It is known that geometric constants play an important role in the description of
various geometric structures of Banach spaces. In recent years, many constants in Ba-
nach spaces have been defined and studied. The von Neumann-Jordan constant,

e i
2(lxlI> + 11y11%)

was introduced by Clarkson [4] in 1937 and studied intensively by many authors [3, 7,
8,9, 12,13, 14]. In [6], as a generalization of the von Neumann-Jordan constant, a new

CN](X):SUP{ : LyEXnotbothzero},

geometric constant called the generalized von Neumann-Jordan constant C,(\,’}) (X) was
introduced:
Let p € [1,00).

» 7+ Jor— 317
Cyi(X) =
w (X) S“p{zwxnunw)

x4ty |7+ |lx —2y|[
_ X,y €Sy, 0<t <1y,
u{ - (1+p) VX

1 x,y € X not both zero} (D)

THEOREM 1. ([2, Lemma 2.2.]) Let X be a Banach space, let p > 1 and let p’
denotes the conjugate index satisfying 11—7 + # = 1. Then

(%’?(X)) ) (cz%f}’kx*));’
2 2 '
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Motivated by constants C;\, ;(X) and C,(\,’}) (X), the authors in [14] defined the following

constant: » »
i —sp{ WA )

2P

In [5] the authors introduced the constant A, p(X ) for a Banach space X and for 1 <
p < oo as follows:

X+l +[x—
2y (X) = p{w oy X+ bl <2},
They showed that for each 1 < p < oo [5, Proposition 2.5]
t —t
Az p(X) = { IX+ y||+Hx My esyo<i< 1} @
1+ﬂ7)
:SUP{M xyGSX,O tgl},
277 (141P)¥

where the modulus of smoothness of X is the function px : [0,00) — [0,00) defined by

X+ty||+|lx—1
pX(t):sup{(” yII2H y)—l:x,yESX}.

In [6], the authors calculated CI(\Z) (Lr[0,1]) for 1 < r < 2. In this paper, we calculate

CVNLA(Q,2, 1)) and C)(L,(Q,2, 1)), where (Q,, i) is an arbitrary measure space
and r > 1.

2. The calculation of C,(\,’}) (L)

In the following result, we calculate C,(\,’}) (L-(Q,Z,1)), where (Q,%,u) is an ar-
bitrary measure space and r > 1, which improves the main result of [6].

THEOREM 2. Let (Q,%, 1) be ameasure space, let r > 1 andlet X =L.(Q,Z, ).
(i) If 1 <r <2 then,

2P, I<p<r
) =2 r, r<p<s 3)
1, P <p
(ii) If r > 2 then,
1, l<r<p
cyx)={2"7r y<p<r )
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Proof. (1). We first show that for 1 < r <2, we have

2271?’ 1 < P < r
CZ(VI})(L’(Q’Z’“)) <2 r<p<y (5)
17 r’ <p

In virtue of Remark 2.3 from [10], for any x,y € Sy, and any 0 <¢ < 1, we have

21+, 1<p<r

P p
2 r

6
(1+)7, F<p ©)

a3l + =131 < {

and so, from the definition of Cz(va) (LA(Q,%, 1)), we have

tv||P —vll?

A @%.) = sup{

2P=1(1 41P)
2 (1+)F
< 2 *Psupte[o.’l] B e ) 1< p < 7
= B —p+1 147) F
27 SUP;e(0,1] ( 1+;/)7 , '<p

which proves (5).
To prove the converse inequality of (5), we first show that there exist Ag,By €
such that
AgNBy=0 and 0< M(A()) <o, 0K M(B()) < oo,

There are two cases:

Case (i). There exist a nonnegative 0 # f € L,, and two disjoint bounded half
open intervals 1,J C (0,) such that u(f~1(1)) >0 and u(f~1(J)) > 0. In this case,
let Ag = f~!(I) and By = f~!(J). Itis clear that u(Ag) >0 and u(Bg) > 0. To show
that t(Ap) < e, let I = (a,b] and note that

1 1
uio) = — [ adp< - [ (royau< |l <

Similarly, we can prove that ((Bg) < .

