PARTITIONING BOUNDED SETS IN SYMMETRIC SPACES INTO SUBSETS WITH REDUCED DIAMETER

Xinling Zhang* and Chan He

(Communicated by H. Martini)

Abstract

Borsuk's problem on partitioning bounded sets into sets having smaller diameters is considered. For each positive integer m and each n-dimensional Banach space X, let $\beta(X, m)$ be the infimum of $\delta \in(0,1]$ such that each bounded set $A \subseteq X$ with diameter 1 can be partitioned into m subsets whose diameters are at most δ. With the help of characterizations of complete sets in ℓ_{1}^{3}, we prove that $\beta\left(\ell_{1}^{3}, 8\right) \leqslant 0.75$. By using the stability of $\beta(X, m)$ with respect to X in the sense of Banach-Mazur metric and estimations of the Banach-Mazur distance between ℓ_{p}^{n} and ℓ_{q}^{n}, we show that $\beta\left(\ell_{p}^{3}, 8\right) \leqslant 0.88185$ holds for each $p \in[1, \infty]$. This improves a recent result of Y. Lian and S. Wu. Furthermore, we prove that $\beta\left(X, 2^{3}\right)<1$ when X is a three-dimensional Banach space symmetric with the natural basis $\left\{e_{i} \mid i \in[3]\right\}$ and satisfies $\alpha(X)=\left\|\sum_{i \in[3]} e_{i}\right\|>$ 9/4.

1. Introduction

Let $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ be an n-dimensional Banach space with origin o and unit ball B_{X}, and $A \subseteq X$ be a nonempty bounded set. Denote by $\delta(A):=\sup \{\|x-y\| \mid x, y \in A\}$ the diameter of A. If $x \notin A \Rightarrow \delta(A \cup\{x\})>\delta(A)$, then A is said to be complete. If A^{C} is a complete set with diameter $\delta(A)$ and containing A, then it is called a completion of A. Note that A^{C} is not unique in general. A compact convex set having interior points is called a convex body. Let \mathbb{E}^{n} be the n-dimensional Euclidean space. Put $[n]:=\left\{i \in \mathbb{Z}^{+} \mid 1 \leqslant i \leqslant n\right\}, \forall n \in \mathbb{Z}^{+}$.

In 1933, K. Borsuk (cf. [3]) proposed the following problem:

Problem 1. (Borsuk's Problem). Is it true that every nonempty bounded set $A \subseteq \mathbb{E}^{n}$ can be divided into $n+1$ subsets $A_{1}, A_{2}, \cdots, A_{n+1}$ such that $\delta\left(A_{i}\right)<\delta(A)$, $\forall i \in[n+1]$?

[^0]For $n=2$, the affirmative answer was provided by K. Borsuk (cf. [3]). For $n=3$, the affirmative answer was given by J. Perkal (cf. [10]) and H. G. Eggleston (cf. [4]). For $n \geqslant 64$, the answer is negative (cf. [2], [5], and [6]). Up to now, the answer is not clear for $4 \leqslant n \leqslant 63$. See [14] for more information on this problem and a quantitative program to attack it.

It is natural to consider Borsuk's problem in a finite dimensional Banach space X. For a bounded set $A \subseteq X$, let $b_{X}(A)$ be the smallest positive integer m such that A can be divided into m subsets whose diameters are strictly smaller than $\delta(A)$. We refer to the book [1] for more information about Borsuk's problem.

For a real number $p \geqslant 1, \ell_{p}^{n}$ denotes the space $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$, where the p-norm $\|\cdot\|_{p}$ of $x=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \mathbb{R}^{n}$ is defined by

$$
\|x\|_{p}=\left\|\left(\alpha_{1}, \cdots, \alpha_{n}\right)\right\|_{p}=\left(\sum_{i \in[n]}\left|\alpha_{i}\right|^{p}\right)^{\frac{1}{p}}, \forall p \in[1, \infty)
$$

and

$$
\|x\|_{\infty}=\left\|\left(\alpha_{1}, \cdots, \alpha_{n}\right)\right\|_{\infty}=\max _{i \in[n]}\left|\alpha_{i}\right|
$$

Denote by B_{p}^{n} the unit ball of ℓ_{p}^{n}. I.e., $B_{p}^{n}=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{p} \leqslant 1\right\}$.
In 2009, L. Yu and C. Zong proved that $b_{\ell_{p}^{3}}(A) \leqslant 2^{3}$ holds for every nonempty bounded set A and each $p \in[1, \infty]$ (cf. [12]). In 2021, Y. Lian and S. Wu studied Borsuk's partition problem in finite dimensional Banach spaces by estimating

$$
\beta_{X}(A, m)=\inf \left\{\left.\frac{1}{\delta(A)} \max \left\{\delta\left(A_{k}\right) \mid k \in[m]\right\} \right\rvert\, A=\bigcup_{k=1}^{m} A_{k}\right\}
$$

for $A \in \mathscr{B}^{n}$, and

$$
\beta(X, m)=\sup \left\{\beta_{X}(A, m) \mid A \in \mathscr{B}^{n}\right\}
$$

where $\mathscr{B}^{n}=\{A \subseteq X \mid A$ is bounded and $\delta(A)>0\}$. They showed that (cf. [7])

$$
\beta\left(\ell_{p}^{3}, 8\right) \leqslant 0.925, \quad \forall p \in[1, \infty] .
$$

Later, L. Zhang, L. Meng, and S. Wu (cf. [13]) improved this estimation by showing that

$$
\beta\left(\ell_{p}^{3}, 8\right) \leqslant 0.9, \quad \forall p \in[1, \infty] .
$$

We will improve this estimation in Section 3 with the help of the following theorem, which is proved in Section 2.

