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Abstract. In this paper, we investigate the regularity of the operator K on a smooth bounded
domain in Rd given by convolution against the Newtonian potential. We show that the gain in
Lp -Sobolev spaces agrees with elliptic regularity. We also establish Lp -Sobolev to Lq -Sobolev
bounds as well as bounds from L -Sobolev spaces to Hölder spaces.

1. Introduction

In this paper, we study convolution against the Newtonian potential on a bounded
domain ⊂ R

d . If f is a function on  , we are interested in the operator

K f (x) =
∫


f (y)
|x− y|d−2 dy. (1)

In parallel with solutions to Laplace’s equation on a smooth domain with known bound-
ary conditions, we prove that K gains smoothness as measured by Lp -Sobolev spaces
as well as in Hölder spaces and on the Lp -Sobolev to Lq -Sobolev scale. Our main
results are the following theorems.

THEOREM 1. Let ⊂Rd be a smooth, bounded domain and let K be the integral
operator defined by (1). For every nonnegative � ∈ Z ,

1. K : W �,p() →W �+2,p() , 1 < p < ;

2. K : W �,() → �+1,() for any 0 <  < 1 ;

3. K : W �,1() →W �+1,1() .

In addition to proving regularity in the Sobolev scale, we are also interested in the
Lp -improving properties of K .
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THEOREM 2. Let ⊂Rd be a smooth, bounded domain and let K be the integral
operator defined by (1).

1. If D�+1 is any derivative of order � , then there exists a constant C� > 0 so that

∣∣{y ∈ : |D�+1K f (y)| > t}∣∣ � C�

(‖ f‖W �,1()

t

) d
d−1

;

2. For 1 < p < d and q defined by 1
q = 1

p − 1
d , then there exists C�,p > 0 so that

‖K f‖W �+1,q() � C�,p‖ f‖W �,p(); (2)

3. If p = d , then K satisfies (2) for all 1 � q < ;

4. If p > d , then there exists C�,p > 0 so that

‖K f‖W �+1,() � C�,p‖ f‖W �,p().

One of the first theorems that students learn in a partial differential equations class
is that convolution against the Newtonian potential solves Poisson’s equation in Rd .
Regularity results in Rd follow by integration by parts to pass the derivatives off of the
kernel and onto the data. It is not so simple on domains  ⊂ R

d . There have been
thousands of papers on elliptic regularity for elliptic equations, and the setup (in the
simplest form) is the following: solve Lu = f on  subject to the boundary condition
u|b = g and L is elliptic. The regularity of f and g determine the smoothness of u .
When  has a smooth boundary, the results are classical and can be found in many
books (e.g., Evans [2] or Gilbarg-Trudinger [5]). Recently, the interest has been to ex-
tend the classical work to the low boundary regularity setting. Often the work involves
layer potential and other techniques from harmonic analysis [9].

Our approach takes a different tack because we not trying to solve a given bound-
ary value problem; instead, we are given the operator and a domain and must determine
its regularity. Our interest in K arises from the integral operators that arise in several
complex variables – see §1.1. Many operators are given by integration against an inte-
gral kernel and the integral kernel (and the data) determine the regularity of the output.
If the integration is on  and not over Rd , then regularity of the integral operator does
not follow the (typically well-known) results on Rd because C

c () is not dense in
many function spaces (on ) of interest. Integration by parts is much more compli-
cated because of the boundary and derivatives cannot simply pass to the data.

1.1. Singular integrals in several complex variables

The central partial differential equation in several complex variables is the Cauchy-
Riemann equation u = f . Solving this equation often proceeds along one of two lines.
In L2 , one can use functional analysis and develop the L2 -theory of the canonical so-
lution along the lines of Hörmander [8]. See Straube [13] to pursue this line of reason-
ing. Outside of L2 , solutions are built by integrating against constructed kernels. The
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most well known of these kernels are the Bochner-Martinelli and Bochner-Martinelli-
Koppelman kernels. Both of these kernels generalize the one-variable Cauchy kernel in
the sense that they are reproducing kernels, but they are not holomorphic. We will call
this kind of kernel a BM type kernel. Unlike solving the Laplacian, the geometry of b
plays an integral role in the gain (if any) of regularity of solutions to u = f , and con-
structing solving operators that incorporate the regularity is difficult, in general. Many
of the operators, such as the Henkin operator on convex domains, have two pieces – one
involving the boundary and one involving a BM type kernel. For example, for ⊂C2 ,
a typical term in the expansion of a BM type kernel is

1
(2 i)2

∫

( )

2− z2

| − z|4 d 1∧d 2∧d2 ∧d z1∧d1

Decomposing this piece into its real and imaginary components leaves us with the op-
erators

Kj f (x) =
∫


f (y)
x j − y j

|x− y|4 dy =

x j

∫


f (y)
|x− y|d−2 dy

The regularity for Kj is a consequence of Theorem 1 and Theorem 2. We plan to use

the results of this paper to continue our investigation of the  and  b -problems in Lp

and Lp -Sobolev spaces on convex domains of finite and infinite type in Cn [6, 10, 11].

