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PARTITIONING BOUNDED SETS IN SYMMETRIC

SPACES INTO SUBSETS WITH REDUCED DIAMETER

XINLING ZHANG ∗ AND CHAN HE

(Communicated by H. Martini)

Abstract. Borsuk’s problem on partitioning bounded sets into sets having smaller diameters is
considered. For each positive integer m and each n -dimensional Banach space X , let (X ,m)
be the infimum of  ∈ (0,1] such that each bounded set A⊆X with diameter 1 can be partitioned
into m subsets whose diameters are at most  . With the help of characterizations of complete
sets in �3

1 , we prove that (�3
1,8) � 0.75 . By using the stability of (X ,m) with respect to X

in the sense of Banach-Mazur metric and estimations of the Banach-Mazur distance between �n
p

and �n
q , we show that (�3

p,8) � 0.88185 holds for each p∈ [1,] . This improves a recent result
of Y. Lian and S. Wu. Furthermore, we prove that (X ,23) < 1 when X is a three-dimensional

Banach space symmetric with the natural basis {ei | i ∈ [3]} and satisfies (X) =

∥∥∥∥∥ 
i∈[3]

ei

∥∥∥∥∥ >

9/4 .

1. Introduction

Let X = (Rn,‖ ·‖) be an n -dimensional Banach space with origin o and unit ball
BX , and A ⊆ X be a nonempty bounded set. Denote by  (A) := sup{‖x−y‖ | x,y ∈ A}
the diameter of A . If x /∈ A ⇒  (A∪{x}) >  (A) , then A is said to be complete. If AC

is a complete set with diameter  (A) and containing A , then it is called a completion
of A . Note that AC is not unique in general. A compact convex set having interior
points is called a convex body. Let E

n be the n -dimensional Euclidean space. Put
[n] := {i ∈ Z

+ | 1 � i � n} , ∀n ∈ Z
+ .

In 1933, K. Borsuk (cf. [3]) proposed the following problem:

PROBLEM 1. (Borsuk’s Problem). Is it true that every nonempty bounded set
A ⊆ E

n can be divided into n + 1 subsets A1,A2, · · ·,An+1 such that  (Ai) <  (A) ,
∀i ∈ [n+1]?
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For n = 2, the affirmative answer was provided by K. Borsuk (cf. [3]). For n = 3,
the affirmative answer was given by J. Perkal (cf. [10]) and H. G. Eggleston (cf. [4]).
For n � 64, the answer is negative (cf. [2], [5], and [6]). Up to now, the answer is not
clear for 4 � n � 63. See [14] for more information on this problem and a quantitative
program to attack it.

It is natural to consider Borsuk’s problem in a finite dimensional Banach space X .
For a bounded set A ⊆ X , let bX(A) be the smallest positive integer m such that A can
be divided into m subsets whose diameters are strictly smaller than  (A) . We refer to
the book [1] for more information about Borsuk’s problem.

For a real number p � 1, �n
p denotes the space (Rn,‖ · ‖p) , where the p -norm

‖ · ‖p of x = (1, · · ·,n) ∈ R
n is defined by

‖x‖p = ‖(1, · · ·,n)‖p =

(

i∈[n]

| i |p
) 1

p

, ∀p ∈ [1,),

and
‖x‖ = ‖(1, · · ·,n)‖ = max

i∈[n]
| i | .

Denote by Bn
p the unit ball of �n

p . I.e., Bn
p = {x ∈ R

n | ‖x‖p � 1} .
In 2009, L. Yu and C. Zong proved that b�3

p
(A) � 23 holds for every nonempty

bounded set A and each p ∈ [1,] (cf. [12]). In 2021, Y. Lian and S. Wu studied
Borsuk’s partition problem in finite dimensional Banach spaces by estimating

X(A,m) = inf
{ 1
 (A)

max{ (Ak) | k ∈ [m]} | A =
m⋃

k=1

Ak

}

for A ∈ Bn , and
 (X ,m) = sup{X(A,m) | A ∈ Bn},

where Bn = {A ⊆ X | A is bounded and  (A) > 0} . They showed that (cf. [7])

 (�3
p,8) � 0.925, ∀p ∈ [1,].

Later, L. Zhang, L. Meng, and S. Wu (cf. [13]) improved this estimation by showing
that

 (�3
p,8) � 0.9, ∀p ∈ [1,].

We will improve this estimation in Section 3 with the help of the following theorem,
which is proved in Section 2.