Case (ii). For each nonnegative 0 # f € L, and each two disjoint bounded inter-
vals 1,J C (0,), we have either u(f~'(I)) =0 or u(f~'(J)) =0. Since

0 < u(f(0,%) =u<f1(UZ°=_wln)> =S ul ).

n=-—oo

where
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for each n € Z, then there exists a unique ng € Z such that u(f'(l,)) > 0. Let
Jo= Ino = (a(),b()} , then

O<“(f—1(ln0)):H<f—l<(a0,ao—;bo]U(do-zkbo,boD)

- (2)) e (52

and so u(f~'(J;)) > 0, where J; is either (ao,%ﬂ} or (@,bo} but not both of
them. Proceeding this manner, we find a sequence {J,};;_, of half open intervals such
that

Jo2h2D... D,
H(F7H(0,00)) = u(f~ (Ja)) > 0, and p(f~'(J;)) =0, foreach ne NU{0}.

Since I(J,) — 0, where [(J,,) denotes the length of J,, then either N ,J, =0 or
M, Jn is singleton (note that N}’_,J, is an interval). Suppose in the contrary, N°_,J, =
0. Then

0= s (m::un) A ),

and so
0=u(MJn) = li};rl“(f_l(‘ln)) = .u(f_l(ovoo))7

a contradiction and so N7;_,J, is singleton. Let N ,J, = {c}, then f = cya, where
A= f"!(c). Now let {f,g} be two nonnegative linearly independent functions in
L. Then by the above argument, g = dyp. Thus {)a,xz} is a linearly independent
set and so, either ((A\B) >0 or u(B\A) > 0. Without loss of generality, we may

assume that u(A\ B) > 0. Let By = B and Ap = A\ B. Now, define xp,yp: Q@ — R
1 1

by xo = XA, and yo = XB,- Then ||xo||, =||yo||- =1, and so for each
(wao)r (s Foll-= ol
1 €10,1]
+tyol|7 + [lxo — tyoll}
L@zm) > sup 0 ’ ®
M ref0.1] 2011 +17)
2(1+17)F
oz 0% <)
B 22-p, I<p<r
N 2“’%_1’7 r<p<rv
Therefore (3) is proved.

(ii). Since r > 2, then 1 <7 < 2, and so by Theorem 1.1, we have (note that

X* =) (Ly(Q.5,1))
1 , 1
oo\ (ah o)\’
2 2
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L , L
(c@(u@z,z,m)) o (cmu(sz,z,m)) '
2 2

hence thanks to (3), we obtain

~le

_r !
) (LA(Qzp) =27 (CJ(VI})(LH(QE:“))>

1, l<r<p
o
=2 Y ap<r
22-p, p<r.

3. The calculation of C\V)(L,)
We begin with the following improvement of Theorem 2.8 in [1].
THEOREM 3. Let X be a Banach space and suppose that p > 1. Then
() =217 (g (X))

Proof. If 0 < B < a, then

a+ﬁt / ;oL
max ——— = ap+ P p"
t€0,1] (1 4+12)1/p ( B )
From the above, we have
= 1 L
CI(VpJ)(X)” == sup ||x+yp+||x_yp>
x,yeSx:
[e—y | <[lx+y
1 flx—
=~ sup sup b+ yll + Hxl |
x,yeSx 0<r<1 (1+t17’)7
1 * e
Ly wp p XUV
RN (T
1 * Lyt gy
L sup sup EHI@HE—000)
2 v y* €Sy 0<1<1 x,yESy (1+07)7
1 * Lyt * gy
=5 s [[x* +1y H+||xl v
*7 K S , 7
gLt (Lt27)r

=1
- 2 pl A27p/(X*)

which proves the result. [
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THEOREM 4. Let X =L,(Q,Z, 1), where (Q,%, ) is an arbitrary measure space,
andlet r > 1. Then

2”%’1’, I1<r<2, p<v
CrlX) =277 2<n p<n, (11)

1, otherwise.