THEOREM 1. For every complete set K with $\delta(K)=2$ in ℓ_{1}^{3}, we have

$$
\beta_{\ell_{1}^{3}}(K, 8) \leqslant \frac{3}{4}
$$

Moreover,

$$
\beta\left(\ell_{1}^{3}, 8\right) \leqslant \frac{3}{4}
$$

In section 4 , we show that $\beta\left(X, 2^{3}\right)<1$ when X is a three-dimensional Banach space symmetric with $\left\{e_{i} \mid i \in[3]\right\}$ and satisfies $\alpha(X)>9 / 4$, where $\left\{e_{i} \mid i \in[3]\right\}$ is the natural basis and $\alpha(X)=\left\|\sum_{i \in[3]} e_{i}\right\|$.

2. Partitions of complete sets in ℓ_{1}^{3}

For a convex body K, the closed set Σ between two parallel supporting hyperplanes H and H^{\prime} of K is called a supporting slab of K. The distance between H and H^{\prime} is called the width of Σ. Let M be another convex body and Σ be a supporting slab of K. If the union of the bounding hyperplanes of the supporting slab of M that is parallel to Σ contains a smooth boundary point of M, then Σ is said to be M-regular. The following lemma proved by J. P. Moreno and R. Schneider is critical for the proof of Theorem 1.

LEMMA 1. ([9]) Let $\Sigma_{1}, \cdots, \Sigma_{k}$ be the B_{X}-regular supporting slabs of the polyhedral unit ball B_{X}. Each complete set K with diameter 2 is of the form

$$
K=\bigcap_{i=1}^{k}\left(\Sigma_{i}+t_{i}\right)
$$

with $t_{i} \in \mathbb{R}^{n}, \forall i \in[k]$.
For vectors $u \in \mathbb{R}^{n} \backslash\{o\}$ and $\tau \in \mathbb{R}$, we write

$$
\begin{gathered}
H(u, \tau):=\left\{x \in \mathbb{R}^{n} \mid\langle x, u\rangle=\tau\right\} \\
H^{+}(u, \tau):=\left\{x \in \mathbb{R}^{n} \mid\langle x, u\rangle \geqslant \tau\right\}, \text { and } H^{-}(u, \tau):=\left\{x \in \mathbb{R}^{n} \mid\langle x, u\rangle \leqslant \tau\right\},
\end{gathered}
$$

where $\langle\cdot, \cdot\rangle$ is the scalar product.
The unit ball B_{1}^{3} of ℓ_{1}^{3} is a regular octahedron whose vertices are $\pm(0,0,1)$, $\pm(1,0,0)$, and $\pm(0,1,0)$. Clearly, $\pm u_{1}= \pm(1,1,1), \pm u_{2}= \pm(-1,1,1), \pm u_{3}=$ $\pm(1,-1,1)$, and $\pm u_{4}= \pm(-1,-1,1)$ are the outer normal vectors of the facets of B_{1}^{3}. Therefore, the B_{1}^{3}-regular supporting slabs of B_{1}^{3} are $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}$, where, for each $i \in[4], \Sigma_{i}$ is the slab bounded by $H\left(u_{i}, 1\right)$ and $H\left(u_{i},-1\right)$. After applying a suitable translation if necessary, every complete set in ℓ_{1}^{3} with diameter 2 has the form

$$
\begin{aligned}
P(\alpha) & =\Sigma_{2} \cap \Sigma_{3} \cap \Sigma_{4} \cap\left(\Sigma_{1}+\alpha u_{1}\right) \\
& =\left(B_{1}^{3} \cup S_{ \pm 1}\right) \cap\left(\Sigma_{1}+\alpha u_{1}\right) \\
& =\left(B_{1}^{3} \cap\left(\Sigma_{1}+\alpha u_{1}\right)\right) \cup\left(S_{ \pm 1} \cap\left(\Sigma_{1}+\alpha u_{1}\right)\right)
\end{aligned}
$$

where $S_{1}=\operatorname{conv}\left(\left(B_{1}^{3} \cap H\left(u_{1}, 1\right)\right) \cup\left\{u_{1}\right\}\right), S_{-1}=-S_{1}$, and $|\alpha| \leqslant 2 / 3$.
It is not difficult to verify that $P(0)=B_{1}^{3}, S_{1}=P(2 / 3)$, and $S_{-1}=P(-2 / 3)$. These sets are all complete (the completeness of $S_{ \pm 1}$ follows from Claim 1 in [8]).

Lemma 2. Let T be the regular tetrahedron in ℓ_{1}^{3} with vertices

$$
v_{1}=\left(1,-\frac{1}{2},-\frac{1}{2}\right), \quad v_{2}=\left(-\frac{1}{2}, 1,-\frac{1}{2}\right), \quad v_{3}=\left(-\frac{1}{2},-\frac{1}{2}, 1\right), \quad v_{4}=(1,1,1)
$$

Then T can be divided into five parts whose diameters are $3 / 2$.

