AN ESTIMATE OF THE MAXIMAL OPERATOR OF THE NÖRLUND LOGARITHMIC MEANS WITH RESPECT TO THE WALSH-PALEY SYSTEM ON THE HARDY SPACE H_{p}

Nacima Memić

(Communicated by L. E. Persson)

Abstract. We define a weighted maximal operator \tilde{L}_{p}^{*} and prove that it is bounded from $H_{p}(G)$ to $L_{p}(G)$, for $p \in(0,1)$.

1. Introduction

Let \mathbb{Z}_{2} denote the discrete cyclic group $\mathbb{Z}_{2}=\{0,1\}$, where the group operation is addition modulo 2.

The dyadic group G is obtained by $G=\prod_{i=0}^{\infty} \mathbb{Z}_{2}$ (see [15]), where topology and the probability measure $|$.$| are obtained by the product.$

Let $x=\left(x_{n}\right)_{n \geqslant 0} \in G$. The sets $I_{n}(x):=\left\{y \in G: y_{0}=x_{0}, \ldots, y_{n-1}=x_{n-1}\right\}, n \geqslant 1$ and $I_{0}(x):=G$ are dyadic intervals of G. Let $I_{n}=I_{n}(0)$, and $e_{n}:=\left(\delta_{i n}\right)_{i}$. It is easily seen that $\left(I_{n}\right)_{n}$ is a decreasing sequence of subgroups.

Since every nonnegative integer i can be written in the form $i=\sum_{k=0}^{\infty} i_{k} 2^{k}$, where $i_{k} \in\{0,1\}$, we define the sequence $\left(z_{i}\right)_{i \geqslant 0}$ of elements from G by

$$
z_{i}=\sum_{k=0}^{\infty} i_{k} e_{k} .
$$

It is easily seen that for each positive integer n, the set $\left\{z_{i}, i<2^{n}\right\}$ is a set of representatives of I_{n}-cosets.

The Walsh-Paley system is defined as the set of Walsh-Paley functions:

$$
\omega_{n}(x)=\prod_{k=0}^{|n|}\left(r_{k}(x)\right)^{n_{k}}, \quad n \in \mathbb{N}, x \in G
$$

where $n=\sum_{k=0}^{\infty} n_{k} 2^{k}, n_{k} \in\{0,1\},|n|=\max \left\{k, n_{k} \neq 0\right\}$ and $r_{k}(x)=(-1)^{x_{k}}$.

[^0]If $f \in L_{1}$, we can define the Fourier coefficients, partial sums of the Fourier series and Dirichlet kernels with respect to the Walsh system as

$$
\begin{aligned}
\widehat{f}(k) & :=\int_{G} f \omega_{k} d \mu \\
S_{n} f & :=\sum_{k=0}^{n-1} \widehat{f}(k) \omega_{k}, \quad\left(S_{0} f:=0\right) \\
D_{n} & :=\sum_{k=0}^{n-1} \omega_{k}
\end{aligned}
$$

It can be easily seen that $S_{n} f(x)=\left(D_{n} * f\right)(x)$ and $D_{2^{n}}(x)=2^{n} 1_{I_{n}}(x)$.
Nörlund logarithmic means and kernels are defined by

$$
L_{n} f:=\frac{1}{l_{n}} \sum_{k=0}^{n} \frac{S_{k} f}{n-k}
$$

and

$$
F_{n}:=\frac{1}{l_{n}} \sum_{k=0}^{n} \frac{D_{k}}{n-k}
$$

where

$$
l_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

It is known that ([14])

$$
\left\|F_{n}\right\|_{1} \leqslant c \log n
$$

and

$$
\begin{equation*}
\sup _{n}\left\|\frac{F_{n}}{(n+1)^{1 / p-1}}\right\|_{1} \leqslant C<\infty . \tag{1}
\end{equation*}
$$

For every positive integer n, the algebra generated by the intervals $\left\{I_{n}(x), x \in G\right\}$ is denoted by F_{n}. If $f=\left(f_{n}\right)_{n}$ is a martingale with respect to F_{n}, then its maximal function f^{*} is defined by $f^{*}=\sup _{n}\left|f_{n}\right|$. If $f \in L_{1}(G)$, then its maximal function is defined by

$$
f^{*}(x)=\sup _{n} \frac{1}{\left|I_{n}\right|}\left|\int_{I_{n}(x)} f(t) d t\right|
$$

For every $p \in(0, \infty)$, the Hardy space $H_{p}(G)$ consists of all martingales $f=\left(f_{n}\right)_{n}$ such that $f^{*} \in L_{p}(G)$. The norm on $H_{p}(G)$ is defined by

$$
\|f\|_{H_{p}}:=\left\|f^{*}\right\|_{p}
$$

A bounded measurable function a is a p-atom, if it is supported on some dyadic interval I, such that

$$
\int_{I} a=0,\|a\|_{\infty} \leqslant|I|^{-\frac{1}{p}}
$$

Throughout the paper C denotes an absolute positive constant which may vary in different contexts.

The a.e. convergence of a subsequence of logarithmic means of Walsh-Fourier series of integrable functions was studied in the works [3], [5] and [6]. Results related to partial sums and Nörlund logarithmic means with respect to unbounded Vilenkin system can be found in [1] and [8]. Nörlund logarithmic means were studied in different contexts in [1], [2], [4], [9], [10], [11], [12], [16], [17], [18], [19] and [20].

Many maximal operators were studied on the Hardy space H_{p} of general Vilenkin groups, for $p \in(0,1]$ (see for example [1], [12], [13] and [17]).

In [19, Theorem 1] it was proved that the operator

$$
\sup _{n} \frac{\left|L_{n} f\right|}{(n+1)^{\frac{1}{p}-1}}
$$

is bounded from the space H_{p} to the space L_{p} on general Vilenkin groups. Moreover, for every nondecreasing positive sequence $\left\{\varphi_{n}\right\}$ satisfying

$$
\limsup _{n \rightarrow \infty} \frac{(n+1)^{\frac{1}{p}-1}}{\log n \varphi_{n}}=\infty
$$

the maximal operator

$$
\sup _{n} \frac{\left|L_{n} f\right|}{\varphi_{n}}
$$

is not bounded from H_{p} to L_{p}.
In Theorem 1 we prove that the operator

$$
\tilde{L}_{p}^{*}:=\sup _{n} \frac{\log (n+1)\left|L_{n} f\right|}{(n+1)^{\frac{1}{p}-1}}
$$

is bounded from the space $H_{p}(G)$ to the space $L_{p}(G)$. Of course, the second part of [19, Theorem 1] describes the sharpness of the result obtained in Theorem 1. Similar results were obtained for the Walsh-Kaczmarz system in [7].