THEOREM 1. For every complete set K with  (K) = 2 in �3
1 , we have

�3
1
(K,8) � 3

4
.

Moreover,

 (�3
1,8) � 3

4
.
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In section 4, we show that  (X ,23) < 1 when X is a three-dimensional Banach space
symmetric with {ei | i ∈ [3]} and satisfies (X) > 9/4, where {ei | i ∈ [3]} is the

natural basis and (X) =

∥∥∥∥∥ 
i∈[3]

ei

∥∥∥∥∥ .

2. Partitions of complete sets in �3
1

For a convex body K , the closed set  between two parallel supporting hyper-
planes H and H ′ of K is called a supporting slab of K . The distance between H and
H ′ is called the width of  . Let M be another convex body and  be a supporting
slab of K . If the union of the bounding hyperplanes of the supporting slab of M that is
parallel to  contains a smooth boundary point of M , then  is said to be M-regular.
The following lemma proved by J. P. Moreno and R. Schneider is critical for the proof
of Theorem 1.

LEMMA 1. ([9]) Let 1, · · ·,k be the BX -regular supporting slabs of the poly-
hedral unit ball BX . Each complete set K with diameter 2 is of the form

K =
k⋂

i=1

(i + ti)

with ti ∈ R
n , ∀i ∈ [k] .

For vectors u ∈ R
n\{o} and  ∈ R , we write

H(u,) := {x ∈ R
n | 〈x,u〉 = },

H+(u,) := {x ∈ R
n | 〈x,u〉 � }, and H−(u,) := {x ∈ R

n | 〈x,u〉 � },
where 〈·, ·〉 is the scalar product.

The unit ball B3
1 of �3

1 is a regular octahedron whose vertices are ±(0,0,1) ,
±(1,0,0) , and ±(0,1,0) . Clearly, ±u1 = ±(1,1,1) , ±u2 = ±(−1,1,1) , ±u3 =
±(1,−1,1) , and ±u4 = ±(−1,−1,1) are the outer normal vectors of the facets of B3

1 .
Therefore, the B3

1 -regular supporting slabs of B3
1 are 1 , 2 , 3 , 4 , where, for each

i ∈ [4] , i is the slab bounded by H(ui,1) and H(ui,−1) . After applying a suitable
translation if necessary, every complete set in �3

1 with diameter 2 has the form

P() = 2 ∩3∩4 ∩ (1 +u1)

= (B3
1 ∪S±1)∩ (1 +u1)

=
(
B3

1 ∩ (1 +u1)
)∪ (S±1∩ (1 +u1)) ,

where S1 = conv((B3
1∩H(u1,1))∪{u1}) , S−1 = −S1 , and |  |� 2/3.

It is not difficult to verify that P(0) = B3
1 , S1 = P(2/3) , and S−1 = P(−2/3) .

These sets are all complete (the completeness of S±1 follows from Claim 1 in [8]).
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LEMMA 2. Let T be the regular tetrahedron in �3
1 with vertices

v1 =
(

1,−1
2
,−1

2

)
, v2 =

(
−1

2
,1,−1

2

)
, v3 =

(
−1

2
,−1

2
,1

)
, v4 = (1,1,1).

Then T can be divided into five parts whose diameters are 3/2 .

Proof. Denote the points

c1 =
v1 + v4

2
=
(

1,
1
4
,
1
4

)
, c2 =

v2 + v4

2
=
(

1
4
,1,

1
4

)
,

c3 =
v3 + v4

2
=
(

1
4
,
1
4
,1

)
, d1 =

v2 + v3

2
=
(
−1

2
,
1
4
,
1
4

)
,

d2 =
v1 + v3

2
=
(

1
4
,−1

2
,
1
4

)
, d3 =

v1 + v2

2
=
(

1
4
,
1
4
,−1

2

)
,

and the sets

A1 = conv{v1,c1,d2,d3}, A2 = conv{v2,c2,d1,d3},
A3 = conv{v3,c3,d1,d2}, A4 = conv{v4,c1,c2,c3},

A5 = conv{c1,c2,c3,d1,d2,d3}.

Then T = ∪i∈[5]Ai , and

 (Ai) = max

{
‖vi− ci‖1, max

j∈[3]\{i}
{‖vi−d j‖1,‖ci−d j‖1}

}
=

3
2
, i ∈ [3],

 (A4) = max{max{‖v4− c j‖1 | j ∈ [3]},max{‖ci− c j‖1 | i, j ∈ [3]}} =
3
2
,

 (A5) = max
i, j∈[3]

{‖ci− c j‖1,‖di−d j‖1,‖ci−d j‖1} =
3
2
.

