PARTITIONING BOUNDED SETS IN SYMMETRIC SPACES INTO SUBSETS WITH REDUCED DIAMETER

XINLING ZHANG* AND CHAN HE

(Communicated by H. Martini)

Abstract. Borsuk's problem on partitioning bounded sets into sets having smaller diameters is considered. For each positive integer *m* and each *n*-dimensional Banach space *X*, let $\beta(X,m)$ be the infimum of $\delta \in (0,1]$ such that each bounded set $A \subseteq X$ with diameter 1 can be partitioned into *m* subsets whose diameters are at most δ . With the help of characterizations of complete sets in ℓ_1^3 , we prove that $\beta(\ell_1^3, 8) \leq 0.75$. By using the stability of $\beta(X,m)$ with respect to *X* in the sense of Banach-Mazur metric and estimations of the Banach-Mazur distance between ℓ_p^n and ℓ_q^n , we show that $\beta(\ell_p^3, 8) \leq 0.88185$ holds for each $p \in [1, \infty]$. This improves a recent result of Y. Lian and S. Wu. Furthermore, we prove that $\beta(X, 2^3) < 1$ when X is a three-dimensional

Banach space symmetric with the natural basis $\{e_i \mid i \in [3]\}$ and satisfies $\alpha(X) = \left\|\sum_{i \in [3]} e_i\right\| > 0$

9/4.

1. Introduction

Let $X = (\mathbb{R}^n, \|\cdot\|)$ be an *n*-dimensional Banach space with *origin o* and *unit ball* B_X , and $A \subseteq X$ be a nonempty bounded set. Denote by $\delta(A) := \sup\{\|x-y\| \mid x, y \in A\}$ the *diameter* of A. If $x \notin A \Rightarrow \delta(A \cup \{x\}) > \delta(A)$, then A is said to be *complete*. If A^C is a complete set with diameter $\delta(A)$ and containing A, then it is called a *completion* of A. Note that A^C is not unique in general. A compact convex set having interior points is called a *convex body*. Let \mathbb{E}^n be the *n*-dimensional Euclidean space. Put $[n] := \{i \in \mathbb{Z}^+ \mid 1 \leq i \leq n\}, \forall n \in \mathbb{Z}^+$.

In 1933, K. Borsuk (cf. [3]) proposed the following problem:

PROBLEM 1. (Borsuk's Problem). Is it true that every nonempty bounded set $A \subseteq \mathbb{E}^n$ can be divided into n+1 subsets A_1, A_2, \dots, A_{n+1} such that $\delta(A_i) < \delta(A)$, $\forall i \in [n+1]$?

Keywords and phrases: Banach-Mazur distance, Borsuk's partition problem, complete set, ℓ_p^n space.

This research was funded by the National Natural Science Foundation of China (grant numbers 12071444 and 12201581) and the Fundamental Research Program of Shanxi Province of China (grant number 202103021223191).

* Corresponding author.

Mathematics subject classification (2020): 46B20, 46B04.

For n = 2, the affirmative answer was provided by K. Borsuk (cf. [3]). For n = 3, the affirmative answer was given by J. Perkal (cf. [10]) and H. G. Eggleston (cf. [4]). For $n \ge 64$, the answer is negative (cf. [2], [5], and [6]). Up to now, the answer is not clear for $4 \le n \le 63$. See [14] for more information on this problem and a quantitative program to attack it.

It is natural to consider Borsuk's problem in a finite dimensional Banach space X. For a bounded set $A \subseteq X$, let $b_X(A)$ be the smallest positive integer m such that A can be divided into m subsets whose diameters are strictly smaller than $\delta(A)$. We refer to the book [1] for more information about Borsuk's problem.

For a real number $p \ge 1$, ℓ_p^n denotes the space $(\mathbb{R}^n, \|\cdot\|_p)$, where the *p*-norm $\|\cdot\|_p$ of $x = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ is defined by

$$||x||_p = ||(\alpha_1, \dots, \alpha_n)||_p = \left(\sum_{i \in [n]} |\alpha_i|^p\right)^{\frac{1}{p}}, \ \forall p \in [1, \infty),$$

and

$$\|x\|_{\infty} = \|(\alpha_1, \cdots, \alpha_n)\|_{\infty} = \max_{i \in [n]} |\alpha_i|.$$

Denote by B_p^n the unit ball of ℓ_p^n . I.e., $B_p^n = \{x \in \mathbb{R}^n \mid ||x||_p \leq 1\}$.