Proof. Denote the points

$$
\begin{gathered}
c_{1}=\frac{v_{1}+v_{4}}{2}=\left(1, \frac{1}{4}, \frac{1}{4}\right), \quad c_{2}=\frac{v_{2}+v_{4}}{2}=\left(\frac{1}{4}, 1, \frac{1}{4}\right), \\
c_{3}=\frac{v_{3}+v_{4}}{2}=\left(\frac{1}{4}, \frac{1}{4}, 1\right), \quad d_{1}=\frac{v_{2}+v_{3}}{2}=\left(-\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right), \\
d_{2}=\frac{v_{1}+v_{3}}{2}=\left(\frac{1}{4},-\frac{1}{2}, \frac{1}{4}\right), \quad d_{3}=\frac{v_{1}+v_{2}}{2}=\left(\frac{1}{4}, \frac{1}{4},-\frac{1}{2}\right),
\end{gathered}
$$

and the sets

$$
\begin{gathered}
A_{1}=\operatorname{conv}\left\{v_{1}, c_{1}, d_{2}, d_{3}\right\}, \quad A_{2}=\operatorname{conv}\left\{v_{2}, c_{2}, d_{1}, d_{3}\right\}, \\
A_{3}=\operatorname{conv}\left\{v_{3}, c_{3}, d_{1}, d_{2}\right\}, \quad A_{4}=\operatorname{conv}\left\{v_{4}, c_{1}, c_{2}, c_{3}\right\}, \\
A_{5}=\operatorname{conv}\left\{c_{1}, c_{2}, c_{3}, d_{1}, d_{2}, d_{3}\right\}
\end{gathered}
$$

Then $T=\cup_{i \in[5]} A_{i}$, and

$$
\begin{aligned}
& \delta\left(A_{i}\right)=\max \left\{\left\|v_{i}-c_{i}\right\|_{1}, \max _{j \in[3] \backslash\{i\}}\left\{\left\|v_{i}-d_{j}\right\|_{1},\left\|c_{i}-d_{j}\right\|_{1}\right\}\right\}=\frac{3}{2}, \quad i \in[3], \\
& \delta\left(A_{4}\right)=\max \left\{\max \left\{\left\|v_{4}-c_{j}\right\|_{1} \mid j \in[3]\right\}, \max \left\{\left\|c_{i}-c_{j}\right\|_{1} \mid i, j \in[3]\right\}\right\}=\frac{3}{2} \\
& \delta\left(A_{5}\right)=\max _{i, j \in[3]}\left\{\left\|c_{i}-c_{j}\right\|_{1},\left\|d_{i}-d_{j}\right\|_{1},\left\|c_{i}-d_{j}\right\|_{1}\right\}=\frac{3}{2}
\end{aligned}
$$

This means that A can be divided into five parts whose diameters are $3 / 2$.
Corollary 1. $\beta_{\ell_{1}^{3}}(P(1 / 3), 5) \leqslant 3 / 4$.
Proof. It follows from Lemma 2 and the fact that $P(1 / 3)$ is contained in the regular tetrahedron with vertices $v_{1}, v_{2}, v_{3}, v_{4}$ as in Lemma 2.

Proof of Theorem 1. Let K be a complete set in ℓ_{1}^{3} with $\delta(K)=2$. As above, we may assume that K has the following form:

$$
P(\alpha)=\Sigma_{2} \cap \Sigma_{3} \cap \Sigma_{4} \cap\left(\Sigma_{1}+\alpha u_{1}\right),|\alpha| \leqslant 2 / 3
$$

We show that $\beta_{\ell_{1}^{3}}(P(\alpha), 8) \leqslant 3 / 4, \forall \alpha \in[0,2 / 3]$. The case when $\alpha \in[-2 / 3,0]$ can be proved in a similar way. We consider the following two cases.

Case 1: If $\alpha \in[0,1 / 3)$, then $P(\alpha)=A \cup B$, where

$$
A=P(\alpha) \cap H^{+}\left(u_{1}, 0\right), \quad \text { and } \quad B=P(\alpha) \cap H^{-}\left(u_{1}, 0\right)
$$

Notice that A is contained in the regular tetrahedron T defined in Lemma 2. Thus A can be divided into five parts whose diameters are $3 / 2$.

The bounding hyperplanes of the slab $\Sigma_{1}+\alpha u_{1}$ are $H\left(u_{1}, 3 \alpha-1\right)$ and $H\left(u_{1}, 1+\right.$ $3 \alpha)$. It is clear that $B_{1}^{3} \cap H\left(u_{1}, 3 \alpha-1\right)$ is a convex hexagon with vertices

$$
\begin{array}{ll}
a_{1}=\left(0, \frac{3}{2} \alpha-1, \frac{3}{2} \alpha\right), & a_{2}=\left(\frac{3}{2} \alpha, \frac{3}{2} \alpha-1,0\right),
\end{array} a_{3}=\left(\frac{3}{2} \alpha, 0, \frac{3}{2} \alpha-1\right), ~ 子\left(\frac{3}{2} \alpha-1, \frac{3}{2} \alpha, 0\right), \quad a_{6}=\left(\frac{3}{2} \alpha-1,0, \frac{3}{2} \alpha\right) .
$$

The intersection of $H\left(u_{1}, 3 \alpha-1\right)$ and the segment between o and $-u_{1}$ is $o^{\prime}=(\alpha-$ $1 / 3, \alpha-1 / 3, \alpha-1 / 3)$. Note that $B_{1}^{3} \cap H\left(u_{1}, 0\right)$ is also a convex hexagon which vertices are

$$
\begin{array}{ll}
b_{1}=\left(0,-\frac{1}{2}, \frac{1}{2}\right), \quad b_{2}=\left(\frac{1}{2},-\frac{1}{2}, 0\right), \quad b_{3}=\left(\frac{1}{2}, 0,-\frac{1}{2}\right), \\
b_{4}=\left(0, \frac{1}{2},-\frac{1}{2}\right), \quad b_{5}=\left(-\frac{1}{2}, \frac{1}{2}, 0\right), \quad b_{6}=\left(-\frac{1}{2}, 0, \frac{1}{2}\right) .
\end{array}
$$