Proof. We recall that, for each 7 € [0,1] [11]

(l—f—t)%— 1<r<2,
1) = 12
px (1) (s (12)
Then from (2) and (12), and for 1 < r < 2, we have
1 1
1+1")7 2r, 1<r<p,
AZ,p(Lr) = Ssup (7? - 1 b
t€f0,1] (1+1P)r 2r, p<r
Now, assume that 2 < r. Then by (2) and (12), we get
1
11 1+8)"+(1=1))"
Az p(Ly) =277 sup (( )+ i )) . (13)
1€(0,1] (L+1¢p)p
¥
Define the function f(¢) = M for r € [0,1]. We first assume that 2 < p
(1+2P)P
Since the function t — l—j is increasing on [0,1), 2 < p and 2 < r then
r—1 p—1
L R L
1—1¢ 11—t~ 1—¢r1
and so
1 _
L+ + (1= Y1 =P Y (1= (14t 14!
= (E) (L) =) (1) ( +) RSN T
(l—f—lp)FJrl 1—1¢ 1—¢p
Thus sup,cjo 1 f() = f(1) and so
Anp(Ly) =27,

where 2 < p and 2 <r.
Now, suppose that 1 < p <2 and 2 < r. We will show that

(i) f'(r) <0 for 0 <t <1 sufficiently close to 0,

(i) f(t) >0 for 0 <7< 1 sufficiently close to 1, and
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r—1_ 1gPmt
1—tp—1 7

(i) the equation ({%£)

0 has only one rootin (0,1)

JES ]

To prove (i), let0<ro<ﬁ. Since 1 < p <2, we have limHmHlﬂ,’fll:O
1T
and so
1+t<1 N 1Pt
- e [
1—1¢ 0T\ T= T )0

for sufficiently small 0 <t < 1.
Now, let k(z) = (1 —ro+7r9z)" ! —z:[0,00) — R. Then by our assumption k(1) =
ro(r—1)—1<0 and so

k(z) = (1 —ro+roz)" ' —z < k(1) =0 for 1 < z sufficiently close to 1.

Then from the above and for sufficiently small 0 < ¢

A C s L4r~ I\ 1! 0
=) 1= s TtnlaTe TR
and so f'(¢) < 0 for sufficiently small 0 <z.

To prove (ii), note that
(ﬂ)rfl
lim Hiil
(1 1P
1—¢r—1

i L+ 1! N
im —_— — | = 4
PaE 1—¢ 1 —¢p-1 ’

and so f’(¢) >0 for 0 <7 < 1 sufficiently close to 1.
To prove (iii), we show equivalently that the function

g(t):(r—l)m(l“) —1H<Ltp_l) [[0,1) =R

1—t [ —¢p-1

Hence

has only one root in [0,1). On the contrary, assume that g has more than one root in
[0,1) then the equation (note that by the above g(r) >0, 0 <7 < 1 sufficiently close to
1)

() = 2(r=1) 2(p—1)P? N
1—12 1—2r2

has at least two roots in (0, 1). Thus the equation

th=2 P r—1

h(r) = i .

has at least two roots in (0, 1). We will show that

3 AN 2 2p—2 N2
W =" (=2) gt:;;t;’)z +(2-p))

<0 for O<r <1,
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a contradiction.
Let > =35, B(s) = (p—2) — ps+psP~ '+ (2— p)s”. Then we show that B(s) <0
for0<s<1

B'(s)=—p+plp—1)s"2+p2—p)s" for 0<s<1,
and so

B"(s)=p(p—1)(p—2)s">+p2—p)(p—1)s">
=pR2—p)(p—1)(s"?=s"7) <0, 0<s<1.
Hence f/(s) is decreasing and B/'(1) = —p+p(p—1)+p(2—p)=0. So B'(s) >0,

B(s) isincreasingand B(1) =p—2—p+p+p(2—p)=0.hence B(s) <0,0<s<1
and we have

3
ﬁ(s)2<0 for 0<tr<1, O0<s<1.

h/(l) = m

From (i), (ii), and (iii), we obtain

sup (1) = max{£(0), F(1)} = max{2},27'},

r€[0,1]

and so for 2 <rand 1 < p <2, we have

275, pi<r
A2 p(Lr) = { ,
2r r<p.
Summarizing all the above,
2%, 1<r<2, r<p,
1
27 1<r<2, p<r.
Ar (L) = ’ ’ ’ 14
R PSPPI o
1
27, 2<r, r<p.
Now from Theorem 3,
) (X) =217 (A (X)) (15)
21+§7p, 1</ < 2, F < p/7
1, 1</ <2, p'<r,
= 2" Ay (L)) =121 2<K, p<,
1, 2<r, ¥<p

1, otherwise.
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L

TP 1< <2, P <Y,
_z

=927, 2</, p<r,

1, otherwise.

p_
2P 1<r<2, p<7,

o
=277 2<n p<, O
1, otherwise.
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