This means that A can be divided into five parts whose diameters are 3/2. �

COROLLARY 1. �3
1
(P(1/3),5) � 3/4 .

Proof. It follows from Lemma 2 and the fact that P(1/3) is contained in the reg-
ular tetrahedron with vertices v1,v2,v3,v4 as in Lemma 2. �

Proof of Theorem 1. Let K be a complete set in �3
1 with  (K) = 2. As above, we

may assume that K has the following form:

P() = 2∩3 ∩4∩ (1 +u1) , |  |� 2/3.

We show that �3
1
(P(),8) � 3/4, ∀ ∈ [0,2/3] . The case when  ∈ [−2/3,0] can be

proved in a similar way. We consider the following two cases.
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Case 1: If  ∈ [0,1/3) , then P() = A∪B , where

A = P()∩H+(u1,0), and B = P()∩H−(u1,0).

Notice that A is contained in the regular tetrahedron T defined in Lemma 2. Thus A
can be divided into five parts whose diameters are 3/2.

The bounding hyperplanes of the slab 1 +u1 are H(u1,3−1) and H(u1,1+
3) . It is clear that B3

1∩H(u1,3−1) is a convex hexagon with vertices

a1 =
(

0,
3
2
−1,

3
2

)

, a2 =
(

3
2
,

3
2
−1,0

)
, a3 =

(
3
2
,0,

3
2
−1

)
,

a4 =
(

0,
3
2
,

3
2
−1

)
, a5 =

(
3
2
−1,

3
2
,0

)
, a6 =

(
3
2
−1,0,

3
2

)

.

The intersection of H(u1,3 − 1) and the segment between o and −u1 is o′ = ( −
1/3,−1/3,−1/3) . Note that B3

1∩H(u1,0) is also a convex hexagonwhich vertices
are

b1 =
(

0,−1
2
,
1
2

)
, b2 =

(
1
2
,−1

2
,0

)
, b3 =

(
1
2
,0,−1

2

)
,

b4 =
(

0,
1
2
,−1

2

)
, b5 =

(
−1

2
,
1
2
,0

)
, b6 =

(
−1

2
,0,

1
2

)
.

Let

V1 =
{

a1,a2,
a1 +a6

2
,
a2 +a3

2
,o′,o,b1,b2,

b1 +b6

2
,
b2 +b3

2

}
,

V2 =
{

a3,a4,
a2 +a3

2
,
a4 +a5

2
,o′,o,b3,b4,

b2 +b3

2
,
b4 +b5

2

}
,

V3 =
{

a5,a6,
a4 +a5

2
,
a1 +a6

2
,o′,o,b5,b6,

b4 +b5

2
,
b1 +b6

2

}
,

and Bi be the polyhedron with Vi as the set of vertices, i ∈ [3] . Then B = B1∪B2∪B3 ,
and

 (B1) = max{‖x− y‖1 | x,y ∈V1} =
∥∥∥∥a1 +a6

2
− a2 +a3

2

∥∥∥∥
1
=

3
2
,

 (B2) = max{‖x− y‖1 | x,y ∈V2} =
∥∥∥∥a2 +a3

2
− a4 +a5

2

∥∥∥∥
1
=

3
2
,

 (B3) = max{‖x− y‖1 | x,y ∈V3} =
∥∥∥∥a4 +a5

2
− a1 +a6

2

∥∥∥∥
1
=

3
2
.

Thus P() can be divided into eight parts whose diameters are 3/2. Hence

�3
1
(P(),8) � 3

4
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holds for every  ∈ [0,1/3) .

Case 2: If  ∈ [1/3,2/3] , then, since 3−1 > 0, P() is completely contained in
the regular tetrahedron T defined in Lemma 2, which means that P() can be divided
into five parts of diameters 3/2. Thus

�3
1
(P(),8) � �3

1
(P(),5) � 3

4

holds for each  ∈ [1/3,2/3] .
By Proposition 1 in [7], we have

 (�3
1,8) � 3

4
.

This completes the proof. �

3. An estimation of  (�3
p,8)

The (multiplicative) Banach-Mazur distance between two isomorphic Banach spa-
ces X and Y is defined by

dM
BM(X ,Y ) = inf{‖T‖ · ‖T−1‖ | T : X → Y is an isomorphism}.