2. Proof of Theorem 1

The � = 0 case is classical, though we provide the key points.
To move from � = 0 to � > 0, we need the technical tools to prevent non-integrable

singularities from arising.

2.1. The non-characteristic formula for the Laplacian and tangential derivatives

Before continuing, we need to establish notation for normal and tangential deriva-
tives. We let  (x) be a defining function for  and consider a directional derivative
at x to be normal at x if it is parallel to  (x) and tangential if it is orthogonal to
 (x) . Thus, we have a notion of tangential and normal derivatives at x near b .
We denote tangential derivatives at x by Tx and normal derivatives at x by 

x
. Let

 = (1, . . . ,d) be the unit outward normal so that (x) ·= 
x

. We will also use T�,x

to denote a tangential operator of order � and X�,x for a generic differential operator of
order � at x , though we may suppress the x subscript when working in a neighborhood
of x . Operators of order � will have a nontrivial order � part but may also have lower
order terms. Note that 

x
is just a smooth multiple of  (x) .

PROPOSITION 1. Let ⊂Rd be a smooth bounded domain and x∈ be a point
sufficiently close to b so that tangential and normal derivatives at x are well-defined.
Let � � 1 and X�,x be a differential operator of order � . Then there exist tangential
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differential operators T�,x , T ′
�,x , T�−1,x , T ′

�−1,x of order � , �, , �−1 , and �−1 , respec-
tively, and when � = 1 , we set X�−2,x = 0 so that

X�,x = X�−2,x	+T�,x +

x

T�−1,x

= X�−2,x	+T ′
�,x +T ′

�−1,x

x

.

Proof. The � = 1 case is immediate, so we assume that � � 2. Let us first examine
the case � = 2. Near x , we have an orthornormal basis { 

k
}d−1

k=1 of tangential vectors.
This means for some smooth coefficients near x ,


x�

=
d−1


k=1

a�k

k

+b�



which means

 2

x�xn
=

( d−1


k=1

a�k

k

+b�



)( d−1


j=1

an j

 j

+bn



)

=
d−1


j,k=1

a�kan j
 2

 jk
+b�bn

 2

2 +T1 +T1



and therefore
 2

x2
�

=
d−1


j,k=1

a�ka� j
 2

 jk
+b2

�

 2

2 +T1 +T ′
1



.

The Laplacian

	 =
d


�=1

[ d−1


j,k=1

a�ka� j
 2

 jk
+b2

�

 2

2

]
+T1 +T ′

1



.

It must be the case that d
�=1 b2

� > 0 for the Laplacian is not a tangential operator. Thus,

 2

2 =
1

d
�=1 b2

�

	+T2 +T1 +T ′
1



.

Plugging in our expression for  2

2 into  2

x�xn
shows that  2

x�xn
satisfies the first

equality of the conclusion and hence a general second order operator will as well. The
second equality follows from taking commutators.

The proof for higher operators follows by induction and the fact that a commutator
of an order � and an order j differential operator produces an operator of order �+ j−
1. �

The linchpin of the proof of the Theorem 1 is the following technical lemma.
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LEMMA 1. Let  ⊂ Rd be a smooth domain. Suppose f ∈ W �,() and k ∈
C(Rd \ {0}) is homogeneous of degree −(d − 2) . Suppose that supp f is such that
tangential and normal derivatives with respect to the level surfaces of  (x) are well-
defined on supp f . Let x ∈ ∩ supp f . If T�,x denotes a tangential derivative of order
� at x , then

T�,x

{∫


f (y)k(x− y)dy

}
=

∫


T�,y f (y)k(x− y)dy+
j

∫


T j
y f (y)h j(x,y)k j(x− y)dy

where the sum is a finite sum, T j
y is a tangential derivative of order at most �− 1 at

y, h j(x,y) ∈C(×) , and k j is a function that is homogeneous of degree −(d−2)
and smooth away from the origin.