Let

$$
\begin{aligned}
& V_{1}=\left\{a_{1}, a_{2}, \frac{a_{1}+a_{6}}{2}, \frac{a_{2}+a_{3}}{2}, o^{\prime}, o, b_{1}, b_{2}, \frac{b_{1}+b_{6}}{2}, \frac{b_{2}+b_{3}}{2}\right\}, \\
& V_{2}=\left\{a_{3}, a_{4}, \frac{a_{2}+a_{3}}{2}, \frac{a_{4}+a_{5}}{2}, o^{\prime}, o, b_{3}, b_{4}, \frac{b_{2}+b_{3}}{2}, \frac{b_{4}+b_{5}}{2}\right\}, \\
& V_{3}=\left\{a_{5}, a_{6}, \frac{a_{4}+a_{5}}{2}, \frac{a_{1}+a_{6}}{2}, o^{\prime}, o, b_{5}, b_{6}, \frac{b_{4}+b_{5}}{2}, \frac{b_{1}+b_{6}}{2}\right\},
\end{aligned}
$$

and B_{i} be the polyhedron with V_{i} as the set of vertices, $i \in[3]$. Then $B=B_{1} \cup B_{2} \cup B_{3}$, and

$$
\begin{aligned}
& \delta\left(B_{1}\right)=\max \left\{\|x-y\|_{1} \mid x, y \in V_{1}\right\}=\left\|\frac{a_{1}+a_{6}}{2}-\frac{a_{2}+a_{3}}{2}\right\|_{1}=\frac{3}{2}, \\
& \delta\left(B_{2}\right)=\max \left\{\|x-y\|_{1} \mid x, y \in V_{2}\right\}=\left\|\frac{a_{2}+a_{3}}{2}-\frac{a_{4}+a_{5}}{2}\right\|_{1}=\frac{3}{2}, \\
& \delta\left(B_{3}\right)=\max \left\{\|x-y\|_{1} \mid x, y \in V_{3}\right\}=\left\|\frac{a_{4}+a_{5}}{2}-\frac{a_{1}+a_{6}}{2}\right\|_{1}=\frac{3}{2} .
\end{aligned}
$$

Thus $P(\alpha)$ can be divided into eight parts whose diameters are $3 / 2$. Hence

$$
\beta_{\ell_{1}^{3}}(P(\alpha), 8) \leqslant \frac{3}{4}
$$

holds for every $\alpha \in[0,1 / 3)$.
Case 2: If $\alpha \in[1 / 3,2 / 3]$, then, since $3 \alpha-1>0, P(\alpha)$ is completely contained in the regular tetrahedron T defined in Lemma 2, which means that $P(\alpha)$ can be divided into five parts of diameters $3 / 2$. Thus

$$
\beta_{\ell_{1}^{3}}(P(\alpha), 8) \leqslant \beta_{\ell_{1}^{3}}(P(\alpha), 5) \leqslant \frac{3}{4}
$$

holds for each $\alpha \in[1 / 3,2 / 3]$.
By Proposition 1 in [7], we have

$$
\beta\left(\ell_{1}^{3}, 8\right) \leqslant \frac{3}{4}
$$

This completes the proof.

3. An estimation of $\beta\left(\ell_{p}^{3}, 8\right)$

The (multiplicative) Banach-Mazur distance between two isomorphic Banach spaces X and Y is defined by

$$
d_{B M}^{M}(X, Y)=\inf \left\{\|T\| \cdot\left\|T^{-1}\right\| \mid T: X \rightarrow Y \text { is an isomorphism }\right\} .
$$

Moreover, if X, Y, and Z are isomorphic Banach spaces, then

$$
d_{B M}^{M}(X, Y) \leqslant d_{B M}^{M}(X, Z) \cdot d_{B M}^{M}(Z, Y)
$$

see [11]. In this section, we use estimations of the Banach-Mazur distance between ℓ_{p}^{n} and ℓ_{q}^{n} and the stability of $\beta(X, m)$ with respect to X in the sense of Banach-Mazur distance to get an estimation of $\beta\left(\ell_{p}^{3}, 8\right)$.

Lemma 3. ([7]) If $X=\left(\mathbb{R}^{n},\|\cdot\|_{X}\right)$ and $Y=\left(\mathbb{R}^{n},\|\cdot\|_{Y}\right)$ are two Banach spaces satisfying $d_{B M}^{M}(X, Y) \leqslant \gamma$ for some $\gamma \geqslant 1$, then

$$
\beta(X, m) \leqslant \gamma \beta(Y, m), \forall m \in \mathbb{Z}^{+}
$$

THEOREM 2. ([11]) Let n be a positive integer and $1 \leqslant p, q \leqslant \infty$.

- If $1 \leqslant p, q \leqslant 2$ or $2 \leqslant p, q \leqslant \infty$, then $d_{B M}^{M}\left(\ell_{p}^{n}, \ell_{q}^{n}\right)=n^{\frac{1}{p}-\frac{1}{q}}$.
- If $1 \leqslant p<2<q \leqslant \infty$, then $\gamma n^{\alpha} \leqslant d_{B M}^{M}\left(\ell_{p}^{n}, \ell_{q}^{n}\right) \leqslant \eta n^{\alpha}$, where $\alpha=\max \left\{\frac{1}{p}-\right.$ $\left.\frac{1}{2}, \frac{1}{2}-\frac{1}{q}\right\}$, and γ and η are universal constants.