The following open problem was stated on pages 476-477 of the recent book [14]:
Open Problem. For any $0<p<1$, is it possible to find non-negative, nondecreasing sequence $\left(\Theta_{n}, n \in \mathbb{N}\right)$ such that the maximal operator \widetilde{L}_{p}^{*} defined by

$$
\widetilde{L}_{p}^{*} f:=\sup _{n \in \mathbb{N}} \frac{\left|L_{n} f\right|}{\Theta_{n+1}}
$$

is bounded from the Hardy space H_{p} to the Lebesgue space L_{p} ? Moreover, is it true that the rate of $\left(\Theta_{n}, n \in \mathbb{N}\right)$ is sharp, that is, for any non-negative, non-decreasing sequence $\left(\varphi_{n}, n \in \mathbb{N}\right)$ satisfying the condition

$$
\varlimsup_{n \rightarrow \infty} \frac{\Theta_{n}}{\varphi_{n}}=\infty
$$

there exists a martingale $f \in H_{p}(G)$ such that the maximal operator

$$
\sup _{n \in \mathbb{N}} \frac{\left|L_{n} f\right|}{\varphi_{n+1}}
$$

is not bounded from the Hardy space H_{p} to the Lebesgue space L_{p} ?
In [19] Tephnadze and Tutberidze partially answered this open problem and proved that there exist absolute constants C_{1} and C_{2} such that

$$
\frac{C_{1} n^{1 / p-1}}{\log (n+1)} \leqslant \Theta_{n} \leqslant C_{2} n^{1 / p-1}
$$

In this paper we establish an answer for the Walsh system by proving that such optimal weights are

$$
\left\{\frac{n^{1 / p-1}}{\log (n+1)}\right\}
$$

2. Main results

LEMMA 1. Let n be a positive integer having the dyadic representation $n=2^{N_{1}}+$ $\ldots+2^{N_{t}}$, where $N_{1}<N_{2}<\ldots<N_{t}$ and $N_{t}=|n|$. Then, $D_{n}(x)$ can be written in the form

$$
\begin{equation*}
D_{n}(x)=D_{2^{N_{t}}}+\sum_{j=0}^{2^{N_{t}}-1} A_{n, j}\left(D_{2^{N_{t}+1}}\left(x+z_{j}\right)-D_{2^{N_{t}}}\left(x+z_{j}\right)\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
A_{n, 0}:=\sum_{i=1}^{t-1} 2^{N_{i}-N_{t}} \tag{3}\\
A_{n, j}:=r_{N_{t-1}}\left(z_{j}\right) \ldots r_{N_{i+1}}\left(z_{j}\right)\left[2^{N_{i}-N_{t}}+r_{N_{i}}\left(z_{j}\right) \sum_{s=1}^{i-1} 2^{N_{s}-N_{t}}\right], \tag{4}
\end{gather*}
$$

if $j=0\left(\bmod 2^{N_{i}}\right)$ and $j \neq 0\left(\bmod 2^{N_{i+1}}\right)$ for some $i \in\{1, \ldots, t-1\}$.
For $j \neq 0\left(\bmod 2^{N_{1}}\right), A_{n, j}=0$.

Proof. It was proved in [15] that

$$
\begin{equation*}
D_{n}=\sum_{i=1}^{t} r_{N_{t}} \ldots r_{N_{i+1}} D_{2^{N_{i}}} \tag{5}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
D_{n}(x)= & D_{2^{N_{t}}}(x)+\sum_{i=1}^{t-1} r_{N_{t}}(x) \ldots r_{N_{i+1}}(x) D_{2^{N_{i}}}(x) \\
= & D_{2^{N_{t}}}(x)+\sum_{i=1}^{t-1} 2^{N_{i}-N_{t}} r_{N_{t}}(x) D_{2^{N_{t}}}(x) \\
& +\sum_{i=1}^{t-1} 2^{N_{i}-N_{t}} r_{N_{t}}(x) \ldots r_{N_{i+1}}(x) \sum_{\substack{j \in\left\{1, \ldots, 2^{N_{t}}-1\right\} \\
j=0\left(\bmod 2^{N_{i}}\right)}} D_{2^{N_{t}}}\left(x+z_{j}\right) \\
= & D_{2^{N_{t}}}(x)+\sum_{i=1}^{t-1} 2^{N_{i}-N_{t}}\left(D_{2^{N_{t}+1}}(x)-D_{2^{N_{t}}}(x)\right) \\
& +\sum_{i=1}^{t-1} 2^{N_{i}-N_{t}} \sum_{\substack{j \in\left\{1, \ldots, 2^{N_{t}}-1\right\} \\
j=0\left(\bmod 2^{N_{i}}\right)}} r_{N_{t-1}}\left(z_{j}\right) \ldots r_{N_{i+1}}\left(z_{j}\right)\left(D_{2^{N_{t}+1}}\left(x+z_{j}\right)-D_{2^{N_{t}}}\left(x+z_{j}\right)\right),
\end{aligned}
$$

because

$$
r_{N_{t}}(y) D_{2^{N_{t}}}(y)=D_{2^{N_{t}+1}}(y)-D_{2^{N_{t}}}(y), \forall y \in G,
$$

besides, $r_{N_{t}}\left(z_{j}\right)=1$, for every $j<2^{N_{t}}$, so that $r_{N_{t}}(x)=r_{N_{t}}\left(x+z_{j}\right)$. Therefore, we get