Proof. The issue is that a derivative that is tangential at x is unlikely to be tangen-
tial at y , and it is only derivatives that are tangential at y that we may integrate by parts
and pick up no boundary term. The way to generate a tangential derivative from Tx is
straight forward – we subtract the projection of Tx onto 

(y) from Tx and we will be

left with a derivative that is tangential at y . Let a(x) = (a1(x), . . . ,ad(x)) be the smooth
vector so that Tx = a(x) ·x . Set

Tx,y = −a(x) ·y

and suppose that k ∈ L1() . Since Tx is tangential at x , a(x) ·(x) = 0, and it follows
that

Txk(x− y) = Tx,yk(x− y) =
(
Tx,y +a(x) ·(y)


y

)
{k(x− y)}−a(x) ·(y)

k(x− y)
y

=
(
Tx,y +a(x) ·(y)


y

)
{k(x− y)}−a(x) · ((y)−(x))

k(x− y)
y

.

Since x is fixed, the vector field T ′
y := Tx,y + a(x) ·(y) 

y
is tangential at y and we

can integrate it by parts without picking up a boundary term, i.e.,∫


f (y)T ′
y k(x− y)dy =

∫

(T ′

y )
∗ f (y)k(x− y)dy.

We will see that the remaining term is well-behaved. Recall that (x) is a smooth
multiple of  (x) , and  (x) is Lipschitz (in fact,  is smooth up to the reach of b ,
see [7] for details). It therefore follows that

(y)−(x) =
(
b1(x,y)(y1 − x1), . . . ,bd(x,y)(yd − xd)

)
where b1(x,y), . . . ,bd(x,y) are smooth functions on supp . This means

a(x) · ((y)−(x))
k(x− y)

y
=

d


j,�=1

a j(x)b j(x,y)�(y)(x j − y j)
k(x− y)

y�

=
d


j=1

h j(x,y)k j(x− y).
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This completes the � = 1 case. The case � � 2 is handled recursively. The only differ-
ence is that the derivatives (in x ) can hit either h j(x,y) or k j(x− y) . If the derivative
hits h j(x,y) , there is nothing more to do as the term is smooth and simply absorbs
the derivative. If the derivative hits k j(x− y) , we repeat the argument of the � = 1
case. �

2.2. The Sobolev space estimates

With Proposition 1 and Lemma 1 in hand, we are now in a position to prove parts
1 and 3 of Theorem 1. By density, we may assume that f ∈C() .

Proof by induction. Since K(x) ∈ L1() , the base case for Part 3 of the theorem
follows by [4, Theorem 6.18]. The base case for the 1 < p <  case is established by
standard Calderón-Zygmund theory. Given a function f ∈ Lp() , extend f by the 0
function on c . Extension by 0 is continuous in Lp and it therefore suffices to prove
the base case of Part 1 on R

d . Observe that  2

x jxk
{ 1
|x|d−2 } is a homogeneous function

of degree −d and is mean 0 on the unit sphere. Consequently, it is a standard Calderón-
Zygmund kernel and convolution against it is bounded in Lp(Rd) . This concludes the
proof of the base case for Part 1 and Part 3.

Now assume that � � 1 and D� is a constant coefficient differential operator of
order � . Let  ∈C

c (Rd) be a cutoff function so that supp ⊂ {t ∈ Rd : dist(t,b) �
2} where  > 0 is suitably small and  ≡ 1 on {t ∈ : dist(t,b) � } . Then

K f (x) =
∫


f (y)(y)
|x− y|d−2 dy+

∫


f (y)(1−(y))
|x− y|d−2 dy.

Since f (y)(1−(y)) ∈ C
c () , it follows that by passing one derivative through at a

time and integrating by parts, we have

D�,x

∫


f (y)(1−(y))
|x− y|d−2 dy =

∫


D�,y
(
f (y)(1−(y))

) 1
|x− y|d−2 dy. (3)

Given that we can pass derivatives onto (1−) f , the base case establishes the desired
estimates for Parts 1 and 3.

We now have only to show the estimate near b . In fact, we can assume both x
and y are near b . That y is near b is forced on us by the domain of  . If x is far
from the boundary, then |x− y| is bounded away from 0, and any estimate we wish to
prove follows from the smoothness of K and its integrability on bounded domains that
avoid a neighborhood of the origin.

We therefore focus on x near b . By Proposition 1, for j = 1 or 2, there exist
tangential operators T�+ j,x and T�+ j−1,x and an operator X�+ j−2,x of order �+ j−2

D�+ j = X�+ j−2,x	x +T�+ j,x +

x

T�+ j−1,x.

We claim that for x ∈ ,
	K( f )(x) = cd f (x), (4)
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where cd is a dimensional constant. Indeed, since the Green’s function for  is
G(x,y) = (y− x)−  x(y) where the Newtonian potential (y− x) is a multiple of
the integral kernel of K and  x is a harmonic function that agrees with (y− x) on
b , (4) follows. Consequently,

‖X�+ j−2,x	xK( f)‖Lp() = cd‖X�+ j−2,x( f)‖Lp() � C‖ f‖W �,p(), 1 � p � .