From Theorem 2, it follows that $d_{B M}^{M}\left(\ell_{p}^{n}, \ell_{\infty}^{n}\right)=n^{\frac{1}{p}}, \forall p \in[2, \infty]$.

Theorem 3. For $p \in[1, \infty], \beta\left(\ell_{p}^{3}, 8\right) \leqslant 0.88185$.
Proof. We distinguish three cases.
Case 1: $p \in[1,1.1729]$. By Theorem 2,

$$
d_{B M}^{M}\left(\ell_{1}^{3}, \ell_{p}^{3}\right)=3^{1-\frac{1}{p}} \leqslant 3^{1-\frac{1}{1.1729}} \leqslant 1.1758, \quad \forall p \in[1,1.1729]
$$

By Theorem 1 and Lemma 3, we have

$$
\beta\left(\ell_{p}^{3}, 8\right) \leqslant 1.1758 \times 0.75=0.88185, \forall p \in[1,1.1729]
$$

Case 2: $p \in[1.1729,1.45]$. By the proof of Lemma 14 in [7],

$$
\begin{equation*}
d_{B M}^{M}\left(\ell_{p}^{3}, \ell_{\infty}^{3}\right) \leqslant \frac{1}{10}\left(2+4^{p}\right)^{\frac{1}{p}} \cdot\left(2 \cdot 3^{\frac{p}{p-1}}+1\right)^{\frac{p-1}{p}}, \forall p \in(1,2] . \tag{1}
\end{equation*}
$$

For $p \in(1,2]$, set

$$
f(p)=\ln \left(2+4^{p}\right)+(p-1) \ln \left(2 \cdot 3^{\frac{p}{p-1}}+1\right)
$$

$r(p)=f(p) / p$, and $w(p)=p f^{\prime}(p)-f(p)$. We have $r^{\prime}(p)=w(p) / p^{2}$ and $w^{\prime}(p)=$ $p f^{\prime \prime}(p)$. By the proof of Lemma 8 in [13], $w(p)$ is strictly increasing on $(1,2]$. Meanwhile, since $w(1.1729)<0$ and $w(1.45)>0$, there exists a unique point $p_{0} \in$ $(1.1729,1.45)$ such that $w\left(p_{0}\right)=0$. Therefore, $r^{\prime}(p) \leqslant 0$ for $p \in\left[1.1729, p_{0}\right]$ and $r^{\prime}(p)>0$ for $p \in\left[p_{0}, 1.45\right]$. Hence $r(p)$ decreases on $\left[1.1729, p_{0}\right]$ and increases on $\left[p_{0}, 1.45\right]$. Since $2.8682 \approx r(1.45)<r(1.1729) \approx 2.8700$, we have $r(p) \leqslant r(1.1729) \approx$ 2.8700, $\forall p \in[1.1729,1.45]$. Вy (1),

$$
d_{B M}^{M}\left(\ell_{p}^{3}, \ell_{\infty}^{3}\right) \leqslant \frac{e^{r(p)}}{10} \leqslant \frac{e^{r(1.1729)}}{10} \leqslant 1.7637
$$

By Lemma 3 and Proposition 4 in [7], we have

$$
\beta\left(\ell_{p}^{3}, 8\right) \leqslant 1.7637 \times 0.5=0.88185, \quad \forall p \in[1.1729,1.45]
$$

Case 3: $p \in[1.45,2]$. Let $\mathrm{GL}_{n}(\mathbb{R})$ denote the set of all nonsingular $n \times n$ matrices of real number. Here we assume that $A=\left(a_{i j}\right)_{3 \times 3} \in \mathrm{GL}_{3}(\mathbb{R})$ and $A_{i j}$ is the cofactor of $a_{i j}, \forall i, j \in[3]$. Let x_{1}, x_{2}, x_{3} be the column vectors of A and set $y_{i}=\left(A_{1 i}, A_{2 i}, A_{3 i}\right)^{T}$, $\forall i \in[3]$. For $p \in[1, \infty]$, put

$$
\begin{equation*}
g_{p}(A)=\frac{1}{|\operatorname{det} A|} \max \left\{\left\|y_{i}\right\|_{q}\left\|\sigma_{1} x_{1}+\sigma_{2} x_{2}+\sigma_{3} x_{3}\right\|_{p} \mid i \in[3], \sigma_{1}, \sigma_{2}, \sigma_{3} \in\{-1,1\}\right\} \tag{2}
\end{equation*}
$$

where q is the conjugate of p. By Lemma 5 in [13], $d_{B M}^{M}\left(\ell_{p}^{3}, \ell_{\infty}^{3}\right) \leqslant g_{p}(A)$. Set

$$
A_{1}=\left(\begin{array}{ccc}
1 & -1.71 & 1.71 \\
-1.71 & 1 & 1.71 \\
1.71 & 1.71 & 1
\end{array}\right) \quad \text { and } \quad A_{2}=\left(\begin{array}{ccc}
17 & -32.9 & 32.9 \\
-32.9 & 17 & 32.9 \\
32.9 & 32.9 & 17
\end{array}\right)
$$

