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Abstract. Let p be a prime, Z∗
p = {1,2, . . . , p−1} , m,c be integers with m � 2 , and Lm(c) =

{x|x ∈ Z∗
p,2 � (x+(cxm)p)} , where (cxm)p denotes the least positive residue modulo p . In this

paper, we study the representation of any element of Zp as sum of a m -th Lehmer number l ∈
Lm(c) and a k -th power residue in Zp , and give an inequality for the number of representations.
Moreover, using the algorithm we provided, we examined all the cases for some pairs (k,m)
by computer. We also analyzed the time complexity of the algorithm and illustrated that it is
extremely difficult to verify all the cases up to the bound of p for larger km .

1. Introduction

Let p be an odd prime, Z∗
p = {1,2, . . . , p−1} . For any integer x∈Z∗

p , there exists
a unique x ∈ Z∗

p such that xx ≡ 1 (mod p) . If x ∈ Z∗
p and x are of opposite parity,

then we call x a Lehmer number. Let L(p) the set of Lehmer numbers modulo p , that
is

L(p) = {x | xx = 1,x, x ∈ Z∗
p,2 � (x+ x)}.

D. H. Lehmer asked us to find L(p) or at least to say something nontrivial about it (see
Problem F12 of [4]). Zhang [10, 11] obtained an asymptotic estimate of the number of
elements of L(p) :

#L(p) =
p
2

+O(p
1
2 ln2 p).

Many scholars have proven other interesting properties about L(p) ; for details see [5]–
[8].

Bourgain, et al [1] defined E and O the set of even and odd residues modulo p
respectively,

E = {2,4,6, · · · , p−1}, O = {1,3,5, · · · , p−2}.

For a positive integer m and any integer c with p � c , let

Nm(c) = #{x ∈ E : (cxm)p ∈ O}
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where (cxm)p denotes the smallest positive residue of cxm modulo p . Let exp(x) =
e2 ix . For m � 2, they [1, Theorem 1.1] gave∣∣∣Nm(c)− p

4

∣∣∣ � 1

′(m)min

{
ln

(
356p
′(m)

)
, ln(5p)

}
, (1)

where

′(m)

{
= (m)

2 , if m is even;

� 1
2(m)+ 1

 ln(5p)(m,1), if m is odd;

(m) = max
1�a�p−1

∣∣∣∣∣
p−1


x=1

exp

(
axm

p

)∣∣∣∣∣ ,
(m,1) = max

1�a,b�p−1

∣∣∣∣∣
p−1


x=1

exp

(
axm +bx

p

)∣∣∣∣∣ ,
and

′(m) = max
1�a�p−1

∣∣∣∣∣∣
p−1
2


x=1

exp

(
axm

p

)∣∣∣∣∣∣ .
Furthermore, Xu [9] considered the distribution of the difference of an integer and

its m-th power modulo a positive integer q over incomplete intervals. Let  , be any
real numbers with 0 <  , � 1, q > max{[ 1

 ], [ 1
 ]} and m � 2 be integers. Define

Sm,q, , = #{a : 1 � a � q,(a,q) = 1, |a− (am)q| � q}.
Xu gave some asymptotic formulas for


a∈Sm,q, ,

∣∣a− (am)q
∣∣k .

Define a generalization of Lehmer numbers by

Lm(c) = {x | x ∈ Z∗
p,2 � (x+(cxm)p)}.

We call x ∈ Lm(c) a m-th Lehmer number and x ∈ Lm(1) a classical m-th Lehmer
number. From (1) , it is straightforward to obtain an asymptotic estimate of the number
of elements of Lm(c) . If m is odd then we have∣∣∣∣#Lm(c)− p−1

2

∣∣∣∣ <
2

′(m)min

{
ln

(
356p
′(m)

)
, ln(5p)

}
.