$$
\begin{aligned}
D_{n}(x)= & D_{2^{N_{t}}}(x)+\sum_{i=1}^{t-1} 2^{N_{i}-N_{t}}\left(D_{2^{N_{t}+1}}(x)-D_{2^{N_{t}}}(x)\right) \\
& +\sum_{i=1}^{t-1} \sum_{\substack{j=0 \\
j \neq 0 \\
\left(\bmod 2^{N_{i}}\right)}} r_{2_{t-1}}\left(z_{j}\right) \ldots r_{N_{i+1}}\left(z_{j}\right) \\
& \times\left[2^{N_{i}-N_{t}}+r_{N_{i}}\left(z_{j}\right) 2^{N_{i-1}-N_{t}}+\ldots+r_{N_{i}}\left(z_{j}\right) \ldots r_{N_{2}}\left(z_{j}\right) 2^{N_{1}-N_{t}}\right] \\
& \times\left(D_{2^{N_{t}+1}}\left(x+z_{j}\right)-D_{2^{N_{t}}}\left(x+z_{j}\right)\right) \\
= & \left.D_{2^{N_{t}}(x)+\sum_{i=1}^{t-1} 2^{N_{i}-N_{t}}\left(D_{2^{N_{t}+1}}(x)-D_{2^{N_{t}}}(x)\right)} \begin{array}{rl}
t-1 & \sum_{i=1}^{t=1} \sum_{\substack{j=0 \\
j \neq 0 \\
\left(\bmod \\
2^{N_{i}} \\
2^{N_{i}+1}\right)}} r_{N_{t-1}}\left(z_{j}\right) \ldots r_{N_{i+1}}\left(z_{j}\right) \\
& \times\left[2^{N_{i}-N_{t}}+r_{N_{i}}\left(z_{j}\right) 2^{N_{i-1}-N_{t}}+\ldots+r_{N_{i}}\left(z_{j}\right) 2^{N_{1}-N_{t}}\right]\left(D_{2^{N_{t}+1}}\left(x+z_{j}\right)-D_{2^{N_{t}}}\left(x+z_{j}\right)\right) \\
= & D_{2^{N_{t}}}(x)+\sum_{i=1}^{t-1} 2^{N_{i}-N_{t}}\left(D_{2^{N_{t}+1}}(x)-D_{2^{N_{t}}}(x)\right) \\
& +\sum_{i=1}^{t-1} \sum_{\substack{j=0 \\
j \neq 0 \\
\left(\bmod 2^{N_{i+1}}\right)}}^{\left.2^{N_{i}}\right)} r_{N_{t-1}}\left(z_{j}\right) \ldots r_{N_{i+1}}\left(z_{j}\right)\left[2^{N_{i}-N_{t}}+r_{N_{i}}\left(z_{j}\right) \sum_{s=1}^{i-1} 2^{N_{s}-N_{t}}\right] \\
& \times\left(D_{2^{N_{t}+1}}\left(x+z_{j}\right)-D_{2^{N_{t}}}\left(x+z_{j}\right)\right),
\end{array}\right]
\end{aligned}
$$

where the previous sums are obviously taken over $j \in\left\{0, \ldots, 2^{N_{t}}-1\right\}$.
The following remark is a direct consequence of formula (4).
REMARK 1. let $j=2^{l_{1}}+2^{l_{2}}+2^{l_{3}} M$, where $l_{1}<l_{2}<l_{3}$ and M is a nonnegative integer. If $n=\sum_{i=0}^{|n|} n_{i} 2^{i}$ is larger than $2^{|j|+1}$ and such that $n_{l_{2}}=0$, then

$$
A_{n, j}=-A_{n+2} l_{2, j}
$$

LEMMA 2. Let $n=2^{N_{1}}+\ldots+2^{N_{t}}$, where $N_{1}<N_{2}<\ldots<N_{t}$ and let $j=2^{l_{1}}+$ $2^{l_{2}} M$, where $l_{1}<N_{t}$ and $M \geqslant 0$. Then,

$$
\begin{equation*}
\left|\sum_{k=2^{N_{t}-1}}^{2^{N_{t}-1}} \frac{A_{k, j}}{n-k}\right| \leqslant C \min \left\{l_{2}, N_{t}\right\} 2^{l_{1}-N_{t}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sum_{k=2^{N_{t}}}^{n-1} \frac{A_{k, j}}{n-k}\right| \leqslant C \min \left\{l_{2}, N_{t}\right\} 2^{l_{1}-N_{t}} . \tag{7}
\end{equation*}
$$

Since the notation $A_{k, j}$ wasn't defined in Lemma 1 for $k<2^{|j|+1}$, we may consider in this case that $A_{k, j}:=A_{k, j-22^{|k|}\left\lfloor\frac{j}{\left.2^{|k|}\right\rfloor}\right.}$

Proof. We consider the following cases

1. $l_{1}+1=N_{t}$,
2. $l_{1}+1<N_{t}$ and $l_{2} \geqslant N_{t}-1$,
3. $l_{1}+1<N_{t}$ and $N_{t-1} \leqslant l_{2}<N_{t}-1$,
4. $l_{2}<N_{t-1}$.

In the first case we have $N_{t} \leqslant l_{2}$. Besides, it can be seen from formulae (4) and (3) that $\left|A_{k, j}\right|<2^{l_{1}-|k|+1}$. Hence,

$$
\sum_{k=2^{N_{t}-1}}^{n-1}\left|\frac{A_{k, j}}{n-k}\right| \leqslant \sum_{k=2^{N_{t}-1}}^{n-1} \frac{C}{n-k} \leqslant C \sum_{t=1}^{n} \frac{1}{t} \leqslant C \cdot N_{t}
$$

In the second case, estimates (6) and (7) can be deduced from

$$
\sum_{k=2^{N_{t}-1}}^{n-1}\left|\frac{A_{k, j}}{n-k}\right| \leqslant 2^{l_{1}-N_{t}+1} \sum_{k=2^{N_{t}-1}}^{n-1} \frac{1}{n-k} \leqslant C \cdot N_{t} 2^{l_{1}-N_{t}} \leqslant C \cdot \min \left\{l_{2}, N_{t}\right\} 2^{l_{1}-N_{t}}
$$

because $N_{t} \leqslant 2 \min \left\{l_{2}, N_{t}\right\}$.

In case (3) we have

$$
\begin{aligned}
& \sum_{k=2^{N_{t}-1}}^{2^{N_{t}-1}} \frac{A_{k, j}}{n-k} \\
= & \sum_{k=0}^{2^{N_{t}-1}-1} \frac{A_{2^{N_{t}-1}+k, j}^{n-2^{N_{t}-1}-k}}{=} \sum_{r=0}^{2^{N_{t}-1-l_{2}-1}-1} \sum_{i=0}^{2^{l_{2}-1}}\left(\frac{A_{2^{N_{t}-1}+2^{l_{2}+1} r+2^{l_{2}+i, j}}^{n-2^{N_{t}-1}-2^{l_{2}+1} r-2^{l_{2}}-i}}{}+\frac{A_{2^{N_{t}-1}+2^{l_{2}+1} r_{r+i, j}}^{n-2^{N_{t}-1}-2^{l_{2}+1} r-i}}{}\right) \\
= & \left.\sum_{r=0}^{2^{N_{t}-1-l_{2}-1}-1} \sum_{i=0}^{2_{2}-1} A_{2^{N_{t}-1}+2^{l_{2}+1} r+2^{l_{2}}+i, j}\right) \\
& \times\left(\frac{1}{n-2^{N_{t}-1}-2^{l_{2}+1} r-2^{l_{2}}-i}-\frac{1}{n-2^{N_{t}-1}-2^{l_{2}+1} r-i}\right) \\
= & \sum_{r=0}^{2^{N_{t}-1-l_{2}-1}-12^{l_{2}-1}} A_{2^{N_{t}-1}+2^{l_{2}+1} r+2^{l_{2}+i, j}}^{2^{l_{2}}} \\
& \times \frac{\left(n-2^{N_{t}-1}-2^{l_{2}+1} r-2^{l_{2}}-i\right)\left(n-2^{N_{t}-1}-2^{l_{2}+1} r-i\right)}{(n)}
\end{aligned}
$$