By (2), we have

$$
d_{B M}^{M}\left(\ell_{1.5}^{3}, \ell_{\infty}^{3}\right) \leqslant g_{1.5}\left(A_{1}\right) \leqslant 1.6732 \text { and } d_{B M}^{M}\left(\ell_{1.9}^{3}, \ell_{\infty}^{3}\right) \leqslant g_{1.9}\left(A_{2}\right) \leqslant 1.7135
$$

By Theorem 2,

$$
\begin{gathered}
d_{B M}^{M}\left(\ell_{1.5}^{3}, \ell_{p}^{3}\right)=3^{\frac{1}{p}-\frac{1}{1.5}} \leqslant 3^{\frac{1}{1.45}-\frac{1}{1.5}} \leqslant 1.0256, \quad \forall p \in[1.45,1.5], \\
d_{B M}^{M}\left(\ell_{1.5}^{3}, \ell_{p}^{3}\right)=3^{\frac{1}{1.5}-\frac{1}{p}} \leqslant 3^{\frac{1}{1.5}-\frac{1}{1.6}} \leqslant 1.0468, \quad \forall p \in[1.5,1.6], \\
d_{B M}^{M}\left(\ell_{1.6}^{3}, \ell_{p}^{3}\right)=3^{\frac{1}{1.6}-\frac{1}{p}} \leqslant 3^{\frac{1}{1.6}-\frac{1}{1.7}} \leqslant 1.0412, \quad \forall p \in[1.6,1.7], \\
d_{B M}^{M}\left(\ell_{1.7}^{3}, \ell_{p}^{3}\right)=3^{\frac{1}{1.7}-\frac{1}{p}} \leqslant 3^{\frac{1}{1.7}-\frac{1}{1.8}} \leqslant 1.0366, \quad \forall p \in[1.7,1.8], \\
d_{B M}^{M}\left(\ell_{1.8}^{3}, \ell_{p}^{3}\right)=3^{\frac{1}{1.8}-\frac{1}{p}} \leqslant 3^{\frac{1}{1.8}-\frac{1}{1.9}} \leqslant 1.0327, \quad \forall p \in[1.8,1.9] \\
d_{B M}^{M}\left(\ell_{1.9}^{3}, \ell_{p}^{3}\right)=3^{\frac{1}{1.9}-\frac{1}{p}} \leqslant 3^{\frac{1}{1.9}-\frac{1}{1.96}} \leqslant 1.0179, \quad \forall p \in[1.9,1.96], \\
d_{B M}^{M}\left(\ell_{2}^{3}, \ell_{p}^{3}\right)=3^{\frac{1}{p}-\frac{1}{2}} \leqslant 3^{\frac{1}{1.96}-\frac{1}{2}} \leqslant 1.0113, \quad \forall p \in[1.96,2] .
\end{gathered}
$$

It follows from Table 1 and the proof of Theorem 2 in [13] that

$$
\begin{aligned}
& d_{B M}^{M}\left(\ell_{p}^{3}, \ell_{\infty}^{3}\right) \leqslant d_{B M}^{M}\left(\ell_{1.5}^{3}, \ell_{p}^{3}\right) \cdot d_{B M}^{M}\left(\ell_{1.5}^{3}, \ell_{\infty}^{3}\right) \leqslant 1.7161, \quad \forall p \in[1.45,1.5], \\
& d_{B M}^{M}\left(\ell_{p}^{3}, \ell_{\infty}^{3}\right) \leqslant d_{B M}^{M}\left(\ell_{1.5}^{3}, \ell_{p}^{3}\right) \cdot d_{B M}^{M}\left(\ell_{1.5}^{3}, \ell_{\infty}^{3}\right) \leqslant 1.7516, \quad \forall p \in[1.5,1.6], \\
& d_{B M}^{M}\left(\ell_{p}^{3}, \ell_{\infty}^{3}\right) \leqslant d_{B M}^{M}\left(\ell_{1.6}^{3}, \ell_{p}^{3}\right) \cdot d_{B M}^{M}\left(\ell_{1.6}^{3}, \ell_{\infty}^{3}\right) \leqslant 1.7451, \forall p \in[1.6,1.7], \\
& d_{B M}^{M}\left(\ell_{p}^{3}, \ell_{\infty}^{3}\right) \leqslant d_{B M}^{M}\left(\ell_{1.7}^{3}, \ell_{p}^{3}\right) \cdot d_{B M}^{M}\left(\ell_{1.7}^{3}, \ell_{\infty}^{3}\right) \leqslant 1.7588, \quad \forall p \in[1.7,1.8], \\
& d_{B M}^{M}\left(\ell_{p}^{3}, \ell_{\infty}^{3}\right) \leqslant d_{B M}^{M}\left(\ell_{1.8}^{3}, \ell_{p}^{3}\right) \cdot d_{B M}^{M}\left(\ell_{1.8}^{3}, \ell_{\infty}^{3}\right) \leqslant 1.7529, \quad \forall p \in[1.8,1.9] \\
& d_{B M}^{M}\left(\ell_{p}^{3}, \ell_{\infty}^{3}\right) \leqslant d_{B M}^{M}\left(\ell_{1.9}^{3}, \ell_{p}^{3}\right) \cdot d_{B M}^{M}\left(\ell_{1.9}^{3}, \ell_{\infty}^{3}\right) \leqslant 1.7442, \quad \forall p \in[1.9,1.96] \\
& d_{B M}^{M}\left(\ell_{p}^{3}, \ell_{\infty}^{3}\right) \leqslant d_{B M}^{M}\left(\ell_{2}^{3}, \ell_{p}^{3}\right) \cdot d_{B M}^{M}\left(\ell_{2}^{3}, \ell_{\infty}^{3}\right) \leqslant 1.7517, \quad \forall p \in[1.96,2]
\end{aligned}
$$