If m is even then we have

#Lm(c) =
1
2

p−1


a=1

(
1− (−1)a+(cam)p

)
=

p−1
2

− 1
2

p−1


a=1

(−1)a+(cam)p

=
p−1

2
− 1

4

p−1


a=1

(−1)a+(cam)p − 1
4

p−1


a=1

(−1)p−a+(c(p−a)m)p

=
p−1

2
− 1

4

p−1


a=1

(−1)a+(cam)p +
1
4

p−1


a=1

(−1)a+(cam)p =
p−1

2
.
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In this paper, we consider the representation of elements of Zp as the sum of a
m-th Lehmer number and a k -th power residue in Z∗

p . Let Rk(p) be the set of k -th
power residues in Z∗

p . Our question is, whether exists l ∈ Lm(c) and r ∈ Rk(p) such
that

n = l + r (2)

for any given element n ∈ Zp . Let Fk,m(n, p) denote the number of solutions of the
equation (2) . For any odd integer q � 3 define the positive number Tq by

Tq =
2(q−1)/2

j=1 tan
(
 j
q

)
q lnq

.

Then, we have the following results.

THEOREM 1. Let p > 3 be a prime and let m � 2 be an integer. For any given
element n ∈ Zp and any positive integer k | p−1 , we have

∣∣∣∣Fk,m(n, p)− p−1
2k

∣∣∣∣ <
m
2

T 2
p
√

p ln2 p+2.

COROLLARY 1. Let p be a prime and let m � 2 be an integer. For any positive

integer k | (p−1) , if p > 4(km)2
(
ln(km)+4lnln(km)+4ln−1(km)

)4
then any given

element n ∈ Zp can be represented as the sum of a m-th Lehmer number and a k -th
power residue in Zp .

In Section 4, we compute the exact values of Fk,m(n, p) for the pairs (k,m) =
(2,2),(2,3),(3,2),(3,3), for small values of p , obtaining the following corollaries and
conjectures.

COROLLARY 2. Any given element n ∈ Zp can be represented as the sum of a
classical 2 -th Lehmer number and a quadratic residue in Zp for any prime p > 5 .

COROLLARY 3. Any given element n ∈ Zp can be represented as the sum of a
classical 2 -th Lehmer number and a 3 -th power residue in Zp for any prime p > 13 .

CONJECTURE 1. Any given element n ∈ Zp can be represented as the sum of
a classical 3-th Lehmer number and a quadratic residue in Zp for any prime p > 5
except p = 13.

CONJECTURE 2. Any given element n ∈ Zp can be represented as the sum of a
classical 3-th Lehmer number and a 3-th power residue in Zp for any prime p > 31.
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2. Some Lemmas

In this section, we give some lemmas for the proofs of the theorems.

LEMMA 1. Let  be any Dirichlet character modulo a prime p. Then, for a
positive integer m � 2 and arbitrary integers n,r,s with (rs, p) = 1 , we have∣∣∣∣∣

p


x=1

(x+n)exp

(
rx+ sxm

p

)∣∣∣∣∣ � m
√

p.

Proof. This is the application of (1.3) of Cochrane and Pinner [2]. �

LEMMA 2. For any odd integer q � 3 we have

2


(
1+

0.548
lnq

)
< Tq <

2


(
1+

1.549
lnq

)
.

In particular, if q � 1637 , then T 2
q < 1

2 .

Proof. See Lemma 1 of [3]. �

LEMMA 3. Let  be any Dirichlet character modulo a prime p. Then, for an
integer m � 2 and arbitrary integers n,c with p � c,∣∣∣∣∣

p−1


x=1

(−1)x+(cxm)p(x+n)

∣∣∣∣∣ � mT 2
p
√

p ln2 p

holds.