In 2009, L. Yu and C. Zong proved that $b_{\ell_p^3}(A) \leq 2^3$ holds for every nonempty bounded set A and each $p \in [1, \infty]$ (cf. [12]). In 2021, Y. Lian and S. Wu studied Borsuk's partition problem in finite dimensional Banach spaces by estimating

$$\beta_X(A,m) = \inf\left\{\frac{1}{\delta(A)}\max\{\delta(A_k) \mid k \in [m]\} \mid A = \bigcup_{k=1}^m A_k\right\}$$

for $A \in \mathscr{B}^n$, and

$$\beta(X,m) = \sup\{\beta_X(A,m) \mid A \in \mathscr{B}^n\},\$$

where $\mathscr{B}^n = \{A \subseteq X \mid A \text{ is bounded and } \delta(A) > 0\}$. They showed that (cf. [7])

 $\beta(\ell_p^3, 8) \leqslant 0.925, \forall p \in [1, \infty].$

Later, L. Zhang, L. Meng, and S. Wu (cf. [13]) improved this estimation by showing that

$$\beta(\ell_p^3, 8) \leqslant 0.9, \ \forall p \in [1, \infty].$$

We will improve this estimation in Section 3 with the help of the following theorem, which is proved in Section 2.

THEOREM 1. For every complete set K with $\delta(K) = 2$ in ℓ_1^3 , we have

$$\beta_{\ell_1^3}(K,8) \leqslant \frac{3}{4}.$$

Moreover,

$$\beta(\ell_1^3,8)\leqslant \frac{3}{4}.$$

In section 4, we show that $\beta(X, 2^3) < 1$ when X is a three-dimensional Banach space symmetric with $\{e_i \mid i \in [3]\}$ and satisfies $\alpha(X) > 9/4$, where $\{e_i \mid i \in [3]\}$ is the natural basis and $\alpha(X) = \left\|\sum_{i \in [3]} e_i\right\|$.

2. Partitions of complete sets in ℓ_1^3

For a convex body K, the closed set Σ between two parallel supporting hyperplanes H and H' of K is called a *supporting slab* of K. The distance between H and H' is called the *width of* Σ . Let M be another convex body and Σ be a supporting slab of K. If the union of the bounding hyperplanes of the supporting slab of M that is parallel to Σ contains a smooth boundary point of M, then Σ is said to be M-regular. The following lemma proved by J. P. Moreno and R. Schneider is critical for the proof of Theorem 1.

LEMMA 1. ([9]) Let $\Sigma_1, \dots, \Sigma_k$ be the B_X -regular supporting slabs of the polyhedral unit ball B_X . Each complete set K with diameter 2 is of the form

$$K = \bigcap_{i=1}^{k} \left(\Sigma_i + t_i \right)$$

with $t_i \in \mathbb{R}^n$, $\forall i \in [k]$.

For vectors $u \in \mathbb{R}^n \setminus \{o\}$ and $\tau \in \mathbb{R}$, we write

$$H(u,\tau) := \{ x \in \mathbb{R}^n \mid \langle x, u \rangle = \tau \},\$$

 $H^+(u,\tau):=\{x\in\mathbb{R}^n\mid \langle x,u\rangle \geqslant \tau\}, \text{ and } H^-(u,\tau):=\{x\in\mathbb{R}^n\mid \langle x,u\rangle\leqslant \tau\},$

where $\langle \cdot, \cdot \rangle$ is the scalar product.

The unit ball B_1^3 of ℓ_1^3 is a regular octahedron whose vertices are $\pm(0,0,1)$, $\pm(1,0,0)$, and $\pm(0,1,0)$. Clearly, $\pm u_1 = \pm(1,1,1)$, $\pm u_2 = \pm(-1,1,1)$, $\pm u_3 = \pm(1,-1,1)$, and $\pm u_4 = \pm(-1,-1,1)$ are the outer normal vectors of the facets of B_1^3 . Therefore, the B_1^3 -regular supporting slabs of B_1^3 are Σ_1 , Σ_2 , Σ_3 , Σ_4 , where, for each $i \in [4]$, Σ_i is the slab bounded by $H(u_i, 1)$ and $H(u_i, -1)$. After applying a suitable translation if necessary, every complete set in ℓ_1^3 with diameter 2 has the form

$$P(\alpha) = \Sigma_2 \cap \Sigma_3 \cap \Sigma_4 \cap (\Sigma_1 + \alpha u_1)$$

= $(B_1^3 \cup S_{\pm 1}) \cap (\Sigma_1 + \alpha u_1)$
= $(B_1^3 \cap (\Sigma_1 + \alpha u_1)) \cup (S_{\pm 1} \cap (\Sigma_1 + \alpha u_1)),$

where $S_1 = \operatorname{conv}((B_1^3 \cap H(u_1, 1)) \cup \{u_1\}), S_{-1} = -S_1, \text{ and } |\alpha| \leq 2/3.$

It is not difficult to verify that $P(0) = B_1^3$, $S_1 = P(2/3)$, and $S_{-1} = P(-2/3)$. These sets are all complete (the completeness of $S_{\pm 1}$ follows from Claim 1 in [8]). LEMMA 2. Let T be the regular tetrahedron in ℓ_1^3 with vertices

$$v_1 = \left(1, -\frac{1}{2}, -\frac{1}{2}\right), \quad v_2 = \left(-\frac{1}{2}, 1, -\frac{1}{2}\right), \quad v_3 = \left(-\frac{1}{2}, -\frac{1}{2}, 1\right), \quad v_4 = (1, 1, 1).$$

Then T can be divided into five parts whose diameters are 3/2.