Moreover, if X , Y , and Z are isomorphic Banach spaces, then

dM
BM(X ,Y ) � dM

BM(X ,Z) ·dM
BM(Z,Y ),

see [11]. In this section, we use estimations of the Banach-Mazur distance between �n
p

and �n
q and the stability of  (X ,m) with respect to X in the sense of Banach-Mazur

distance to get an estimation of  (�3
p,8) .

LEMMA 3. ([7]) If X = (Rn,‖ · ‖X) and Y = (Rn,‖ · ‖Y ) are two Banach spaces
satisfying dM

BM(X ,Y ) �  for some  � 1 , then

 (X ,m) �  (Y,m),∀m ∈ Z
+.

THEOREM 2. ([11]) Let n be a positive integer and 1 � p,q �  .

• If 1 � p,q � 2 or 2 � p,q �  , then dM
BM(�n

p, �
n
q) = n

1
p− 1

q .

• If 1 � p < 2 < q �  , then n � dM
BM(�n

p, �
n
q) � n , where  = max{ 1

p −
1
2 , 1

2 − 1
q} , and  and  are universal constants.

From Theorem 2, it follows that dM
BM(�n

p, �
n
) = n

1
p , ∀p ∈ [2,] .
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THEOREM 3. For p ∈ [1,] ,  (�3
p,8) � 0.88185.

Proof. We distinguish three cases.

Case 1: p ∈ [1,1.1729] . By Theorem 2,

dM
BM(�3

1, �
3
p) = 31− 1

p � 31− 1
1.1729 � 1.1758, ∀p ∈ [1,1.1729].

By Theorem 1 and Lemma 3, we have

 (�3
p,8) � 1.1758×0.75= 0.88185, ∀p ∈ [1,1.1729].

Case 2: p ∈ [1.1729,1.45] . By the proof of Lemma 14 in [7],

dM
BM(�3

p, �
3
) � 1

10
(2+4p)

1
p · (2 ·3 p

p−1 +1)
p−1
p , ∀p ∈ (1,2]. (1)

For p ∈ (1,2] , set

f (p) = ln(2+4p)+ (p−1) ln
(
2 ·3 p

p−1 +1
)

,

r(p) = f (p)/p , and w(p) = p f ′(p)− f (p) . We have r′(p) = w(p)/p2 and w′(p) =
p f ′′(p) . By the proof of Lemma 8 in [13], w(p) is strictly increasing on (1,2] .
Meanwhile, since w(1.1729) < 0 and w(1.45) > 0, there exists a unique point p0 ∈
(1.1729,1.45) such that w(p0) = 0. Therefore, r′(p) � 0 for p ∈ [1.1729, p0] and
r′(p) > 0 for p ∈ [p0,1.45] . Hence r(p) decreases on [1.1729, p0] and increases on
[p0,1.45] . Since 2.8682≈ r(1.45)< r(1.1729)≈ 2.8700, we have r(p) � r(1.1729)≈
2.8700, ∀p ∈ [1.1729,1.45] . By (1),

dM
BM(�3

p, �
3
) � er(p)

10
� er(1.1729)

10
� 1.7637.

By Lemma 3 and Proposition 4 in [7], we have

 (�3
p,8) � 1.7637×0.5 = 0.88185, ∀p ∈ [1.1729,1.45].

Case 3: p∈ [1.45,2] . Let GLn(R) denote the set of all nonsingular n×n matrices
of real number. Here we assume that A = (ai j)3×3 ∈GL3(R) and Ai j is the cofactor of
ai j , ∀i, j ∈ [3] . Let x1,x2,x3 be the column vectors of A and set yi = (A1i,A2i,A3i)T ,
∀i ∈ [3] . For p ∈ [1,] , put

gp(A) =
1

| detA | max{‖yi‖q‖1x1 +2x2 +3x3‖p | i∈ [3],1,2,3 ∈ {−1,1}}, (2)

where q is the conjugate of p . By Lemma 5 in [13], dM
BM(�3

p, �
3
) � gp(A) . Set

A1 =

⎛
⎝ 1 −1.71 1.71
−1.71 1 1.71
1.71 1.71 1

⎞
⎠ and A2 =

⎛
⎝ 17 −32.9 32.9
−32.9 17 32.9
32.9 32.9 17

⎞
⎠ .
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By (2), we have

dM
BM(�3

1.5, �
3
) � g1.5(A1) � 1.6732 and dM

BM(�3
1.9, �

3
) � g1.9(A2) � 1.7135.