where the third inequality is deduced from Remark 1. Therefore,

$$
\begin{aligned}
&\left|\sum_{k=2^{N_{t}-1}}^{2^{N_{t}-1}} \frac{A_{k, j}}{n-k}\right| \leqslant 2^{l_{1}-N_{t}+1} \sum_{r=0}^{2^{N_{t}-1-l_{2}-1}-2} \frac{2^{2 l_{2}}}{n-2^{N_{t}-1}-2^{l_{2}+1}(r+1)} \\
& \times \frac{1}{n-2^{N_{t}-1}-2^{l_{2}+1}(r+1)+2^{l_{2}}} \\
&+2^{l_{1}-N_{t}+1} \sum_{i=0}^{2^{l_{2}-1}} \frac{2^{l_{2}}}{\left(n-2^{N_{t}}+2^{l_{2}}-i\right)\left(n-2^{N_{t}}+2^{l_{2}+1}-i\right)} \\
& \leqslant 2^{l_{1}-N_{t}-1} \sum_{r=1}^{2^{N_{t}-1-l_{2}-1}-1} \frac{1}{\left(\frac{n-2^{N_{t}-1}}{2^{l_{2}+1}}-r\right)^{2}}+2^{l_{1}-N_{t}+1} \sum_{i=0}^{2^{l_{2}-1}} \frac{1}{2^{l_{2}-i}} \\
& \leqslant C \cdot l_{2} 2^{l_{1}-N_{t}},
\end{aligned}
$$

because $n-2^{N_{t}}+2^{l_{2}+1}-i \geqslant 2^{l_{2}}$, for all $i \in\left\{0, \ldots, 2^{l_{2}}-1\right\}$. Hence, (6) is proved for the case (3).

To establish (7) for the case (3), notice that $n-2^{N_{t}} \leqslant 2^{N_{t-1}+1} \leqslant 2^{l_{2}+1}$, it follows that

$$
\sum_{k=2^{N_{t}}}^{n-1}\left|\frac{A_{k, j}}{n-k}\right| \leqslant 2^{l_{1}-N_{t}+1} \sum_{t=1}^{n-2^{N_{t}}} \frac{1}{t} \leqslant 2^{l_{1}-N_{t}+1} \sum_{t=1}^{2^{l_{2}+1}} \frac{1}{t} \leqslant C \cdot l_{2} 2^{l_{1}-N_{t}} .
$$

Now we study the fourth case where it is clear that $l_{2}<N_{t}-1$, which means that estimate (6) can be proved as done in the previous case. It only remains to prove
estimate (7) in the fourth case. Assume that $j=2^{l_{1}}+2^{l_{2}}+\ldots+2^{l_{s}}+2^{N_{t-1}} M$, where $s \geqslant 2, l_{1}<l_{2}<\ldots<l_{s}<N_{t-1}$ and M is a nonnegative integer. We first assume that $l_{2} \neq N_{i}$ for all $i \in\{1, \ldots, t-2\}$.

First we have

$$
\begin{align*}
\sum_{k=2^{N_{t}}}^{n-2^{l_{s}}-1} \frac{A_{k, j}}{n-k}= & \sum_{k=2^{N_{t}}}^{2^{N_{t}}+2^{l_{2}+1}\left\lfloor\frac{n-2^{l_{s}-2^{N_{t}}} 2^{l_{2}+1}}{}\right\rfloor-1} \frac{A_{k, j}}{n-k}+\sum_{k=2^{N_{t}+2^{l_{2}+1}\left\lfloor\frac{n-2^{l_{s}-2^{N_{t}}}}{2^{l_{2}+1}}\right\rfloor} \frac{A_{k, j}}{n-k}}^{=} \\
& |I I| \leqslant 2^{l^{l_{1}-N_{t}+1}-1} \sum_{k=2^{N_{t}}+2^{l_{2}+1}\left\lfloor\frac{n-2^{l_{s}-2^{N_{t}}}}{2^{l_{2}+1}}\right\rfloor}^{n-2^{l_{s}}-1} \frac{1}{n-k} \\
& \leqslant 2^{l_{1}-N_{t}+1} \sum_{m=2^{l_{s}}}^{2^{l_{s}}+2^{l_{2}+1}} \frac{1}{m} \leqslant C \cdot l_{2} 2^{l_{1}-N_{t}} . \tag{8}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
& I=\sum_{k=0}^{2^{l_{2}+1}\left\lfloor\frac{n-2^{l_{s}-2^{N_{t}}}}{2^{l_{2}+1}}\right\rfloor-1} \frac{A_{2^{N_{t}}+k, j}}{n-2^{N_{t}}-k} \\
& =\sum_{r=0}^{\left\lfloor\frac{n-2^{l_{-2} N_{t}}}{2^{l_{2}+1}}\right\rfloor-1} \sum_{i=0}^{2^{l_{2}-1}}\left(\frac{A_{2^{N_{t}}+2^{l_{2}+1} r+i, j}}{n-2^{N_{t}}-2^{l_{2}+1} r-i}+\frac{A_{2^{N_{t}}+2^{l_{2}+1} r+2^{l_{2}}+i, j}}{n-2^{N_{t}}-2^{l_{2}+1} r-2^{l_{2}}-i}\right) \\
& =\sum_{r=0}^{\left\lfloor\frac{n-2^{l_{s}}-2^{N_{t}}}{2^{l_{2}+1}}\right\rfloor-1} \sum_{i=0}^{2^{l_{2}-1}} A_{2^{N_{t}}+2^{l_{2}+1} r+2^{l_{2}}+i, j} \\
& \times\left(\frac{1}{n-2^{N_{t}}-2^{l_{2}+1} r-2^{l_{2}}-i}-\frac{1}{n-2^{N_{t}}-2^{l_{2}+1} r-i}\right) .
\end{aligned}
$$