Proof. Denote the points

$$c_{1} = \frac{v_{1} + v_{4}}{2} = \left(1, \frac{1}{4}, \frac{1}{4}\right), \quad c_{2} = \frac{v_{2} + v_{4}}{2} = \left(\frac{1}{4}, 1, \frac{1}{4}\right),$$

$$c_{3} = \frac{v_{3} + v_{4}}{2} = \left(\frac{1}{4}, \frac{1}{4}, 1\right), \quad d_{1} = \frac{v_{2} + v_{3}}{2} = \left(-\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right),$$

$$d_{2} = \frac{v_{1} + v_{3}}{2} = \left(\frac{1}{4}, -\frac{1}{2}, \frac{1}{4}\right), \quad d_{3} = \frac{v_{1} + v_{2}}{2} = \left(\frac{1}{4}, \frac{1}{4}, -\frac{1}{2}\right),$$

and the sets

$$A_{1} = \operatorname{conv}\{v_{1}, c_{1}, d_{2}, d_{3}\}, \quad A_{2} = \operatorname{conv}\{v_{2}, c_{2}, d_{1}, d_{3}\}, \\ A_{3} = \operatorname{conv}\{v_{3}, c_{3}, d_{1}, d_{2}\}, \quad A_{4} = \operatorname{conv}\{v_{4}, c_{1}, c_{2}, c_{3}\}, \\ A_{5} = \operatorname{conv}\{c_{1}, c_{2}, c_{3}, d_{1}, d_{2}, d_{3}\}.$$

Then $T = \bigcup_{i \in [5]} A_i$, and

$$\delta(A_i) = \max\left\{ \|v_i - c_i\|_1, \max_{j \in [3] \setminus \{i\}} \{\|v_i - d_j\|_1, \|c_i - d_j\|_1\} \right\} = \frac{3}{2}, \quad i \in [3],$$

$$\delta(A_4) = \max\{\max\{\|v_4 - c_j\|_1 \mid j \in [3]\}, \max\{\|c_i - c_j\|_1 \mid i, j \in [3]\}\} = \frac{3}{2},$$

$$\delta(A_5) = \max_{i,j \in [3]} \{\|c_i - c_j\|_1, \|d_i - d_j\|_1, \|c_i - d_j\|_1\} = \frac{3}{2}.$$

This means that A can be divided into five parts whose diameters are 3/2. \Box

Corollary 1. $\beta_{\ell_1^3}(P(1/3),5) \leq 3/4.$

Proof. It follows from Lemma 2 and the fact that P(1/3) is contained in the regular tetrahedron with vertices v_1, v_2, v_3, v_4 as in Lemma 2.

Proof of Theorem 1. Let *K* be a complete set in ℓ_1^3 with $\delta(K) = 2$. As above, we may assume that *K* has the following form:

$$P(\alpha) = \Sigma_2 \cap \Sigma_3 \cap \Sigma_4 \cap (\Sigma_1 + \alpha u_1), \ | \alpha | \leq 2/3.$$

We show that $\beta_{\ell_1^3}(P(\alpha), 8) \leq 3/4$, $\forall \alpha \in [0, 2/3]$. The case when $\alpha \in [-2/3, 0]$ can be proved in a similar way. We consider the following two cases.

Case 1: If $\alpha \in [0, 1/3)$, then $P(\alpha) = A \cup B$, where

$$A = P(\alpha) \cap H^+(u_1, 0), \text{ and } B = P(\alpha) \cap H^-(u_1, 0).$$

Notice that A is contained in the regular tetrahedron T defined in Lemma 2. Thus A can be divided into five parts whose diameters are 3/2.

The bounding hyperplanes of the slab $\Sigma_1 + \alpha u_1$ are $H(u_1, 3\alpha - 1)$ and $H(u_1, 1 + 3\alpha)$. It is clear that $B_1^3 \cap H(u_1, 3\alpha - 1)$ is a convex hexagon with vertices

$$a_{1} = \left(0, \frac{3}{2}\alpha - 1, \frac{3}{2}\alpha\right), \quad a_{2} = \left(\frac{3}{2}\alpha, \frac{3}{2}\alpha - 1, 0\right), \quad a_{3} = \left(\frac{3}{2}\alpha, 0, \frac{3}{2}\alpha - 1\right), \\ a_{4} = \left(0, \frac{3}{2}\alpha, \frac{3}{2}\alpha - 1\right), \quad a_{5} = \left(\frac{3}{2}\alpha - 1, \frac{3}{2}\alpha, 0\right), \quad a_{6} = \left(\frac{3}{2}\alpha - 1, 0, \frac{3}{2}\alpha\right).$$