By Theorem 2,

dM
BM(�3

1.5, �
3
p) = 3

1
p− 1

1.5 � 3
1

1.45− 1
1.5 � 1.0256, ∀p ∈ [1.45,1.5],

dM
BM(�3

1.5, �
3
p) = 3

1
1.5− 1

p � 3
1

1.5− 1
1.6 � 1.0468, ∀p ∈ [1.5,1.6],

dM
BM(�3

1.6, �
3
p) = 3

1
1.6− 1

p � 3
1

1.6− 1
1.7 � 1.0412, ∀p ∈ [1.6,1.7],

dM
BM(�3

1.7, �
3
p) = 3

1
1.7− 1

p � 3
1

1.7− 1
1.8 � 1.0366, ∀p ∈ [1.7,1.8],

dM
BM(�3

1.8, �
3
p) = 3

1
1.8− 1

p � 3
1

1.8− 1
1.9 � 1.0327, ∀p ∈ [1.8,1.9],

dM
BM(�3

1.9, �
3
p) = 3

1
1.9− 1

p � 3
1

1.9− 1
1.96 � 1.0179, ∀p ∈ [1.9,1.96],

dM
BM(�3

2, �
3
p) = 3

1
p− 1

2 � 3
1

1.96− 1
2 � 1.0113, ∀p ∈ [1.96,2].

It follows from Table 1 and the proof of Theorem 2 in [13] that

dM
BM(�3

p, �
3
) � dM

BM(�3
1.5, �

3
p) ·dM

BM(�3
1.5, �

3
) � 1.7161, ∀p ∈ [1.45,1.5],

dM
BM(�3

p, �
3
) � dM

BM(�3
1.5, �

3
p) ·dM

BM(�3
1.5, �

3
) � 1.7516, ∀p ∈ [1.5,1.6],

dM
BM(�3

p, �
3
) � dM

BM(�3
1.6, �

3
p) ·dM

BM(�3
1.6, �

3
) � 1.7451, ∀p ∈ [1.6,1.7],

dM
BM(�3

p, �
3
) � dM

BM(�3
1.7, �

3
p) ·dM

BM(�3
1.7, �

3
) � 1.7588, ∀p ∈ [1.7,1.8],

dM
BM(�3

p, �
3
) � dM

BM(�3
1.8, �

3
p) ·dM

BM(�3
1.8, �

3
) � 1.7529, ∀p ∈ [1.8,1.9],

dM
BM(�3

p, �
3
) � dM

BM(�3
1.9, �

3
p) ·dM

BM(�3
1.9, �

3
) � 1.7442, ∀p ∈ [1.9,1.96],

dM
BM(�3

p, �
3
) � dM

BM(�3
2, �

3
p) ·dM

BM(�3
2, �

3
) � 1.7517, ∀p ∈ [1.96,2].

Thus dM
BM(�3

p, �
3
) � 1.7588 < 1.7637, ∀p ∈ [1.45,2] .

By Lemma 3 and Proposition 4 in [7], we have

 (�3
p,8) < 1.7637×0.5= 0.88185, ∀p ∈ [1.45,2]. �
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4. Borsuk’s problem in n -dimensional symmetric space

Let X be an n -dimensional real Banach space. If there exists a basis {ui | i ∈ [n]}
of X such that the equality ∥∥∥∥∥

i∈[n]
iiu(i)

∥∥∥∥∥= ‖x‖

holds for each x = i∈[n]iui , any set of numbers {i | |i| = 1, i ∈ [n]} , and any
permutation  of [n] , then X is said to be symmetric with the symmetric basis {ui | i ∈
[n]} .

Obviously, for each n -dimensional symmetric space X , there exists a norm ‖ · ‖
on R

n such that X is isometric to (Rn,‖ ·‖) and that the symmetric basis of R
n is also

a symmetric basis of (Rn,‖ · ‖) .
In the following, denote by {ei | i ∈ [n]} the natural basis of R

n . Set

 n = {(Rn,‖ · ‖) | (Rn,‖ · ‖) is symmetric with the natural basis {ei | i ∈ [n]}},

and, for any X ∈  n , let

(X) =

∥∥∥∥∥
i∈[n]

ei

∥∥∥∥∥ .

LEMMA 4. For any X ∈  n , we have

dM
BM(X , �n

) � (X).