Thus $d_{B M}^{M}\left(\ell_{p}^{3}, \ell_{\infty}^{3}\right) \leqslant 1.7588<1.7637, \forall p \in[1.45,2]$.
By Lemma 3 and Proposition 4 in [7], we have

$$
\beta\left(\ell_{p}^{3}, 8\right)<1.7637 \times 0.5=0.88185, \forall p \in[1.45,2]
$$

4. Borsuk's problem in n-dimensional symmetric space

Let X be an n-dimensional real Banach space. If there exists a basis $\left\{u_{i} \mid i \in[n]\right\}$ of X such that the equality

$$
\left\|\sum_{i \in[n]} \sigma_{i} \alpha_{i} u_{\pi(i)}\right\|=\|x\|
$$

holds for each $x=\sum_{i \in[n]} \alpha_{i} u_{i}$, any set of numbers $\left\{\sigma_{i}| | \sigma_{i} \mid=1, i \in[n]\right\}$, and any permutation π of $[n]$, then X is said to be symmetric with the symmetric basis $\left\{u_{i} \mid i \in\right.$ $[n]\}$.

Obviously, for each n-dimensional symmetric space X, there exists a norm $\|\cdot\|$ on \mathbb{R}^{n} such that X is isometric to $\left(\mathbb{R}^{n},\|\cdot\|\right)$ and that the symmetric basis of \mathbb{R}^{n} is also a symmetric basis of $\left(\mathbb{R}^{n},\|\cdot\|\right)$.

In the following, denote by $\left\{e_{i} \mid i \in[n]\right\}$ the natural basis of \mathbb{R}^{n}. Set

$$
\zeta^{n}=\left\{\left(\mathbb{R}^{n},\|\cdot\|\right) \mid\left(\mathbb{R}^{n},\|\cdot\|\right) \text { is symmetric with the natural basis }\left\{e_{i} \mid i \in[n]\right\}\right\}
$$

and, for any $X \in \zeta^{n}$, let

$$
\alpha(X)=\left\|\sum_{i \in[n]} e_{i}\right\| .
$$

Lemma 4. For any $X \in \zeta^{n}$, we have

$$
d_{B M}^{M}\left(X, \ell_{\infty}^{n}\right) \leqslant \alpha(X)
$$

Proof. First, we show that $B_{X} \subseteq B_{\infty}^{n}$. Let $x=\sum_{i \in[n]} \alpha_{i} e_{i} \in B_{X}$. We only need to show that $\alpha_{i} \in[-1,1]$ holds for all $i \in[n]$. Take α_{1} as an example. Since

$$
\begin{aligned}
\left\|\alpha_{1} e_{1}\right\| & =\left\|\frac{1}{2}\left(\alpha_{1} e_{1}+\sum_{i=2}^{n} \alpha_{i} e_{i}\right)+\frac{1}{2}\left(\alpha_{1} e_{1}-\sum_{i=2}^{n} \alpha_{i} e_{i}\right)\right\| \\
& \leqslant \max \left\{\left\|\alpha_{1} e_{1}+\sum_{i=2}^{n} \alpha_{i} e_{i}\right\|,\left\|\alpha_{1} e_{1}-\sum_{i=2}^{n} \alpha_{i} e_{i}\right\|\right\}=\|x\| \leqslant 1
\end{aligned}
$$

we have $\alpha_{1} \in[-1,1]$. In a similar way, we can prove that $\alpha_{i} \in[-1,1], \forall i=2, \cdots, n$.
Next, by the definition of $\alpha(X)$, we have $(1 / \alpha(X)) B_{\infty}^{n} \subseteq B_{X}$. It follows that

$$
\frac{1}{\alpha(X)} B_{\infty}^{n} \subseteq B_{X} \subseteq B_{\infty}^{n}
$$

Thus $d_{B M}^{M}\left(X, \ell_{\infty}^{n}\right) \leqslant \alpha(X)$.
Proposition 1. Let $X \in \zeta^{n}$. If $\alpha(X)<2$, then $\beta\left(X, 2^{n}\right)<1$.
Proof. It follows from Lemma 3, Lemma 4, and Proposition 4 in [7].

Lemma 5. For any $X \in \zeta^{n}$, we have

$$
d_{B M}^{M}\left(X, \ell_{1}^{n}\right) \leqslant \frac{n}{\alpha(X)}
$$

Proof. The unit ball of ℓ_{1}^{n} is

$$
B_{1}^{n}=\operatorname{conv}\left\{ \pm e_{i} \mid i \in[n]\right\} .
$$

Then $B_{1}^{n} \subseteq B_{X}$. Next we will show that $B_{X} \subseteq(n / \alpha(X)) B_{1}^{n}$. It is sufficient to show that

$$
\sum_{i \in[n]}\left|\alpha_{i}\right| \leqslant \frac{n}{\alpha(X)}
$$

holds for each $x=\sum_{i \in[n]} \alpha_{i} e_{i} \in B_{X}$. By the symmetry of X, we only consider the case when $\alpha_{i} \geqslant 0, i \in[n]$.

