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PARTITIONING BOUNDED SETS IN SYMMETRIC
SPACES INTO SUBSETS WITH REDUCED DIAMETER

XINLING ZHANG* AND CHAN HE

(Communicated by H. Martini)

Abstract. Borsuk’s problem on partitioning bounded sets into sets having smaller diameters is
considered. For each positive integer m and each n-dimensional Banach space X, let (X ,m)
be the infimum of § € (0, 1] such that each bounded set A C X with diameter 1 can be partitioned
into m subsets whose diameters are at most §. With the help of characterizations of complete
sets in €3, we prove that B(£3,8) < 0.75. By using the stability of B(X,m) with respect to X
in the sense of Banach-Mazur metric and estimations of the Banach-Mazur distance between (),
and (3, we show that ﬁ(f;, 8) < 0.88185 holds for each p € [1,o0]. This improves a recent result
of Y. Lian and S. Wu. Furthermore, we prove that 8(X,23) < 1 when X is a three-dimensional

Banach space symmetric with the natural basis {e; | i € [3]} and satisfies a(X) = | X & >
i€[3]
9/4.
1. Introduction
Let X = (R",]|-||) be an n-dimensional Banach space with origin o and unit ball

By, and A C X be a nonempty bounded set. Denote by 6(A) := sup{|[x—y|| | x,y € A}
the diameter of A. If x ¢ A = §(AU{x}) > 8(A), then A is said to be complete. If AC
is a complete set with diameter §(A) and containing A, then it is called a completion
of A. Note that AC is not unique in general. A compact convex set having interior
points is called a convex body. Let E" be the n-dimensional Euclidean space. Put
nl:={ieZ"|1<i<n},VneZ".

In 1933, K. Borsuk (cf. [3]) proposed the following problem:

PROBLEM 1. (Borsuk’s Problem). Is it true that every nonempty bounded set
A CE" can be divided into n+ 1 subsets Aj,As,---,A,4+1 such that 6(4;) < §(A),
Vie[n+1]?
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For n = 2, the affirmative answer was provided by K. Borsuk (cf. [3]). For n =3,
the affirmative answer was given by J. Perkal (cf. [10]) and H. G. Eggleston (cf. [4]).
For n > 64, the answer is negative (cf. [2], [5], and [6]). Up to now, the answer is not
clear for 4 <n < 63. See [14] for more information on this problem and a quantitative
program to attack it.

It is natural to consider Borsuk’s problem in a finite dimensional Banach space X .
For a bounded set A C X, let bx(A) be the smallest positive integer m such that A can
be divided into m subsets whose diameters are strictly smaller than §(A). We refer to
the book [1] for more information about Borsuk’s problem.

For a real number p > 1, ¢} denotes the space (R",[-[/,), where the p-norm
|-, of x=(ou,---,06,) € R" is defined by

1

;
HXHP = ||(a17"'7an)HP = (2 ‘ Qi 17) , Vp € [1,00)7
]

i€ln
and

[[x]le = [ (01, -+, 0tn) ||l o = max | & | .
i€[n]

Denote by B), the unit ball of £/,. Le., B = {x € R" | [|x]|, < 1}.
In 2009, L. Yu and C. Zong proved that b@n (A) < 2* holds for every nonempty

bounded set A and each p € [1,eo] (cf. [12]). In 2021, Y. Lian and S. Wu studied
Borsuk’s partition problem in finite dimensional Banach spaces by estimating

Br(A,m) = inf{ﬁmax{(‘i(Ak) (ke [m])|A= kUIAk}

for A € %", and
B(X,m)= Sup{ﬁx(AJn) |A € %n},
where " = {A C X | A is bounded and §(A) > 0}. They showed that (cf. [7])
3
B(£3,8) <0.925, Wp e [1,e0].

Later, L. Zhang, L. Meng, and S. Wu (cf. [13]) improved this estimation by showing
that
B(£3,8) <09, Vp e [1,e0].

We will improve this estimation in Section 3 with the help of the following theorem,
which is proved in Section 2.