Proof. First, we show that BX ⊆ Bn
 . Let x = i∈[n]iei ∈ BX . We only need to

show that i ∈ [−1,1] holds for all i ∈ [n] . Take 1 as an example. Since

‖1e1‖ =

∥∥∥∥∥1
2

(
1e1 +

n


i=2

iei

)
+

1
2

(
1e1 −

n


i=2

iei

)∥∥∥∥∥
� max

{∥∥∥∥∥1e1 +
n


i=2

iei

∥∥∥∥∥ ,

∥∥∥∥∥1e1−
n


i=2

iei

∥∥∥∥∥
}

= ‖x‖ � 1,

we have 1 ∈ [−1,1] . In a similar way, we can prove that i ∈ [−1,1] , ∀i = 2, · · · ,n .
Next, by the definition of (X) , we have (1/(X))Bn

 ⊆ BX . It follows that

1
(X)

Bn
 ⊆ BX ⊆ Bn

.

Thus dM
BM(X , �n

) � (X) . �

PROPOSITION 1. Let X ∈  n . If (X) < 2, then  (X ,2n) < 1.

Proof. It follows from Lemma 3, Lemma 4, and Proposition 4 in [7]. �
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LEMMA 5. For any X ∈  n , we have

dM
BM(X , �n

1) � n
(X)

.

Proof. The unit ball of �n
1 is

Bn
1 = conv{±ei | i ∈ [n]}.

Then Bn
1 ⊆ BX . Next we will show that BX ⊆ (n/(X))Bn

1 . It is sufficient to show that


i∈[n]

|i| � n
(X)

holds for each x = i∈[n]iei ∈ BX . By the symmetry of X , we only consider the case
when i � 0, i ∈ [n] .

The case when x = o is obvious. Suppose that x ∈ BX\{o} . Then there exists
i0 ∈ [n] such that i0 > 0. Let

i =
i


j∈[n]

 j
.

Then i � 0, ∀i ∈ [n] . Let

u1 = 1e1 + 2e2 + · · ·+ n−1en−1 + nen,

u2 = 2e1 + 3e2 + · · ·+ nen−1 + 1en,

u3 = 3e1 + 4e2 + · · ·+ nen−2 + 1en−1 + 2en,

· · ·
un = ne1 + 1e2 + · · ·+ n−2en−1 + n−1en.

Since {ei | i ∈ [n]} is a symmetric basis of X , we have ‖u1‖ = · · · = ‖un‖ . Note that

1
n 

i∈[n]
ui =

1
n

(

i∈[n]

i

)

i∈[n]

ei =
1
n 

i∈[n]
ei.

Then ∥∥∥∥∥1
n i∈[n]

ei

∥∥∥∥∥� 1
n i∈[n]

‖ui‖ = ‖u1‖ =

∥∥∥∥∥
i∈[n]

iei

∥∥∥∥∥ .

It follows that

1 �
∥∥∥∥∥

i∈[n]
iei

∥∥∥∥∥=

(

i∈[n]

i

)∥∥∥∥∥∥∥i∈[n]

i


i∈[n]

i
ei

∥∥∥∥∥∥∥
=

(

i∈[n]

i

)∥∥∥∥∥
i∈[n]

iei

∥∥∥∥∥
�
(

i∈[n]

i

)∥∥∥∥∥1
n 

i∈[n]
ei

∥∥∥∥∥=
(X)

n 
i∈[n]

i,
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from which the proof is complete. �

PROPOSITION 2. Let X ∈  3 . If (X) > 9/4, then  (X ,23) < 1.

Proof. It follows from Theorem 1, Lemma 3, and Lemma 5. �
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45.

[11] N. TOMCZAK-JAEGERMANN,Banach-Mazur Distances and Finite-dimensional Operator Ideals, Pit-
man Monographs and Surveys in Pure and Applied Mathematics, 38, Longman Scientific & Technical,
Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.

[12] L. YU AND C. ZONG, On the blocking number and the covering number of a convex body, Adv.
Geom. 9 (2009), 13–29.

[13] L. ZHANG, L. MENG, AND S. WU, Banach-Mazur distance from �3
p to �3

 , Math. Notes. 114 (2023),
1045–1051.

[14] C. ZONG, Borsuk’s partition conjecture, Jpn. J. Math. 16 (2021), 185–201.

(Received November 13, 2023) Xinling Zhang
School of Mathematics

Harbin Institute of Technology
Harbin, Heilongjiang, 150001, China

e-mail: zhangxinling2014@126.com

Chan He
School of Mathematics

North University of China
Taiyuan, Shanxi, 030051, China

e-mail: hechan@nuc.edu.cn

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