Next, by Lemma 1,

T�′,x

{∫

( f )(y)K(x− y)dy

}

=
∫


T�′,y{ f}(y)K(x− y)dy+
j

T j
y { f}(y)h j(x,y)k j(x− y)dy.

For Part 3, we use j = 1, write T�+ j,x + 
x

T�+ j−1,x = D1,xT�,x where D1,x is a first
order operator in x . We write

D1,xT�,x

{∫

( f )(y)K(x− y)dy

}

=
∫


T�,y{ f}(y)D1,xK(x− y)dy+
j

T j
y { f}(y)h j(x,y)D1,xk j(x− y)dy.

Since D1,xK(x− y) and D1,xk j(x− y) are integrable, we can again use [4, Theorem
6.18] to finish the proof of Part 3.

To establish Part 1, we need to bound the terms with T�+2,x and 
 T�+1,x . We

handle these terms together by establishing

∥∥∥
∫


T�,y{ f}(y)K(x− y)dy
∥∥∥

W 2,p()
� C‖ f‖W �,p() (5)

and ∥∥∥
∫


T�,y{ f}h(x,y)k(x− y)dy
∥∥∥

W 2,p()
� C‖ f‖W �,p(). (6)

The bound for (5) follows immediately from the base case. We cannot directly apply
Calderón-Zygmund theorem to (6) because the kernel is not homogeneous. However,
by writing

h(x,y) = h(y,y)+
(
h(x,y)−h(y,y)

)
,

we see that the Calderón-Zygmund theory used in the base case does allow us to estab-
lish

∥∥∥
∫


T�,y{ f}h(y,y)k(x− y)dy
∥∥∥

W2,p()
� C‖T�,y{ f}h(y,y)‖Lp() � C‖ f‖W �,p().

Also, ∣∣2(h(x,y)−h(y,y)
)
k(x− y)

∣∣ = O(|x− y|−(d−1)),
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which is integrable. Thus,

∥∥∥
∫


T�,y{ f}(h(x,y)−h(y,y)
)
k(x− y)dy

∥∥∥
W2,p()

� C‖T�,y{ f}h(y,y)‖Lp()

� C‖ f‖W �,p().

This completes the proof of Parts 1 and 3.

2.3. Proof of Hölder bounds

We now prove Part 2 of Theorem 1.
Suppose that g ∈ L() , h(x,y) is a smooth function on × and (x) is

a homogeneous function of degree −(d − 1) . We start by proving a slight gener-
alization of Range [12, Lemma IV.1.15, p. 157], namely, that the operator g(x) =∫
 g(y)h(x,y)k(x− y)dy satisfies

‖g‖1+() � C‖g‖L() (7)

for any 0 <  < 1. Our argument follows Range’s.
Let Dx be a generic first order, constant coefficient derivative in x .

Ag(x) =
∫


g(y)Dxh(x,y)k(x− y)dy

and
Bg(x) =

∫


g(y)h(x,y)Dxk(x− y)dy,

where k(x) is homogeneousof degree −(d−2) and smooth away from 0. The function
h is smooth on × , and extend it to a smooth function on Rd ×Rd with bounded Cj

norms, all j . The estimates are handled similarly (though A will have a better estimate).
We show the estimate for B . Let x,x′ ∈ , p = x+x′

2 , and  = |x− x′| . Choose R > 0
large enough that ⊂ B(0,R) . Let  (x,y) = h(x,y)Dxk(x− y) and observe that

|Bg(x)−Bg(x′)| � ‖g‖L()

∫
B(0,R)

| (x,y)− (x′,y)|dy.

Write
∫

B(0,R)
| (x,y)− (x′,y)|dy

=
∫

B(0,R)∩B(p,2)
| (x,y)− (x′,y)|dy+

∫
B(0,R)\B(p,2)

| (x,y)− (x′,y)|dy := I + II.

Since B(x,3) ⊃ B(p,2) and B(x′,3) ⊃ B(p,2) , it follows from the boundedness
of h that

I1 �
∫
 (x,3)

| (x,y)|dy+
∫
 (x′,3)

| (x′,y)|dy � Ch

∫
B(0,3)

1
|y|d−1 dy � Ch|x− x′|.
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For I2 , we use the Mean Value Theorem and estimate

| (x,y)− (x′,y)|�C|x−x′| sup
t∈[x,x′ ]

| (t,y)|�C|x−x′| sup
t∈[x,x′ ]

(|y−t|−d + |y−t|−(d−1)).
Since t ∈ [x,x′] , B(0,R)\B(p,2)⊂ B(t,2R)\B(t,) , and consequently,

I2 � C|x− x′|
∫
�|y−t|�2R

1
|y− t|d +

1
|y− t|d−1 dy � C|x− x′|(1+ log |x− x′|+R).