The intersection of $H(u_1, 3\alpha - 1)$ and the segment between o and $-u_1$ is $o' = (\alpha - 1/3, \alpha - 1/3, \alpha - 1/3)$. Note that $B_1^3 \cap H(u_1, 0)$ is also a convex hexagon which vertices are

$$b_1 = \left(0, -\frac{1}{2}, \frac{1}{2}\right), \quad b_2 = \left(\frac{1}{2}, -\frac{1}{2}, 0\right), \quad b_3 = \left(\frac{1}{2}, 0, -\frac{1}{2}\right), \\ b_4 = \left(0, \frac{1}{2}, -\frac{1}{2}\right), \quad b_5 = \left(-\frac{1}{2}, \frac{1}{2}, 0\right), \quad b_6 = \left(-\frac{1}{2}, 0, \frac{1}{2}\right).$$

Let

$$\begin{split} V_1 &= \left\{ a_1, a_2, \frac{a_1 + a_6}{2}, \frac{a_2 + a_3}{2}, o', o, b_1, b_2, \frac{b_1 + b_6}{2}, \frac{b_2 + b_3}{2} \right\}, \\ V_2 &= \left\{ a_3, a_4, \frac{a_2 + a_3}{2}, \frac{a_4 + a_5}{2}, o', o, b_3, b_4, \frac{b_2 + b_3}{2}, \frac{b_4 + b_5}{2} \right\}, \\ V_3 &= \left\{ a_5, a_6, \frac{a_4 + a_5}{2}, \frac{a_1 + a_6}{2}, o', o, b_5, b_6, \frac{b_4 + b_5}{2}, \frac{b_1 + b_6}{2} \right\}, \end{split}$$

and B_i be the polyhedron with V_i as the set of vertices, $i \in [3]$. Then $B = B_1 \cup B_2 \cup B_3$, and

$$\delta(B_1) = \max\{\|x - y\|_1 \mid x, y \in V_1\} = \left\|\frac{a_1 + a_6}{2} - \frac{a_2 + a_3}{2}\right\|_1 = \frac{3}{2}$$

$$\delta(B_2) = \max\{\|x - y\|_1 \mid x, y \in V_2\} = \left\|\frac{a_2 + a_3}{2} - \frac{a_4 + a_5}{2}\right\|_1 = \frac{3}{2}$$

$$\delta(B_3) = \max\{\|x - y\|_1 \mid x, y \in V_3\} = \left\|\frac{a_4 + a_5}{2} - \frac{a_1 + a_6}{2}\right\|_1 = \frac{3}{2}$$

Thus $P(\alpha)$ can be divided into eight parts whose diameters are 3/2. Hence

$$\beta_{\ell_1^3}(P(\alpha), 8) \leqslant \frac{3}{4}$$

holds for every $\alpha \in [0, 1/3)$.

Case 2: If $\alpha \in [1/3, 2/3]$, then, since $3\alpha - 1 > 0$, $P(\alpha)$ is completely contained in the regular tetrahedron *T* defined in Lemma 2, which means that $P(\alpha)$ can be divided into five parts of diameters 3/2. Thus

$$\beta_{\ell_1^3}(P(\alpha), 8) \leqslant \beta_{\ell_1^3}(P(\alpha), 5) \leqslant \frac{3}{4}$$

holds for each $\alpha \in [1/3, 2/3]$.

By Proposition 1 in [7], we have

$$\beta(\ell_1^3,8)\leqslant \frac{3}{4}.$$

This completes the proof. \Box

3. An estimation of $\beta(\ell_p^3, 8)$

The (multiplicative) Banach-Mazur distance between two isomorphic Banach spaces X and Y is defined by

$$d_{BM}^{M}(X,Y) = \inf\{\|T\| \cdot \|T^{-1}\| \mid T : X \to Y \text{ is an isomorphism}\}.$$

Moreover, if X, Y, and Z are isomorphic Banach spaces, then

$$d_{BM}^{M}(X,Y) \leqslant d_{BM}^{M}(X,Z) \cdot d_{BM}^{M}(Z,Y),$$

see [11]. In this section, we use estimations of the Banach-Mazur distance between ℓ_p^n and ℓ_q^n and the stability of $\beta(X,m)$ with respect to X in the sense of Banach-Mazur distance to get an estimation of $\beta(\ell_p^3, 8)$.

LEMMA 3. ([7]) If $X = (\mathbb{R}^n, \|\cdot\|_X)$ and $Y = (\mathbb{R}^n, \|\cdot\|_Y)$ are two Banach spaces satisfying $d_{BM}^M(X,Y) \leq \gamma$ for some $\gamma \geq 1$, then

$$\beta(X,m) \leq \gamma \beta(Y,m), \forall m \in \mathbb{Z}^+.$$

THEOREM 2. ([11]) Let *n* be a positive integer and $1 \le p, q \le \infty$.