THEOREM 1. For every complete set K with §(K) =2 in (3, we have

3

Moreover,
B(61,8) <

I
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In section 4, we show that 8(X,23%) < 1 when X is a three-dimensional Banach space
symmetric with {e; | i € [3]} and satisfies a(X) > 9/4, where {e; | i € [3]} is the

natural basis and a(X) = || ¥ eil.
i€[3]

2. Partitions of complete sets in E%

For a convex body K, the closed set ¥ between two parallel supporting hyper-
planes H and H’ of K is called a supporting slab of K. The distance between H and
H' is called the width of Z. Let M be another convex body and X be a supporting
slab of K. If the union of the bounding hyperplanes of the supporting slab of M that is
parallel to X contains a smooth boundary point of M, then X is said to be M -regular.
The following lemma proved by J. P. Moreno and R. Schneider is critical for the proof
of Theorem 1.

LEMMA 1. ([9]) Let Xy,---,%Z be the By -regular supporting slabs of the poly-
hedral unit ball Bx . Each complete set K with diameter 2 is of the form

K= (Zi+ti)

-

i=1

with t; € R", Vi € [k].
For vectors u € R"\{o} and 7 € R, we write
H(u,7) = {x € R"| {x,u) = T},

H'(u,7):={xeR"| (x,u) > 7}, and H (u,7):={xeR"| (x,u) < 1},

where (-,-) is the scalar product.

The unit ball B} of £; is a regular octahedron whose vertices are £(0,0,1),
+(1,0,0), and £(0,1,0). Clearly, +u; = +(1,1,1), fup, = =(—1,1,1), tuz =
+(1,—1,1),and fuy = +(—1,—1,1) are the outer normal vectors of the facets of B;.
Therefore, the B? -regular supporting slabs of B? are 2, X, X3, 24, where, for each
i € [4], Z; is the slab bounded by H(u;,1) and H(u;,—1). After applying a suitable
translation if necessary, every complete set in K? with diameter 2 has the form

P(o) =2 NE3NZN (21 + ouy)
= (B?USil)ﬁ(Zl +O£u1)
= (B? N (21 + OCul)) U (S:H n (21 + O(ul)),
where S; = conv((B} NH (u1,1))U{u1}), Sy = —Si, and | o [< 2/3.

It is not difficult to verify that P(0) = B}, S; = P(2/3), and S_; = P(—2/3).
These sets are all complete (the completeness of S| follows from Claim 1 in [8]).
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LEMMA 2. Let T be the regular tetrahedron in E% with vertices

1 1 1 1 1 1
Vi < 5 27 2)7 V2 ( 25 ) 2)7 V3 ( 2a 2a )a V4 ( [ )

Then T can be divided into five parts whose diameters are 3/2.

Proof. Denote the points

C:V1+V4: 111 C:V2+V4: 111

1 2 7474 ’ 2 ) 4774 )
ot (1LY w111
3= ) - 4’4’ ) 1= ) - 2'4°4 )

d:V1+V3: 111 d:VH'Vz: 11
2 ) 4’ 2'4)° 3 > 4’4 2)°

and the sets

Ay :COHV{V17C17d2,d3}, Ar :COHV{V27C27d1,d3},
Az =conv{vs,c3,d1,dy}, A4 =conv{vy,cy,cz,c3},
A5 :COHV{Cl,Cz,C3,d1,d2,d3}.

Then T = Ujc5)A;, and

30
4y =max{Ivi—ail, mux (b= djlla—alh) | =3, i<p

J€B\}
. . 3
6(Aq) = max{max{[|jvs —¢;ll1 | j € B]} max{lle; —ejlli [ 4./ € [3]}} = 5,
3
5(As) = ma[?;]{HCi—CjHl, ldi = djllv, llei = djlli} = 5.

This means that A can be divided into five parts whose diameters are 3/2. O

COROLLARY 1. ﬁ@ (P(1/3),5) < 3/4.

Proof. 1t follows from Lemma 2 and the fact that P(1/3) is contained in the reg-
ular tetrahedron with vertices vy,v,,v3,v4 asin Lemma?2. [

Proof of Theorem 1. Let K be a complete set in £ with §(K) =2. As above, we
may assume that K has the following form:

Plo) =2NZNZNE +ou), |al<2/3.