The proof of (7) follows immediately.
Our goal is now to show

‖K f‖�+() � C�,
(‖ f‖W �,() +‖� f‖ ()

)
. (8)

The � = 0 case is already proved by (7). We now assume that the � case holds and will
shows that the �+1 case holds.

From (3) and (7), we see that the interior estimates pose no problem, and we need
only to show (8) with f replaced by  f . Because supp is sufficiently close to b ,
we may use Proposition 1 with � + 1 replacing � (note that � � 1 in this case). The
terms X�−1 and X�,x term are benign and handled by Part 3, respectively. For each
other remaining terms, we integrate the first � derivatives (all of which are tangential)
according to Lemma 1. The terms that are generated by the integration by parts and
projections are described by  , and the result follows from (7). This concludes the
proof of Part 2, and hence of Theorem 1.

3. Proof of Theorem 2

DEFINITION 1. Let (X ,) be a measure space. A measurable function f is weak
type  , 1 �  <  if there exists C > 0 so that


({x ∈ X : | f (x)| > t}) � C

t

for all t > 0.

The argument to prove Theorem 2 is a combination of the non-characteristic for-
mula for the Laplacian, the integration by parts formula provided by Proposition 1, and
the following lemma by Folland and Stein [3, Lemma 15.3], by way of Chen, Krantz,
and Ma [1, Lemma 1].

LEMMA 2. Let (X ,) and (Y,) be measure spaces and k(x,y) be a measurable
function on X ×Y . If there exists  ∈ (1,) such that k(x, ·) is weak type  uniformly
in x and k(·,y) is weak type  uniformly in y, then the linear operator T defined by
T f (x) =

∫
X f (x)k(x,y)d(x) satisfies the following estimates:

i. T is weak type (1, ) , that is, there exists a constant C > 0 so that


({y ∈Y : |T f (y)| > t}) � C

(‖ f‖L1(X)

t

)
;
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ii. For 1 < p < 
−1 and q defined by 1

q = 1
p + 1

 − 1 , T is strong type (p,q) , i.e.,
there exists Cp > 0 so that

‖T f‖Lq(Y) � Cp‖ f‖Lp(X);

iii. If p = 
−1 , then T is strong type (p,q) for all 1 � q < ;

iv. If p > 
−1 , then T is strong type (,q) , that is, there exists C > 0 so that

‖T f‖L(Y) � C‖ f‖Lp(X).

From Proposition 1, we can write a derivative of order �+1, X�+1,x , as

X�+1,x = X�−1,x	+T�+1,x +

x

T�,x, (9)

assuming x is sufficiently close to b .
The proof of Theorem 2 follows the same outline as the proof of Theorem 1. In

particular, letting  be the same function as above,

D�+1,x

∫


K(x− y) f (y)(1−(y))dy =
∫


D1,xK(x− y)D�,y
(
f (y)(1−(y))dy.

The function D1,xK(x−y) is a homogeneous function of degree −(d−1) . The domain
 is bounded. Also, |x|−(d−1) = t means that |x| = t−1/(d−1) , and consequently

∣∣{x ∈ : |K(x− y)| > t}∣∣ = C
∫ t−1/(d−1)

0

1
|x|d−1 dx =

C

t
d

d−1

.

The function D1,xK(x− y) is therefore weak type d
d−1 , and applying Lemma 2 estab-

lishes the correct estimates.
We may now focus on K{ f}(x) for x near b . Indeed, for x away from b , 

forces y to be near b , so |x− y| is bounded away from 0, and any estimate we wish
to show follows from the smoothness of K away from 0. Examining the terms in (9),
we note that X�−1,x	K f = X�−1,x f and use the Sobolev Embedding Theorem to bound
this term. As before, the estimate reduced to the bounds on T�+1,x and 

x
T�,x . In both

cases, we will apply Lemma 1 and observe that

DxT�,x

{∫


f (y)k(x− y)dy

}

=
∫


T�,y f (y)Dxk(x− y)dy+
j

∫


T j
y f (y)Dx{h j(x,y)k j(x− y)}dy.

All of the kernels on the right-hand side of the above equality are functions of weak
type d

d−1 , and the Theorem 2 follows from Lemma 2.
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