The case when $x=o$ is obvious. Suppose that $x \in B_{X} \backslash\{o\}$. Then there exists $i_{0} \in[n]$ such that $\alpha_{i_{0}}>0$. Let

$$
\gamma_{i}=\frac{\alpha_{i}}{\sum_{j \in[n]} \alpha_{j}}
$$

Then $\gamma_{i} \geqslant 0, \forall i \in[n]$. Let

$$
\begin{gathered}
u_{1}=\gamma_{1} e_{1}+\gamma_{2} e_{2}+\cdots+\gamma_{n-1} e_{n-1}+\gamma_{n} e_{n}, \\
u_{2}=\gamma_{2} e_{1}+\gamma_{3} e_{2}+\cdots+\gamma_{n} e_{n-1}+\gamma_{1} e_{n}, \\
u_{3}=\gamma_{3} e_{1}+\gamma_{4} e_{2}+\cdots+\gamma_{n} e_{n-2}+\gamma_{1} e_{n-1}+\gamma_{2} e_{n}, \\
\cdots \\
u_{n}=\gamma_{n} e_{1}+\gamma_{1} e_{2}+\cdots+\gamma_{n-2} e_{n-1}+\gamma_{n-1} e_{n} .
\end{gathered}
$$

Since $\left\{e_{i} \mid i \in[n]\right\}$ is a symmetric basis of X, we have $\left\|u_{1}\right\|=\cdots=\left\|u_{n}\right\|$. Note that

$$
\frac{1}{n} \sum_{i \in[n]} u_{i}=\frac{1}{n}\left(\sum_{i \in[n]} \gamma_{i}\right) \sum_{i \in[n]} e_{i}=\frac{1}{n} \sum_{i \in[n]} e_{i}
$$

Then

$$
\left\|\frac{1}{n} \sum_{i \in[n]} e_{i}\right\| \leqslant \frac{1}{n} \sum_{i \in[n]}\left\|u_{i}\right\|=\left\|u_{1}\right\|=\left\|\sum_{i \in[n]} \gamma_{i} e_{i}\right\| .
$$

It follows that

$$
\begin{aligned}
1 & \geqslant\left\|\sum_{i \in[n]} \alpha_{i} e_{i}\right\|=\left(\sum_{i \in[n]} \alpha_{i}\right)\left\|\sum_{i \in[n]} \frac{\alpha_{i}}{\sum_{i \in[n]} \alpha_{i}} e_{i}\right\| \\
& =\left(\sum_{i \in[n]} \alpha_{i}\right)\left\|\sum_{i \in[n]} \gamma_{i} e_{i}\right\| \\
& \geqslant\left(\sum_{i \in[n]} \alpha_{i}\right)\left\|\frac{1}{n} \sum_{i \in[n]} e_{i}\right\|=\frac{\alpha(X)}{n} \sum_{i \in[n]} \alpha_{i},
\end{aligned}
$$

from which the proof is complete.
Proposition 2. Let $X \in \zeta^{3}$. If $\alpha(X)>9 / 4$, then $\beta\left(X, 2^{3}\right)<1$.
Proof. It follows from Theorem 1, Lemma 3, and Lemma 5.

REFERENCES

[1] V. Boltyanski, H. Martini and P. S. Soltan, Excursions into Combinatorial Geometry, Universitext. Springer, Berlin, 1997.
[2] A. Bondarenko, On Borsuk's conjecture for two-distance sets, Discrete Comput. Geom. 51 (2014), 509-515.
[3] K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177190.
[4] H. G. EgGleston, Covering a three-dimensional set with sets of smaller diameter, J. London Math. Soc. 30 (1955), 11-24.
[5] T. JENRICH AND A. E. Brouwer, A 64-dimensional counterexample to Borsuk's conjecture, Electron. J. Combin. 21 (2014), Paper 4.29.
[6] J. Kahn and G. Kalai, A counterexample to Borsuk's conjecture, Bull. Amer. Math. Soc. 29 (1993), 60-62.
[7] Y. Lian and S. Wu, Partition bounded sets into sets having smaller diameters, Results Math. 76 (2021), Paper No. 116.
[8] H. Martini and S. Wu, Complete sets need not be reduced in Minkowski spaces, Beitr. Algebra Geom. 56 (2015), 533-539.
[9] J. P. Moreno and R. Schneider, Structure of the space of diametrically complete sets in a Minkowski space, Discrete Comput. Geom. 48 (2012), 467-486.
[10] J. Perkal, Sur la subdivision des ensembles en parties de diamètre inférieur, Colloq. Math. 1 (1947), 45.
[11] N. TomCZAK-JAEGERMANN, Banach-Mazur Distances and Finite-dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, 38, Longman Scientific \& Technical, Harlow; copublished in the United States with John Wiley \& Sons, Inc., New York, 1989.
[12] L. Yu and C. Zong, On the blocking number and the covering number of a convex body, Adv. Geom. 9 (2009), 13-29.
[13] L. Zhang, L. MENG, AND S. Wu, Banach-Mazur distance from ℓ_{p}^{3} to ℓ_{∞}^{3}, Math. Notes. 114 (2023), 1045-1051.
[14] C. Zong, Borsuk's partition conjecture, Jpn. J. Math. 16 (2021), 185-201.

[^1]
[^0]: Mathematics subject classification (2020): 46B20, 46B04.
 Keywords and phrases: Banach-Mazur distance, Borsuk's partition problem, complete set, ℓ_{p}^{n} space.
 This research was funded by the National Natural Science Foundation of China (grant numbers 12071444 and 12201581) and the Fundamental Research Program of Shanxi Province of China (grant number 202103021223191).

 * Corresponding author.

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