It follows that

$$
\begin{align*}
|I| & \leqslant 2^{l_{1}-N_{t}+1} \sum_{r=0}^{\left\lfloor\frac{n-2^{l_{s}} 2^{N_{t}}}{2^{l_{2}+1}}\right\rfloor-1} \sum_{i=0}^{2_{2}-1} \frac{2^{l_{2}}}{\left(n-2^{N_{t}}-2^{l_{2}+1} r-2^{l_{2}}-i\right)\left(n-2^{N_{t}}-2^{l_{2}+1} r-i\right)} \\
& \leqslant 2^{l_{1}-N_{t}+1} \sum_{r=0}^{\left\lfloor\frac{n-2^{l_{s}} 2^{N_{t}}}{2^{l_{2}+1}}\right\rfloor-1} \frac{2^{2 l_{2}}}{\left(n-2^{N_{t}}-2^{l_{2}+1}(r+1)\right)\left(n-2^{N_{t}}-2^{l_{2}+1}(r+1)+2^{l_{2}}\right)} \\
& =2^{l_{1}-N_{t}-1} \sum_{r=1}^{\left\lfloor\frac{n-2^{l_{s}} 2^{N_{t}}}{\left.2^{l_{2}+1}\right\rfloor}\right.} \frac{1}{\left(\frac{n-2^{N_{t}}}{2^{l_{2}+1}}-r\right)\left(\frac{n-2^{N_{t}}}{2^{l_{2}+1}}-r+\frac{1}{2}\right)} \tag{9}\\
& \leqslant 2^{l_{1}-N_{t}-1} \sum_{t=2^{l_{s}-l_{2}-1}}^{\left\lfloor\frac{n-2^{N_{t}} 2^{2+1}}{}\right.} \frac{1}{2^{2}} .
\end{align*}
$$

Then, if $l_{2}+1<l_{s}$ we have

$$
\begin{aligned}
& \sum_{k=n-2^{l_{s}}}^{n-2^{l_{2}+1}-1} \frac{A_{k, j}}{n-k} \\
= & \sum_{k=0}^{2^{l_{s}}-2^{l_{2}+1}-1} \frac{A_{n-2^{l_{s}}+k, j}}{2^{l_{s}}-k} \\
= & \sum_{r=0}^{\frac{2^{l_{s}-2^{l_{2}+1}}}{2^{l_{2}+1}}-1} \sum_{i=0}^{2^{l_{2}-1}}\left(\frac{A_{n-2^{l_{s}+2^{l_{2}+1} r+i, j}}^{2^{l_{s}}-2^{l_{2}+1} r-i}}{}+\frac{A_{n-2^{l_{s}}+2^{l_{2}+1} r+2^{l_{2}+i, j}}^{2^{l_{s}}-2^{l_{2}+1} r-2^{l_{2}}-i}}{}\right) \\
= & \sum_{r=0}^{\frac{2^{l_{s}-2^{l_{2}+1}}}{2^{l_{2}+1}}-1} \sum_{i=0}^{2^{l_{2}-1}} A_{n-2^{l_{s}}+2^{l_{2}+1} r+2^{l_{2}+i, j}}\left(\frac{1}{2^{l_{s}}-2^{l_{2}+1} r-2^{l_{2}}-i}-\frac{2^{l_{2}}}{2^{l_{s}}-2^{l_{2}+1} r-i}\right) \\
= & \sum_{r=0}^{\frac{2^{l_{s}-2^{l_{2}+1}}}{2^{l_{2}+1}}-1} \sum_{i=0}^{2_{2}-1} A_{n-2^{l_{s}}+2^{l_{2}+1} r+2^{l_{2}+i, j}} \frac{\left.2^{l_{s}}-2^{l_{2}+1} r-2^{l_{2}}-i\right)\left(2^{l_{s}}-2^{l_{2}+1} r-i\right)}{},
\end{aligned}
$$

where the third equality is obtained from Remark 1 because if $l_{2} \neq N_{i}$ for all $i \in$ $\{1, \ldots, t-2\}$, then the integers $n-2^{l_{s}}+2^{l_{2}+1} r+i$, where r is a nonnegative integer and $i \in\left\{0, \ldots, 2^{l_{2}}-1\right\}$, satisfy the condition mentioned in Remark 1. It follows that

$$
\begin{align*}
\left|\begin{array}{c}
\mid n-2^{l_{2}+1}-1 \\
k=n-2^{l_{s}}
\end{array} \frac{A_{k, j}}{n-k}\right| & \leqslant 2^{l_{1}-N_{t}+1} \sum_{r=0}^{\frac{2^{l_{s}-2^{l_{2}+1}}}{2^{l_{2}+1}}-1} \frac{2^{2 l_{2}}}{\left(2^{l_{s}}-2^{l_{2}+1}(r+1)\right)\left(2^{l_{s}}-2^{l_{2}+1}(r+1)+2^{l_{2}}\right)} \\
& =2^{l_{1}-N_{t}-1} \sum_{r=1}^{\frac{2^{l_{s}-2^{l_{2}+1}}}{2^{l_{2}+1}}} \frac{1}{\left(2^{l_{s}-l_{2}-1}-r\right)\left(2^{l_{s}-l_{2}-1}-r+\frac{1}{2}\right)} \tag{10}\\
& \leqslant 2^{l_{1}-N_{t}-1} \sum_{t=1}^{2^{l_{s}-l_{2}-1}-1} \frac{1}{t^{2}}
\end{align*}
$$

It remains to estimate the sum

$$
\begin{align*}
\left|\sum_{k=n-2^{l_{2}+1}}^{n-1} \frac{A_{k, j}}{n-k}\right| & =\left|\sum_{k=0}^{2^{l_{2}+1}-1} \frac{A_{n-2^{l_{2}+1}+k, j}}{2^{l_{2}+1}-k}\right| \tag{11}\\
& \leqslant 2^{l_{1}-N_{t}+1} \sum_{t=1}^{2^{l_{2}+1}} \frac{1}{t} \leqslant C \cdot l_{2} 2^{l_{1}-N_{t}}
\end{align*}
$$

Summing the terms in (8), (9), (10) and (11) proves estimate (7) in case (4) under the assumption that $l_{2} \neq N_{i}$ for all $i \in\{1, \ldots, t-2\}$. Now, assume that $l_{2}=N_{i}$ for some $i \in\{1, \ldots, t-2\}$. It is clear that the sums in (8) and (9) can be estimated in the
same way as in the previous case. In this case we first estimate

$$
\begin{equation*}
\left|\sum_{k=n-2^{l_{s}}}^{n-2^{l_{s}}+2^{l_{2}}-1} \frac{A_{k, j}}{n-k}\right| \leqslant 2^{l_{1}-N_{t}+1} \sum_{t=2^{l_{s}-2^{l_{2}}+1}}^{2^{l_{s}}} \frac{1}{t} \leqslant C 2^{l_{1}-N_{t}} . \tag{12}
\end{equation*}
$$