Proof. Via the orthogonality of trigonometric sums as follows

p


a=1

exp

(
f a
p

)
=

{
p, i f ( f , p) = p;

0, i f ( f , p) = 1;

we can write

p−1


x=1

(−1)x+(cxm)p(x+n)

=
1
p2

p−1


x=1

(x+n)
p−1


h=1

p−1


d=1

(−1)h+d
p


r=1

exp

(
r(x−h)

p

) p


s=1

exp

(
s(cxm −d)

p

)

=
1
p2

p


x=1

(x+n)
p−1


h=1

p−1


d=1

(−1)h+d
p


r=1

exp

(
r(x−h)

p

) p


s=1

exp

(
s(cxm −d)

p

)
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=
1
p2

p−1


r=1

p−1


s=1

{
p


x=1

(x+n)exp

(
rx+ scxm

p

)}

×
{

p−1


h=1

(−1)h exp

(−rh
p

)}{
p−1


d=1

(−1)d exp

(−sd
p

)}
. (3)

For any integer r with (r, p) = 1,

p−1


a=1

(−1)a exp

(−ar
p

)
=

1− exp
(

r
p

)
1+ exp

(
r
p

) =
isin

(
r
p

)
cos

(
r
p

) .

Moreover,
p−1


a=1

∣∣∣∣∣∣
sin

(
a
p

)
cos

(
a
p

)
∣∣∣∣∣∣ = 2

(p−1)/2


j=1

tan

(
 j
p

)
= Tpp ln p.

According to (3) and Lemma 1, we have∣∣∣∣∣
p


x=1

(−1)x+(cxm)p(x+n)

∣∣∣∣∣ =
1
p2

p−1


r=1

p−1


s=1

∣∣∣∣∣
p


x=1

(x+n)exp

(
rx+ scxm

p

)∣∣∣∣∣
×

∣∣∣∣∣
p−1


h=1

(−1)h exp

(−rh
p

)∣∣∣∣∣
∣∣∣∣∣
p−1


d=1

(−1)d exp

(−sd
p

)∣∣∣∣∣
�

m
√

p

p2

p−1


r=1

p−1


s=1

∣∣∣∣∣∣
sin

(
r
p

)
cos

(
r
p

)
∣∣∣∣∣∣
∣∣∣∣∣∣
sin

(
s
p

)
cos

(
s
p

)
∣∣∣∣∣∣

�mT 2
p
√

p ln2 p.

This proves Lemma 3. �

3. Proof of Theorem 1 and Corollary 1

We will use above lemmas to prove Theorem 1 and Corollary 1. Firstly, we make
a simple transformation of Fk,m(n, p) . In the process of proof, for convenience we let
L = Lm(c) and let Rk = Rk(p) . In fact, |Rk| = p−1

k .
From the definition of Fk,m(n, p) , we can write

Fk,m(n, p) =
p−1


a=1
a∈L

p−1


b=1

b∈Rk

a+b≡n( mod p)

1

=
1
p

p


h=1

exp

(−nh
p

) p−1


a=1
a∈L

exp

(
ah
p

) p−1


b=1

b∈Rk

exp

(
bh
p

)
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=
(p−1)2

2kp
+

1
p

p−1


h=1

exp

(−nh
p

) p−1


a=1
a∈L

exp

(
ah
p

) p−1


b=1

b∈Rk

exp

(
bh
p

)

− p−1
2kp

p−1


a=1

(−1)a+(cam)p

=
(p−1)2

2kp
+E(n, p). (4)

Next, we estimate the error term E(n, p) . Let k denote a Dirichlet character modulo
p with order k , we have

E(n, p)

=
1
2p

p−1


h=1

exp

(−nh
p

) p−1


a=1

(
1− (−1)a+(cam)p

)
exp

(
ah
p

) p−1


b=1

b∈Rk

exp

(
bh
p

)

− p−1
2kp

p−1


a=1

(−1)a+(cam)p

=
1

2kp

p−1


h=1

exp

(−nh
p

) p−1


a=1

(
1− (−1)a+(cam)p

)
exp

(
ah
p

)

×
p−1


b=1

(
1+ k(b)+ 2

k (b)+ · · ·+ k−1
k (b)