- If $1 \leq p,q \leq 2$ or $2 \leq p,q \leq \infty$, then $d^M_{BM}(\ell^n_p,\ell^n_q) = n^{\frac{1}{p}-\frac{1}{q}}$.
- If $1 \leq p < 2 < q \leq \infty$, then $\gamma n^{\alpha} \leq d_{BM}^{M}(\ell_{p}^{n}, \ell_{q}^{n}) \leq \eta n^{\alpha}$, where $\alpha = \max\{\frac{1}{p} \frac{1}{2}, \frac{1}{2} \frac{1}{q}\}$, and γ and η are universal constants.

From Theorem 2, it follows that $d_{BM}^{M}(\ell_{p}^{n}, \ell_{\infty}^{n}) = n^{\frac{1}{p}}, \forall p \in [2, \infty].$

Theorem 3. For $p \in [1, \infty]$, $\beta(\ell_p^3, 8) \leq 0.88185$.

Proof. We distinguish three cases.

Case 1: $p \in [1, 1.1729]$. By Theorem 2,

$$d_{BM}^{M}(\ell_{1}^{3},\ell_{p}^{3}) = 3^{1-\frac{1}{p}} \leqslant 3^{1-\frac{1}{1.1729}} \leqslant 1.1758, \ \forall p \in [1,1.1729].$$

By Theorem 1 and Lemma 3, we have

$$eta(\ell_p^3, 8) \leqslant 1.1758 imes 0.75 = 0.88185, \ \forall p \in [1, 1.1729].$$

Case 2: $p \in [1.1729, 1.45]$. By the proof of Lemma 14 in [7],

$$d_{BM}^{M}(\ell_{p}^{3},\ell_{\infty}^{3}) \leqslant \frac{1}{10}(2+4^{p})^{\frac{1}{p}} \cdot (2\cdot 3^{\frac{p}{p-1}}+1)^{\frac{p-1}{p}}, \ \forall p \in (1,2].$$
(1)

For $p \in (1,2]$, set

$$f(p) = \ln(2+4^p) + (p-1)\ln\left(2\cdot 3^{\frac{p}{p-1}} + 1\right),$$

r(p) = f(p)/p, and w(p) = pf'(p) - f(p). We have $r'(p) = w(p)/p^2$ and w'(p) = pf''(p). By the proof of Lemma 8 in [13], w(p) is strictly increasing on (1,2]. Meanwhile, since w(1.1729) < 0 and w(1.45) > 0, there exists a unique point $p_0 \in (1.1729, 1.45)$ such that $w(p_0) = 0$. Therefore, $r'(p) \leq 0$ for $p \in [1.1729, p_0]$ and r'(p) > 0 for $p \in [p_0, 1.45]$. Hence r(p) decreases on $[1.1729, p_0]$ and increases on $[p_0, 1.45]$. Since $2.8682 \approx r(1.45) < r(1.1729) \approx 2.8700$, we have $r(p) \leq r(1.1729) \approx 2.8700$, $\forall p \in [1.1729, 1.45]$. By (1),

$$d_{BM}^{M}(\ell_{p}^{3},\ell_{\infty}^{3}) \leqslant \frac{e^{r(p)}}{10} \leqslant \frac{e^{r(1.1729)}}{10} \leqslant 1.7637.$$

By Lemma 3 and Proposition 4 in [7], we have

$$\beta(\ell_p^3, 8) \leq 1.7637 \times 0.5 = 0.88185, \ \forall p \in [1.1729, 1.45].$$

Case 3: $p \in [1.45, 2]$. Let $GL_n(\mathbb{R})$ denote the set of all nonsingular $n \times n$ matrices of real number. Here we assume that $A = (a_{ij})_{3\times 3} \in GL_3(\mathbb{R})$ and A_{ij} is the cofactor of $a_{ij}, \forall i, j \in [3]$. Let x_1, x_2, x_3 be the column vectors of A and set $y_i = (A_{1i}, A_{2i}, A_{3i})^T$, $\forall i \in [3]$. For $p \in [1, \infty]$, put

$$g_p(A) = \frac{1}{|\det A|} \max\{\|y_i\|_q \|\sigma_1 x_1 + \sigma_2 x_2 + \sigma_3 x_3\|_p | i \in [3], \sigma_1, \sigma_2, \sigma_3 \in \{-1, 1\}\}, (2)$$

where q is the conjugate of p. By Lemma 5 in [13], $d_{BM}^M(\ell_p^3, \ell_\infty^3) \leq g_p(A)$. Set

$$A_1 = \begin{pmatrix} 1 & -1.71 & 1.71 \\ -1.71 & 1 & 1.71 \\ 1.71 & 1.71 & 1 \end{pmatrix} \text{ and } A_2 = \begin{pmatrix} 17 & -32.9 & 32.9 \\ -32.9 & 17 & 32.9 \\ 32.9 & 32.9 & 17 \end{pmatrix}.$$