We show that ﬁq (P(x),8) <3/4,Ya €[0,2/3]. The case when o € [—2/3,0] can be
proved in a similar way. We consider the following two cases.
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Case 1: If a € [0,1/3), then P(o) = AUB, where
A=P(a)NH*(u1,0), and B=P(a)NH (uy,0).

Notice that A is contained in the regular tetrahedron 7 defined in Lemma 2. Thus A
can be divided into five parts whose diameters are 3/2.

The bounding hyperplanes of the slab X; + ou; are H(uy,300— 1) and H(uy, 1 +
30). Itis clear that B} NH(u;,3c— 1) is a convex hexagon with vertices

3 3 3 3 3 3
a1—<07§a—1,§a>7 a2—<§a,§a—l,0>, a3—<§a707§a—1>7
3 3 3 3 3 3
=(0,2a,2a—1 =(Z2a-1,2 =(Za-1,02a].
as (0,2a,2a ), as (205 ,205,0), ag <2a ,O,za)

The intersection of H(u1,300 — 1) and the segment between o and —u; is o' = (o —
1/3,a—1/3,a—1/3). Note that B NH (u;,0) is also a convex hexagon which vertices

are
a=(042). = (320). wm(lnd)
039w (00) ne(20d)
Let
Vi= {al,az’m—;aé’az—;a3,0,’0’bl’b2’b11—b6,b2—;b3},
Vo = {a3,a4702—;a37a4—£a5,0,707b37b47bz-gbg’bé;—;bS}’

and B; be the polyhedron with V; as the set of vertices, i € [3]. Then B= B;UB,UBj3,
and

ar+ag ay+tas 3

O(By) = max{|x—yli | x,y eV} = — 5 || T
1

ar+az as+as 3

3(Bz) = max{[x—yl1|x,y € Va} = —H T || T
1

as+as ar+ae 3

3(B3) = max{|x—y[1|x,y € V3} = 5 T2 || T 73
1

Thus P(a) can be divided into eight parts whose diameters are 3/2. Hence

3

Ba(P().8) < 3
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holds for every o € [0,1/3).

Case2: If oo € [1/3,2/3], then, since 30t —1 >0, P(ct) is completely contained in
the regular tetrahedron 7' defined in Lemma 2, which means that P(ct) can be divided
into five parts of diameters 3/2. Thus

B (P(e),8) < B (P(0),5) <

holds for each o € [1/3,2/3].
By Proposition 1 in [7], we have

I

B(£1.8) <

This completes the proof. [l

3. An estimation of ﬁ(ﬁ;,8)

The (multiplicative) Banach-Mazur distance between two isomorphic Banach spa-
ces X and Y is defined by

d¥ (X, Y) =inf{|T||-|T~'||| T : X — Y is an isomorphism}.
Moreover, if X, Y, and Z are isomorphic Banach spaces, then
dg/[M(XvY) < dg/[M(XvZ) 'délM(Z7Y)7

see [11]. In this section, we use estimations of the Banach-Mazur distance between EZ
and £y and the stability of (X ,m) with respect to X in the sense of Banach-Mazur

distance to get an estimation of 3 (613,, 8).

LEMMA 3. ([7]) If X = (R, || |lx) and Y = (R",|| - ||y) are two Banach spaces
satisfying d¥,(X,Y) <y for some y > 1, then

B(X,m) <yB(Y,m),Ym e Z .

THEOREM 2. ([11]) Let n be a positive integer and 1 < p,q < oo.

==
-

e If1<p,g<2or2<p,q<oo,then dg’IM(Q’,,KZ) =n

<p <2< g<oo, then yn* < dg’IM(Q’,,KZ) < nn%*, where o = max{% -

— é}, and y and 1 are universal constants.

1
From Theorem 2, it follows that dg’[M(ﬁz,EZ’o) =nr,Vp € [2,0].
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THEOREM 3. For p € [1,e], B(£;,8) < 0.88185.

Proof. We distinguish three cases.