)
exp

(
bh
p

)
− p−1

2kp

p−1


a=1

(−1)a+(cam)p

=− 1
2kp

p−1


h=1

exp

(−hn
p

) p−1


b=1

k−1


i=1

 i
k(b)exp

(
bh
p

)

− 1
2kp

p−1


h=1

exp

(−hn
p

) p−1


a=1

(−1)a+(cxm)p exp

(
ah
p

) p−1


b=1

k−1


i=1

 i
k(b)exp

(
bh
p

)

+
1

2kp

p−1


h=1

exp

(−hn
p

) p−1


a=1

(−1)a+(cam)p exp

(
ah
p

)

+
1

2kp

p−1


h=1

exp

(−hn
p

)
− p−1

2kp

p−1


a=1

(−1)a+(cam)p

:=−1−2 +3 +4−5. (5)

Now, we calculate each term in (5) . For 1 , we have

|1| = 1
2kp

∣∣∣∣∣
p−1


h=1

exp

(−nh
p

) p−1


b=1

k−1


i=1

 i
k(b)exp

(
bh
p

)∣∣∣∣∣
=

1
2kp

∣∣∣∣∣
k−1


i=1

( i
k)

p−1


h=1

 i
k(h)exp

(−nh
p

)∣∣∣∣∣
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=
1

2kp

∣∣∣∣∣
k−1


i=1

 i
k(n)( i

k)(
i
k)

∣∣∣∣∣
�k−1

2k
, (6)

where ( i
k) = p−1

b=1 
i
k(b)exp

(
b
p

)
is Gauss sums and we know that ( i

k)(
i
k) = p .

For 2 , we can write

2 =
1

2kp

p−1


h=1

exp

(−nh
p

) p−1


a=1

(−1)a+(cam)p exp

(
ah
p

) p−1


b=1

k−1


i=1

 i
k(b)exp

(
bh
p

)

=
1

2kp

p


h=1

exp

(
(a+b−n)h

p

) p−1


a=1

(−1)a+(cam)p

p−1


b=1

k−1


i=1

 i
k(b)

=
1
2k

k−1


i=1

p−1


a=1

(−1)a+(cam)p i
k(n−a).

From Lemma 3, we also have

|2| � 1
2k

k−1


i=1

∣∣∣∣∣
p−1


a=1

(−1)a+(cam)p i
k(n−a)

∣∣∣∣∣
� 1

2k

k−1


i=1

∣∣∣∣∣
p−1


a=1

(−1)a+(cam)p i
k(a−n)

∣∣∣∣∣
� m(k−1)

2k
T 2

p
√

p ln2 p, (7)

and

|3| = 1
2kp

∣∣∣∣∣
p


h=1

exp

(
(a−n)h

p

) p−1


a=1

(−1)a+(cam)p −
p−1


a=1

(−1)a+(cam)p

∣∣∣∣∣
� 1

2k

∣∣∣(−1)n+(cnm)p

∣∣∣+ 1
2kp

∣∣∣∣∣
p−1


a=1

(−1)a+(cam)p

∣∣∣∣∣
<

1
k
, (8)

|4| = 1
2kp

∣∣∣∣∣
p−1


h=1

exp

(−nh
p

)∣∣∣∣∣ <
1
2k

. (9)

Let  be the principal character in Lemma 3, we also have

|5| < p−1
2kp

∣∣∣∣∣∣∣
p−1


a=1
a �=n

(−1)a+(cam)p

∣∣∣∣∣∣∣+
1
2k

<
m
2k

T 2
p
√

p ln2 p+
1
2k

. (10)
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So, combining (5)-(9) we have

|E(n, p)| < m
2

T 2
p
√

p ln2 p+2. (11)

From (4) and (11) , we immediately get∣∣∣∣Fk,m(n, p)− p−1
2k

∣∣∣∣ <
m
2

T 2
p
√

p ln2 p+2.