By (2), we have

 $d_{BM}^{M}(\ell_{1.5}^{3}, \ell_{\infty}^{3}) \leq g_{1.5}(A_{1}) \leq 1.6732$ and $d_{BM}^{M}(\ell_{1.9}^{3}, \ell_{\infty}^{3}) \leq g_{1.9}(A_{2}) \leq 1.7135$. By Theorem 2,

$$\begin{split} &d_{BM}^{M}(\ell_{1.5}^{3},\ell_{p}^{3})=3^{\frac{1}{p}-\frac{1}{1.5}}\leqslant 3^{\frac{1}{1.45}-\frac{1}{1.5}}\leqslant 1.0256, \ \forall p\in[1.45,1.5],\\ &d_{BM}^{M}(\ell_{1.5}^{3},\ell_{p}^{3})=3^{\frac{1}{1.5}-\frac{1}{p}}\leqslant 3^{\frac{1}{1.5}-\frac{1}{1.6}}\leqslant 1.0468, \ \forall p\in[1.5,1.6],\\ &d_{BM}^{M}(\ell_{1.6}^{3},\ell_{p}^{3})=3^{\frac{1}{1.6}-\frac{1}{p}}\leqslant 3^{\frac{1}{1.6}-\frac{1}{1.7}}\leqslant 1.0412, \ \forall p\in[1.6,1.7],\\ &d_{BM}^{M}(\ell_{1.7}^{3},\ell_{p}^{3})=3^{\frac{1}{1.7}-\frac{1}{p}}\leqslant 3^{\frac{1}{1.7}-\frac{1}{1.8}}\leqslant 1.0366, \ \forall p\in[1.7,1.8],\\ &d_{BM}^{M}(\ell_{1.8}^{3},\ell_{p}^{3})=3^{\frac{1}{1.8}-\frac{1}{p}}\leqslant 3^{\frac{1}{1.8}-\frac{1}{1.9}}\leqslant 1.0327, \ \forall p\in[1.8,1.9],\\ &d_{BM}^{M}(\ell_{1.9}^{3},\ell_{p}^{3})=3^{\frac{1}{1.9}-\frac{1}{p}}\leqslant 3^{\frac{1}{1.9}-\frac{1}{1.96}}\leqslant 1.0179, \ \forall p\in[1.9,1.96],\\ &d_{BM}^{M}(\ell_{2}^{3},\ell_{p}^{3})=3^{\frac{1}{p}-\frac{1}{2}}\leqslant 3^{\frac{1}{1.96}-\frac{1}{2}}\leqslant 1.0113, \ \forall p\in[1.96,2]. \end{split}$$

It follows from Table 1 and the proof of Theorem 2 in [13] that

$$\begin{split} &d_{BM}^{M}(\ell_{p}^{3},\ell_{\infty}^{3}) \leqslant d_{BM}^{M}(\ell_{1.5}^{3},\ell_{p}^{3}) \cdot d_{BM}^{M}(\ell_{1.5}^{3},\ell_{\infty}^{3}) \leqslant 1.7161, \ \forall p \in [1.45,1.5], \\ &d_{BM}^{M}(\ell_{p}^{3},\ell_{\infty}^{3}) \leqslant d_{BM}^{M}(\ell_{1.5}^{3},\ell_{p}^{3}) \cdot d_{BM}^{M}(\ell_{1.5}^{3},\ell_{\infty}^{3}) \leqslant 1.7516, \ \forall p \in [1.5,1.6], \\ &d_{BM}^{M}(\ell_{p}^{3},\ell_{\infty}^{3}) \leqslant d_{BM}^{M}(\ell_{1.6}^{3},\ell_{p}^{3}) \cdot d_{BM}^{M}(\ell_{1.5}^{3},\ell_{\infty}^{3}) \leqslant 1.7451, \ \forall p \in [1.6,1.7], \\ &d_{BM}^{M}(\ell_{p}^{3},\ell_{\infty}^{3}) \leqslant d_{BM}^{M}(\ell_{1.7}^{3},\ell_{p}^{3}) \cdot d_{BM}^{M}(\ell_{1.7}^{3},\ell_{\infty}^{3}) \leqslant 1.7588, \ \forall p \in [1.7,1.8], \\ &d_{BM}^{M}(\ell_{p}^{3},\ell_{\infty}^{3}) \leqslant d_{BM}^{M}(\ell_{1.8}^{3},\ell_{p}^{3}) \cdot d_{BM}^{M}(\ell_{1.8}^{3},\ell_{\infty}^{3}) \leqslant 1.7529, \ \forall p \in [1.8,1.9], \\ &d_{BM}^{M}(\ell_{p}^{3},\ell_{\infty}^{3}) \leqslant d_{BM}^{M}(\ell_{1.9}^{3},\ell_{p}^{3}) \cdot d_{BM}^{M}(\ell_{1.9}^{3},\ell_{\infty}^{3}) \leqslant 1.7442, \ \forall p \in [1.9,1.96], \\ &d_{BM}^{M}(\ell_{p}^{3},\ell_{\infty}^{3}) \leqslant d_{BM}^{M}(\ell_{2}^{3},\ell_{p}^{3}) \cdot d_{BM}^{M}(\ell_{2}^{3},\ell_{\infty}^{3}) \leqslant 1.7517, \ \forall p \in [1.96,2]. \end{split}$$