Case 1: p € [1,1.1729]. By Theorem 2,
A, (6,65) =375 <31 < 11758, Vp e [1,1.1729].
By Theorem | and Lemma 3, we have

B(£;,8) < 1.1758 x 0.75=0.88185, Vp € [1,1.1729].

Case 2: p € [1.1729,1.45]. By the proof of Lemma 14 in [7],

bz

M (3 3 1 Ju
dBM(Ep,foo)é (2+4p),,_(2,3,,,1 +l) P, VpE(LZ}. (1)

10
For p € (1,2], set

f(p) =In(2+47)+ (p— 1)1n(2-3l’_ff +1),

r(p) = f(p)/p. and w(p) = pf'(p) — f(p). We have ¥'(p) =w(p)/p* and w'(p) =
pf"(p). By the proof of Lemma 8 in [13], w(p) is strictly increasing on (1,2].

Meanwhile, since w(1.1729) < 0 and w(1.45) > 0, there exists a unique point py €
(1.1729,1.45) such that w(pg) = 0. Therefore, ' (p) < 0 for p € [1.1729, po] and
¥ (p) > 0 for p € [po,1.45]. Hence r(p) decreases on [1.1729, po] and increases on
[po,1.45]. Since 2.8682 ~ r(1.45) < r(1.1729) ~2.8700, we have r(p) < r(1.1729) ~
2.8700, Vp € [1.1729,1.45]. By (1),

r(p) er(l.l729)
10~ 10

By Lemma 3 and Proposition 4 in [7], we have

A (3,03) < € < 1.7637.

B(£3,8) < 1.7637 x 0.5=0.88185, Vp € [1.1729,1.45].

Case 3: p € [1.45,2]. Let GL,(R) denote the set of all nonsingular n x n matrices
of real number. Here we assume that A = (a;;)3x3 € GL3(R) and A;; is the cofactor of
aij, Vi, j € [3]. Let x1,x2,x3 be the column vectors of A and set y; = (A1;,A2,A3)T,
Vi € [3]. For p € [1,°°], put

gp(A) max{||yill4||o1x1 + O2x2 + 0333 | i € [3], 01,02, 03 € {1, 1}}, (2)

1
| detA |
where ¢ is the conjugate of p. By Lemma 5 in [13], dng(ef,,ei) < gp(A). Set

1 —1.711.71 17 -329329
Aj=1-171 1 171 and Ay =|-329 17 329
.71 1.71 1 329 329 17
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By (2), we have
A6 5, 3) < g15(A1) < 1.6732 and d¥, (03 4,02) < g19(A2) < 1.7135.

By Theorem 2,

L1

Ay (B3 5,03) =377T5 <3115 < 10256, Vp € [1.45,1.5),

dl]g[M(gi’.Svgi) = 3%

<=
N
w

J'\

< 1.0468, Vp € [1.5,1.6],

dM (3 By —3T6 b < 3T6 17

BM(€1.67€P) =316 »p <3l-6 L7 S 10412, VpE [16,17],
1

(63 5,03) = 31770 < 317715 < 1.0366, Vp € [1.7,1.8],
1 1

A (15, 03) = 37577 < 315719 < 1.0327, Vp e [1.8,1.9],

11

1 1
i (6 9,05) =3T977 <3197 1% < 1.0179, Vp € [1.9,1.96),

1

<3162 < 1.0113, Vp € [1.96,2].

=
Bl—

di (63, 6) =3
It follows from Table 1 and the proof of Theorem 2 in [13] that

i (0, 02) < dighy (63 5,0) - dighy (03 5.02) < 17161, Vp € [1.45,1.5],
A (65, 6) < dihy (63 5,6) - dighy (03 5,62) < 17516, Vp € [1.5,1.6],
ding (0, 02) < digyy (07 6,0) - digyy (07 6,02) < 17451, Vp € [1.6,1.7],
iy (03 02) < dihy (63 7,03) - diy (63 7,02) < 17588, Vp € [1.7,1.8],
dig(65,62) < gy (61 5,65) - iy (05, 42.) < 17529, Vp € [1.8,1.9],
g (6,02) < digy (63 9,0 - digy (03 9, £2) < 17442, Vp € [1.9,1.96],