This completes the proof of Theorem 1.
For Corollary 1 we also have a brief proof. If Fk,m(n, p) > 0 then any given

element n of Zp can be represented as sum of a m-th Lehmer number and a k -th
power residue in Zp . Such is the case if p > kmT 2

p
√

p ln2 p+4k+1. By Lemma 2 and

computation, it suffices to have p > 4(km)2
(
ln(km)+4lnln(km)+4ln−1(km)

)4
.

4. Numerical calculation

Using the numerical calculation method, the values of Fk,m(n, p) are respectively
calculated for different prime p , when (k,m) is (2,2) , (2,3) , (3,2) , and (3,3) . The
calculation results are showed in Table 1.

Table 1: Elements Zp which cannot be represented in for different (k,m)

(k,m)
calculational
upper of p

the p corresponding to Zp in which
some elements cannot be represented

which n ∈ Zp cannot
be represented

(2,2) 65536
3 1,2
5 1

(2,3) 65536
3 1,2,3
5 5
13 3,10,13

(3,2) 331776
3 2
7 1,3
13 1

(3,3) 100000

3 1,2,3
7 7
13 1,2,5,8,11,12
19 19
31 2,12,19,29,31

Consider first the case (k,m) = (2,2) . Corollary 1 yields F2,2(n, p) > 0, for any
prime p > 61967. For p < 61967 < 216 computer computations show that F2,2(n, p)>
0 for all p � 7. For p = 3 we found that the values 1 and 2 cannot be represented as
such a sum, while for p = 5, the value 1 cannot be represented.

For (k,m) = (3,2) . Corollary 1 yields F3,2(n, p) > 0, for any prime p > 235163.
For p < 235163 < 331776 computer computations show that F3,2(n, p) > 0 for all
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p > 13. For p = 7 we found that the values 1 and 3 cannot be represented as such a
sum, while for p = 13, the value 1 cannot be represented. For F2,3(n, p) , for p < 216

computer computations show that F2,3(n, p)> 0 for all p > 13, and for F3,3(n, p) , for
p < 105 computer computations show that F3,3(n, p) > 0 for all p > 31. The prime p
and the unrepresentable elements in Zp are also showed in Table 1.

Limited by computing power, we have not verified all the prime p for Fk,m(n, p)
and the larger k and m . However, from the existing calculation results, we found that,
except for very few small numbers, all elements in the residue class ring modulo a
given prime p can be represented as sum of sum of a classical m-th Lehmer number
and a k -th power residue in Zp , this gives us room to continue our efforts in theory or
calculation.

Algorithm 1 calculate the k -th power residue Rk(p) for a prime p and a given k

Input: Given prime p and k , an empty set Rk(p) ;
Output: Rk(p) .

1: for n = 0, · · · , p−1 do
2: b ≡ nk mod p ;
3: if b �∈ Rk(p) then
4: Rk(p) = Rk(p)∪{b} ;
5: end if
6: end for

Algorithm 2 verify if each element in Zp can be represented as sum of a classical m-th
Lehmer number and a k -th power residue in Zp .

Input: Given prime p and k,m . Calculate the set Rk(p) using Algorithm 1;
Output: S.

1: for i = 1 : length(Rk(p)) do
2: a ≡ n−B(i) mod p ;
3: temp = am mod p ;
4: if a+ temp cannot divide by 2 then
5: put n into set S;
6: end if
7: end for

Analysis of algorithm time complexity: For a given prime p , algorithm 2 in-
cludes two-layer cycle, the outer cycle needs p cycles, and the inner needs (p− 1)/k
which is the number of k -th power residues modulo p , so the total number of cycles is
about p(p−1)/k .

Inside the cycle, execute statement include three times of modulo operation, one
subtraction and one addition, module operation is actually a division operation, so algo-
rithm 2 needs 3p(p−1)/k times division, 2p(p−1)/k times addition, the complexity
is O(N2) . For a larger prime number, the algorithm would take a lot of time.
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