Then we have if $l_{2}+2<l_{s}$

$$
\begin{aligned}
& \sum_{k=n-2^{l_{s}}+2^{l_{2}}}^{n-2^{l_{2}+1}-2^{l_{2}-1}} \frac{A_{k, j}}{n-k}= \sum_{k=0}^{2^{l_{s}}-2^{l_{2}+2}-1} \frac{A_{n-2^{l_{s}}+2^{l_{2}}+k, j}}{2^{l_{s}}-2^{l_{2}}-k} \\
&= \sum_{r=0}^{2^{l_{s}-l_{2}-1}}-3 \sum_{i=0}^{2^{l_{2}-1}}\left(\frac{A_{n-2^{l_{s}}+2^{l_{2}}+2^{l_{2}+1} r+i, j}}{2^{l_{s}}-2^{l_{2}+1} r-2^{l_{2}}-i}+\frac{\left.A_{n-2^{l_{s}}+2^{l_{2}+1}+2^{l_{2}+1} r+i, j}^{2^{l_{s}}-2^{l_{2}+1} r-2^{l_{2}+1}-i}\right)}{=}\right. \\
&=\sum_{r=0}^{2^{l_{s}-l_{2}-1}}-32_{i=0}^{2_{2}-1} A_{n-2^{l_{s}}+2^{l_{2}+1}(r+1)+i, j} \\
& \times\left(\frac{1}{2^{l_{s}}-2^{l_{2}+1}(r+1)-i}+\frac{1}{2^{l_{s}}-2^{l_{2}+1}(r+1)+2^{l_{2}}-i}\right)
\end{aligned}
$$

where the last equality is obtained from Remark 1 because the numbers $n-2^{l_{s}}+2^{l_{2}}+$ $2^{l_{2}+1} r+i$, where r is a nonnegative integer and $i \in\left\{0, \ldots, 2^{l_{2}}-1\right\}$, satisfy the condition mentioned there. It follows that

$$
\begin{align*}
\left.\sum_{k=n-2^{l_{s}+2^{l_{2}}}}^{n-2^{l_{2}+1}-2^{l_{2}-1}} \frac{A_{k, j}}{n-k} \right\rvert\, \leqslant & 2^{l_{1}-N_{t}+1} \sum_{r=0}^{2^{l_{s}-l_{2}-1}-32^{l_{2}}-1} \sum_{i=0}^{2^{l_{s}}-2^{l_{2}+1}(r+1)-i} \\
& \times \frac{2^{l_{2}}}{2^{l_{s}}-2^{l_{2}+1}(r+1)+2^{l_{2}}-i} \\
\leqslant & 2^{l_{1}-N_{t}+1} \sum_{r=0}^{2^{l_{s}-l_{2}-1}-3} \frac{2^{2 l_{2}}}{\left(2^{l_{s}}-2^{l_{2}+1}(r+1)-2^{l_{2}}\right)\left(2^{l_{s}}-2^{l_{2}+1}(r+1)\right)} \\
\leqslant & 2^{l_{1}-N_{t}-1} \sum_{r=1}^{2^{l_{s}-l_{2}-1}-2} \frac{1}{\left(2^{l_{s}-l_{2}-1}-r-\frac{1}{2}\right)\left(2^{l_{s}-l_{2}-1}-r\right)} \\
\leqslant & 2^{l_{1}-N_{t}-1} \sum_{t=1}^{2^{l_{s}-l_{2}-1}-1} \frac{1}{t^{2}} \leqslant C \cdot 2^{l_{1}-N_{t}} \tag{13}
\end{align*}
$$

Now, we consider the sum

$$
\begin{align*}
\left|\sum_{k=n-2^{l_{2}+1}-2^{l_{2}}}^{n-1} \frac{A_{k, j}}{n-k}\right| & =\left|\sum_{k=0}^{2^{l_{2}+1}+2^{l_{2}}-1} \frac{A_{n-2^{l_{2}+1}-2^{l_{2}}+k, j}}{2^{l_{2}+1}+2^{l_{2}}-k}\right| \\
& \leqslant 2^{l_{1}-N_{t}+1} \sum_{t=1}^{2^{l_{2}+1}+2^{l_{2}}} \frac{1}{t} \leqslant C \cdot l_{2} 2^{l_{1}-N_{t}} . \tag{14}
\end{align*}
$$

Summing the terms in (8), (9), (12), (13) and (14) proves estimate (7) in case (4) under the assumption that $l_{2}=N_{i}$ for some $i \in\{1, \ldots, t-2\}$.

THEOREM 1. Let $0<p<1$, then the maximal operator

$$
\tilde{L}_{p}^{*}:=\sup _{n} \frac{\log (n+1)\left|L_{n} f\right|}{(n+1)^{\frac{1}{p}-1}}
$$

is bounded from the space $H_{p}(G)$ to the space $L_{p}(G)$.
Proof. Since \tilde{L}_{p}^{*} is bounded (see (1)) according to [17, Lemma 1], it suffices to prove that

$$
\begin{equation*}
\int_{\bar{I}_{N}}\left|\tilde{L}_{p}^{*} a\right|^{p} \leqslant C \tag{15}
\end{equation*}
$$

for every atom a supported on I_{N}, where $\bar{I}_{N}:=G \backslash I_{N}$.
Let a be an atom supported on the interval I_{N}. We have according to Lemma 5 that