Thus dy), (03,63) < 1.7588 < 1.7637, Vp € [1.45,2].
By Lemma 3 and Proposition 4 in [7], we have

B(£3,8) < 17637 x 0.5=0.88185, Vp € [1.45,2]. O



PARTITIONING BOUNDED SETS IN SYMMETRIC SPACES 711

4. Borsuk’s problem in n-dimensional symmetric space

Let X be an n-dimensional real Banach space. If there exists a basis {u; | i € [n]}
of X such that the equality

= [l

2. Ol

i€n]

holds for each x = ¥, Qiu;, any set of numbers {0; | |0;| = 1, i € [n]}, and any
permutation 7 of [n], then X is said to be symmetric with the symmetric basis {u; | i €

[}

Obviously, for each n-dimensional symmetric space X, there exists a norm || - ||
on R” such that X is isometric to (R", || - ||) and that the symmetric basis of R” is also
a symmetric basis of (R, ||-]).

In the following, denote by {e; | i € [n]} the natural basis of R”. Set
" ={@®R" -1 | (R™]|-]|) is symmetric with the natural basis {e; | i € [n]}},
and, for any X € ", let

o(X) =

2 éill -
i€[n

]

LEMMA 4. Forany X € {", we have

A (X, 0%) < a(X).

Proof. First, we show that By C BZ. Let x = Eie[n] aje; € Bx. We only need to
show that o; € [—1,1] holds for all i € [n]. Take «; as an example. Since

1 < 1 <
oner|| =5 | cwer+ Y ohe; | + = | cwer — Y, cuei
2 i=2 2 i=2

<maX{ }=||x<17

we have o € [—1,1]. In a similar way, we can prove that ¢o; € [—1,1], Vi=2,---,n.
Next, by the definition of a(X), we have (1/0/(X))B% C By . It follows that

n
oeq + 2 o,e;
i=2

)

n
ajer — Z aie;
i=2

1
———B!, CBx CB.L.
OC(X) o = DX = Do

Thus d¥,(X,00) < a(X). O

PROPOSITION 1. Let X € {". If a(X) < 2, then B(X,2") < 1.

Proof. Tt follows from Lemma 3, Lemma 4, and Proposition 4 in [7]. U
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LEMMA 5. Forany X € {", we have
n

a(X)

Proof. The unit ball of /] is
B = conv{+te; | i€ [n]}.
Then B} C By . Next we will show that By C (n/ct(X))BY. It is sufficient to show that

=n o(X)

holds for each x = ¥, (, 0iie; € Bx. By the symmetry of X, we only consider the case
when o; >0, i € [n].
The case when x = o is obvious. Suppose that x € Bx\{o}. Then there exists
io € [n] such that o, > 0. Let
(07
Y oo

el

'}/l-:

Then y; >0, Vi € [n]. Let

uy =ver+yer+- -+ ¥o-1€n—1+ ¥Yuen,
Uy =Yre1+yzer+ -+ Yn€u—1+Yien,
uz =Yyey| +Yyaser + -+ Yuep—2 + Yien—1 + Vaen,

Up = Yoe1+Yie2+ -+ VYon—2en—1+Yn—1€n.

Since {e; | i € [n]} is a symmetric basis of X, we have ||u;|| = --- = ||uy,||. Note that
1 1 1
—214,-2—(2)/,-) Zei:—Zei.
i) "\l / ie) =
Then
1 1
Y| <o 3l =l =|| 3 ]
i€[n] i€(n] i€(n]

It follows that

1>

Z o,e;

i€n]

-(Z)

(2ol
i€n] e

a.
= Z%‘) Z l €
(EM] iy 2 O

2 Yiei

i€n]

= OC(X) 2 o,

e
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from which the proof is complete. [J

PROPOSITION 2. Let X € 3. If o(X) > 9/4, then B(X,2%) < 1.

Proof. Tt follows from Theorem 1, Lemma 3, and Lemma 5. [J
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