Thus $d^M_{BM}(\ell^3_p,\ell^3_\infty) \leqslant 1.7588 < 1.7637, \ \forall p \in [1.45,2].$

By Lemma 3 and Proposition 4 in [7], we have

$$\beta(\ell_p^3, 8) < 1.7637 \times 0.5 = 0.88185, \ \forall p \in [1.45, 2].$$

4. Borsuk's problem in *n*-dimensional symmetric space

Let X be an *n*-dimensional real Banach space. If there exists a basis $\{u_i \mid i \in [n]\}$ of X such that the equality

$$\left\|\sum_{i\in[n]}\sigma_i\alpha_iu_{\pi(i)}\right\| = \|x\|$$

holds for each $x = \sum_{i \in [n]} \alpha_i u_i$, any set of numbers $\{\sigma_i \mid |\sigma_i| = 1, i \in [n]\}$, and any permutation π of [n], then X is said to be *symmetric* with the *symmetric basis* $\{u_i \mid i \in [n]\}$.

Obviously, for each *n*-dimensional symmetric space X, there exists a norm $\|\cdot\|$ on \mathbb{R}^n such that X is isometric to $(\mathbb{R}^n, \|\cdot\|)$ and that the symmetric basis of \mathbb{R}^n is also a symmetric basis of $(\mathbb{R}^n, \|\cdot\|)$.

In the following, denote by $\{e_i \mid i \in [n]\}$ the natural basis of \mathbb{R}^n . Set

 $\zeta^n = \{ (\mathbb{R}^n, \|\cdot\|) \mid (\mathbb{R}^n, \|\cdot\|) \text{ is symmetric with the natural basis } \{e_i \mid i \in [n] \} \},\$

and, for any $X \in \zeta^n$, let

$$\alpha(X) = \left\|\sum_{i\in[n]} e_i\right\|.$$

LEMMA 4. For any $X \in \zeta^n$, we have

$$d_{BM}^M(X, \ell_\infty^n) \leqslant \alpha(X).$$

Proof. First, we show that $B_X \subseteq B_{\infty}^n$. Let $x = \sum_{i \in [n]} \alpha_i e_i \in B_X$. We only need to show that $\alpha_i \in [-1,1]$ holds for all $i \in [n]$. Take α_1 as an example. Since

$$\|\alpha_1 e_1\| = \left\| \frac{1}{2} \left(\alpha_1 e_1 + \sum_{i=2}^n \alpha_i e_i \right) + \frac{1}{2} \left(\alpha_1 e_1 - \sum_{i=2}^n \alpha_i e_i \right) \right\|$$
$$\leq \max\left\{ \left\| \alpha_1 e_1 + \sum_{i=2}^n \alpha_i e_i \right\|, \left\| \alpha_1 e_1 - \sum_{i=2}^n \alpha_i e_i \right\| \right\} = \|x\| \leq 1,$$

we have $\alpha_1 \in [-1,1]$. In a similar way, we can prove that $\alpha_i \in [-1,1]$, $\forall i = 2, \dots, n$. Next, by the definition of $\alpha(X)$, we have $(1/\alpha(X))B_{\infty}^n \subseteq B_X$. It follows that

$$\frac{1}{\alpha(X)}B_{\infty}^{n}\subseteq B_{X}\subseteq B_{\infty}^{n}.$$

Thus $d^M_{BM}(X, \ell^n_{\infty}) \leqslant \alpha(X)$. \Box

PROPOSITION 1. Let $X \in \zeta^n$. If $\alpha(X) < 2$, then $\beta(X, 2^n) < 1$.

Proof. It follows from Lemma 3, Lemma 4, and Proposition 4 in [7]. \Box

LEMMA 5. For any $X \in \zeta^n$, we have

$$d_{BM}^M(X,\ell_1^n) \leqslant \frac{n}{\alpha(X)}.$$

Proof. The unit ball of ℓ_1^n is

$$B_1^n = \operatorname{conv}\{\pm e_i \mid i \in [n]\}.$$

Then $B_1^n \subseteq B_X$. Next we will show that $B_X \subseteq (n/\alpha(X))B_1^n$. It is sufficient to show that

$$\sum_{i\in[n]} |\alpha_i| \leqslant \frac{n}{\alpha(X)}$$

holds for each $x = \sum_{i \in [n]} \alpha_i e_i \in B_X$. By the symmetry of *X*, we only consider the case when $\alpha_i \ge 0$, $i \in [n]$.