$$
\begin{aligned}
& \int_{\bar{I}_{N}} \sup _{n}\left|\frac{\log (n+1) L_{n} a}{(n+1)^{\frac{1}{p}-1}}\right|^{p} d x=\int_{\bar{I}_{N}} \sup _{n} \frac{\log ^{p}(n+1)}{(n+1)^{1-p}} \frac{1}{l_{n}^{p}}\left|\sum_{k=1}^{n-1} \frac{S_{k} a}{n-k}\right|^{p} d x \\
= & \left.\int_{\bar{I}_{N}} \sup _{n} \frac{\log ^{p}(n+1)}{(n+1)^{1-p}} \frac{1}{l_{n}^{p}}\right|_{s=1} ^{|n|-22^{s+1}-1} \sum_{k=2^{s}} \frac{S_{k} a}{n-k}+\sum_{k=2^{|n|-1}}^{2^{|n|}-1} \frac{S_{k} a}{n-k}+\left.\sum_{k=2^{|n|}}^{n-1} \frac{S_{k} a}{n-k}\right|^{p} d x \\
\leqslant & C \int_{\bar{I}_{N}} \sup _{n} \frac{1}{(n+1)^{1-p}}\left|\sum_{s=1}^{|n|-22^{s+1}-12^{s}-1} \sum_{k=2^{s}}^{\sum_{j=0}} \frac{A_{k, j}}{n-k}\left(S_{2^{s+1}} a\left(x+z_{j}\right)-S_{2^{s}} a\left(x+z_{j}\right)\right)\right|^{p} d x \\
& +C \int_{\bar{I}_{N}} \sup _{n} \frac{1}{(n+1)^{1-p}}\left|\sum_{j=0}^{2^{|n|-1}-1} \sum_{k=2^{|n|-1}}^{2^{|n|}-1} \frac{A_{k, j}}{n-k}\left(S_{2^{|n|}} a\left(x+z_{j}\right)-S_{2^{|n|-1}} a\left(x+z_{j}\right)\right)\right|^{p} d x \\
& +C \int_{\bar{I}_{N}} \sup _{n} \frac{1}{(n+1)^{1-p}}\left|\sum_{j=0}^{2^{|n|}-1} \sum_{k=2^{|n|}}^{n-1} \frac{A_{k, j}}{n-k}\left(S_{2^{|n|+1}} a\left(x+z_{j}\right)-S_{2^{|n|}} a\left(x+z_{j}\right)\right)\right|^{p} d x \\
= & \Im_{1}+\Im_{2}+\Im_{3} .
\end{aligned}
$$

Notice that for all $s \leqslant|n|-2$,

$$
\begin{equation*}
\sum_{k=2^{s}}^{2^{s+1}-1} \frac{1}{n-k} \leqslant \sum_{t=n-2^{s+1}}^{n-2^{s}} \frac{1}{t} \leqslant C \log \frac{n-2^{s}}{n-2^{s+1}} \leqslant C \log \frac{\frac{n}{2^{s}}-1}{\frac{n}{2^{s}}-2} \leqslant C \tag{16}
\end{equation*}
$$

Since $S_{2^{s}} a(x)=0$ for all $s \leqslant N$ and $x \in G$, we have from the fact that a is supported on I_{N}, Remark 1 and (16) that

$$
\begin{aligned}
\mathfrak{I}_{1} \leqslant & C \sum_{i=1}^{2^{N}-1} \int_{I_{N}\left(z_{i}\right)} \sup _{n \geqslant 2^{N}} \frac{1}{(n+1)^{1-p}} \\
& \times\left|\sum_{s=N}^{|n|-22^{s+1}-1} \sum_{k=2^{s}}^{\substack{\begin{subarray}{c}{1 \in\left\{0, \ldots, 2^{s}-1\right\}, j=i\left(\bmod 2^{N}\right)} }}\end{subarray}} \frac{A_{k, j}}{n-k}\left(S_{2^{s+1}} a\left(x+z_{j}\right)-S_{2^{s} s} a\left(x+z_{j}\right)\right)\right|^{p} d x
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant C\|a\| \|_{\infty}^{p} \sum_{i=1}^{2^{N}-1} \sup _{n \geqslant 2^{N}} \frac{1}{(n+1)^{1-p}}\left(\sum_{s=N}^{|n|-22^{s+1}-1} \sum_{k=2^{s}} \sum_{\substack{j \in\left\{0, \ldots, 2^{s}-1\right\}, j=i\left(\bmod 2^{N}\right)}} \frac{\left|A_{k, j}\right|}{n-k}\right)^{p} \int_{I_{N}\left(z_{i}\right)} d x \\
& \leqslant C \sum_{r=0}^{N-1} \sum_{\substack{i=0 \\
i \neq 0\left(\bmod 2^{2}\right)}} \sup _{\left.n \geqslant 2^{N}\right)} \frac{1}{(n+1)^{1-p}}\left(\sum_{s=N}^{\left.|n|-22^{s+1} \sum_{k=2^{s}} 2^{s-N} \frac{2^{r-s}}{n-k}\right)^{p}}\right. \\
& \leqslant C \sum_{r=0}^{N-1} 2^{(r-N) p} 2^{N-r} \sup _{n \geqslant 2^{N}} \frac{1}{(n+1)^{1-p}}(|n|-N)^{p} \\
& \leqslant C 2^{N(1-p)} \sup _{n \geqslant 2^{N}} \frac{1}{(n+1)^{1-p}}(|n|-N)^{p} \leqslant C
\end{aligned}
$$

where in the third inequality we used the fact that from Remark $1,\left|A_{k, j}\right| \leqslant 2^{r-s+1}$, if $k \in\left\{2^{s}, \ldots, 2^{s+1}-1\right\}$ and $j \neq 0\left(\bmod 2^{r+1}\right)$, while the fourth inequality is deduced from (16).

We use (6) to estimate \mathfrak{I}_{2}. We have

$$
\begin{aligned}
& \Im_{2} \leqslant C\|a\|_{\infty}^{p} \sum_{i=1}^{2^{N}-1} \sup _{n \geqslant 2^{N}} \frac{1}{(n+1)^{1-p}}\left(\sum_{\substack{j \in\left\{0, \ldots, 2^{|n|-1}-1\right\} \\
j=i\left(\bmod 2^{N}\right)}}\left|\sum_{k=2^{|n|-1}}^{2^{|n|}-1} \frac{A_{k, j}}{n-k}\right|\right)^{p} \int_{I_{N}\left(z_{i}\right)} d x \\
& \leqslant C \sum_{l_{1}=0}^{N-2} \sum_{\substack{l_{2}=l_{1}+1}}^{N-1} \sum_{\substack{i \in\left\{0, \ldots, 2^{N}-1\right\}, n^{\prime} \geqslant 2^{N} \\
i=2^{l}+2^{2}+2 M, M \text { odd }}} \sup _{\substack{ }} \frac{1}{(n+1)^{1-p}}\left(\sum_{\substack{j \in\left\{0, \ldots, 2^{|n|-1}-1\right\}, j=i\left(\bmod 2^{N}\right)}}\left|\sum_{k=2^{|n|-1}}^{2^{|n|}-1} \frac{A_{k, j}}{n-k}\right|\right)^{p} \\
& +C \sum_{l_{1}=0}^{N-1} \sup _{n \geqslant 2^{N}} \frac{1}{(n+1)^{1-p}}\left(\sum_{\substack{j \in\left\{0, \ldots, 2^{|n|-1}-1\right\} \\
j=2^{l_{1}}\left(\bmod 2^{N}\right)}} \left\lvert\, \sum_{k=2^{|n|-1}}^{2^{|n|}-1} \frac{A_{k, j}}{n-k}\right.\right)^{p}:=\Im_{2,1}+\Im_{2,2} .
\end{aligned}
$$