The case when x = o is obvious. Suppose that $x \in B_X \setminus \{o\}$. Then there exists $i_0 \in [n]$ such that $\alpha_{i_0} > 0$. Let

$$\gamma_i = \frac{\alpha_i}{\sum\limits_{j \in [n]} \alpha_j}$$

Then $\gamma_i \ge 0$, $\forall i \in [n]$. Let

$$u_1 = \gamma_1 e_1 + \gamma_2 e_2 + \dots + \gamma_{n-1} e_{n-1} + \gamma_n e_n,$$

$$u_2 = \gamma_2 e_1 + \gamma_3 e_2 + \dots + \gamma_n e_{n-1} + \gamma_1 e_n,$$

$$u_3 = \gamma_3 e_1 + \gamma_4 e_2 + \dots + \gamma_n e_{n-2} + \gamma_1 e_{n-1} + \gamma_2 e_n,$$

...

$$u_n = \gamma_n e_1 + \gamma_1 e_2 + \cdots + \gamma_{n-2} e_{n-1} + \gamma_{n-1} e_n$$

Since $\{e_i \mid i \in [n]\}$ is a symmetric basis of *X*, we have $||u_1|| = \cdots = ||u_n||$. Note that

$$\frac{1}{n}\sum_{i\in[n]}u_i = \frac{1}{n}\left(\sum_{i\in[n]}\gamma_i\right)\sum_{i\in[n]}e_i = \frac{1}{n}\sum_{i\in[n]}e_i.$$
$$\frac{1}{n}\sum_{i\in[n]}e_i = \frac{1}{n}\sum_{i\in[n]}e_i.$$

Then

$$\left\|\frac{1}{n}\sum_{i\in[n]}e_i\right\|\leqslant \frac{1}{n}\sum_{i\in[n]}\|u_i\|=\|u_1\|=\left\|\sum_{i\in[n]}\gamma_ie_i\right\|.$$

It follows that

$$1 \geqslant \left\| \sum_{i \in [n]} \alpha_i e_i \right\| = \left(\sum_{i \in [n]} \alpha_i \right) \left\| \sum_{i \in [n]} \frac{\alpha_i}{\sum_{i \in [n]} \alpha_i} e_i \right\|$$
$$= \left(\sum_{i \in [n]} \alpha_i \right) \left\| \sum_{i \in [n]} \gamma_i e_i \right\|$$
$$\geqslant \left(\sum_{i \in [n]} \alpha_i \right) \left\| \frac{1}{n} \sum_{i \in [n]} e_i \right\| = \frac{\alpha(X)}{n} \sum_{i \in [n]} \alpha_i,$$

from which the proof is complete. \Box

PROPOSITION 2. Let $X \in \zeta^3$. If $\alpha(X) > 9/4$, then $\beta(X, 2^3) < 1$.

Proof. It follows from Theorem 1, Lemma 3, and Lemma 5. \Box

REFERENCES

- V. BOLTYANSKI, H. MARTINI AND P. S. SOLTAN, *Excursions into Combinatorial Geometry*, Universitext. Springer, Berlin, 1997.
- [2] A. BONDARENKO, On Borsuk's conjecture for two-distance sets, Discrete Comput. Geom. 51 (2014), 509–515.
- [3] K. BORSUK, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177– 190.
- [4] H. G. EGGLESTON, Covering a three-dimensional set with sets of smaller diameter, J. London Math. Soc. 30 (1955), 11–24.
- [5] T. JENRICH AND A. E. BROUWER, A 64-dimensional counterexample to Borsuk's conjecture, Electron. J. Combin. 21 (2014), Paper 4.29.
- [6] J. KAHN AND G. KALAI, A counterexample to Borsuk's conjecture, Bull. Amer. Math. Soc. 29 (1993), 60–62.
- [7] Y. LIAN AND S. WU, Partition bounded sets into sets having smaller diameters, Results Math. 76 (2021), Paper No. 116.
- [8] H. MARTINI AND S. WU, Complete sets need not be reduced in Minkowski spaces, Beitr. Algebra Geom. 56 (2015), 533–539.
- [9] J. P. MORENO AND R. SCHNEIDER, Structure of the space of diametrically complete sets in a Minkowski space, Discrete Comput. Geom. 48 (2012), 467–486.
- [10] J. PERKAL, Sur la subdivision des ensembles en parties de diamètre inférieur, Colloq. Math. 1 (1947), 45.
- [11] N. TOMCZAK-JAEGERMANN, Banach-Mazur Distances and Finite-dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.
- [12] L. YU AND C. ZONG, On the blocking number and the covering number of a convex body, Adv. Geom. 9 (2009), 13–29.
- [13] L. ZHANG, L. MENG, AND S. WU, Banach-Mazur distance from ℓ_p^3 to ℓ_{∞}^3 , Math. Notes. 114 (2023), 1045–1051.
- [14] C. ZONG, Borsuk's partition conjecture, Jpn. J. Math. 16 (2021), 185-201.

(Received November 13, 2023)

Xinling Zhang School of Mathematics Harbin Institute of Technology Harbin, Heilongjiang, 150001, China e-mail: zhangxinling2014@126.com

> Chan He School of Mathematics North University of China Taiyuan, Shanxi, 030051, China e-mail: hechan@nuc.edu.cn