According to (6), for all $j=2^{l_{1}}+2^{l_{2}} \tilde{M}$, where \tilde{M} is some odd number, $l_{1} \in$ $\{0, \ldots, N-2\}$ and $l_{2} \in\left\{l_{1}+1, \ldots, N-1\right\}$, we have that

$$
\left|\sum_{k=2^{|n|-1}}^{2^{|n|}-1} \frac{A_{k, j}}{n-k}\right| \leqslant C \cdot l_{2} 2^{l_{1}-|n|}
$$

Hence,

$$
\begin{aligned}
\Im_{2,1} & \leqslant C \sum_{l_{1}=0}^{N-2} \sum_{l_{2}=l_{1}+1}^{N-1} 2^{N-l_{2}} \sup _{n \geqslant 2^{N}} \frac{1}{(n+1)^{1-p}}\left(2^{|n|-N} l_{2} 2^{l_{1}-|n|}\right)^{p} \\
& \leqslant C \sup _{n \geqslant 2^{N}} \frac{2^{N(1-p)}}{(n+1)^{1-p}} \sum_{l_{1}=0}^{N-2} 2^{l_{1} p} \sum_{l_{2}=l_{1}+1}^{N-1} 2^{-l_{2}} l_{2}^{p}
\end{aligned}
$$

Let $p^{\prime} \in(p, 1)$, we have

$$
\begin{aligned}
\sum_{l_{1}=0}^{N-1} 2^{l_{1} p} \sum_{l_{2}=l_{1}+1}^{N} 2^{-l_{2}} l_{2}^{p} & \leqslant C \sum_{l_{1}=0}^{N-1} 2^{l_{1}\left(p-p^{\prime}\right)} \sum_{l_{2}=l_{1}+1}^{N} \frac{l_{2}^{p}}{2_{2}\left(1-p^{\prime}\right)} 2^{\left(l_{1}-l_{2}\right) p^{\prime}} \\
& \leqslant C \sum_{l_{1}=0}^{N-1} 2^{l_{1}\left(p-p^{\prime}\right)} \sum_{l_{2}=l_{1}+1}^{\infty} \frac{l_{2}^{p}}{2_{2}\left(1-p^{\prime}\right)} \leqslant C \sum_{l_{1}=0}^{\infty} 2^{l_{1}\left(p-p^{\prime}\right)} \leqslant C .
\end{aligned}
$$

Hence, $\Im_{2,1} \leqslant C$. In a similar way we get,

$$
\begin{aligned}
\Im_{2,2} \leqslant & C \sum_{l_{1}=0}^{N-1} \sup _{n \geqslant 2^{N}} \frac{1}{(n+1)^{1-p}}\left(\sum_{\substack{l_{2}=N}}^{|n|-1} \sum_{\substack{j \in\left\{0, \ldots, 2^{|n|-1}-1\right\}, j=2^{l_{1}+2^{l_{2}} M} \begin{array}{c}
M \text { odd }
\end{array}}}\left|\sum_{k=2^{|n|-1}}^{2^{|n|}-1} \frac{A_{k, j}}{n-k}\right|\right)^{p} \\
& +C \sum_{l_{1}=0}^{N-1} \sup _{n \geqslant 2^{N}} \frac{1}{(n+1)^{1-p}}\left|\sum_{k=2^{|n|-1}}^{2^{|n|}-1} \frac{A_{k, 2^{l_{1}}}^{n-k}}{n}\right|^{p} \\
\leqslant & C \sum_{l_{1}=0}^{N-1} \sup _{n \geqslant 2^{N}} \frac{1}{(n+1)^{1-p}}\left(\sum_{l_{2}=N}^{|n|-1} 2^{|n|-l_{2}} l_{2} 2^{l_{1}-|n|}\right)^{p} \\
& +C \sum_{l_{1}=0}^{N-1} \sup _{n \geqslant 2^{N}} \frac{1}{(n+1)^{1-p}}\left(|n| 2^{l_{1}-|n|}\right)^{p} .
\end{aligned}
$$

We have

$$
\sum_{l_{1}=0}^{N-1} 2^{l_{1} p}\left(\sum_{l_{2}=N}^{\infty} 2^{-l_{2}} l_{2}\right)^{p} \leqslant C\left(N 2^{-N}\right)^{p} \sum_{l_{1}=0}^{N-1} 2^{l_{1} p} \leqslant C \cdot N^{p}
$$

Moreover,

$$
\begin{aligned}
\sum_{l_{1}=0}^{N-1} \sup _{n \geqslant 2^{N}} \frac{1}{(n+1)^{1-p}}\left(|n| 2^{l_{1}-|n|}\right)^{p} & \leqslant \sup _{n \geqslant 2^{N}} \frac{|n|^{p}}{(n+1)^{1-p}} \sum_{l_{1}=0}^{N-1} 2^{\left(l_{1}-N\right) p} \\
& \leqslant C \sup _{n \geqslant 2^{N}} \frac{|n|^{p}}{(n+1)^{1-p}} .
\end{aligned}
$$

Therefore, by the definition of $|n|$ we get that

$$
\Im_{2,2} \leqslant C \sup _{n \geqslant 2^{N}} \frac{|n|^{p}}{(n+1)^{1-p}} \leqslant C \frac{\log ^{p} n}{(n+1)^{1-p}} \leqslant C
$$

which means that $\mathfrak{I}_{2} \leqslant C$. It is easily seen that using (7), $\mathfrak{I}_{3} \leqslant C$ can be proved in a similar way. We deduce that (15) is verified for every atom a supported on I_{N}.

Acknowledgements. I would like to thank the referee for giving such constructive comments and valuable suggestions, which substantially helped to improve this manuscript.

REFERENCES

[1] I. Blahota and G. Gát, Norm summability of Nörlund logarithmic means on unbounded Vilenkin groups, Anal. Theory Appl., 24, 1 (2008), 1-17.
[2] I. Blahota, L. E. Persson and G. Tephnadze, Two-sided estimates of the Lebesgue constants with respect to Vilenkin systems and applications, Glasgow Math. J., 60 (2018), 17-34.
[3] G. Gát and U. Goginava, Almost everywhere convergence of a subsequence of the logarithmic means of quadratical partial sums of double Walsh-Fourier series, Publ. Math. Debrecen, 71, 1-2 (2007), 173-184.
[4] G. GÁt and U. Goginava, Uniform and L-convergence of logarithmic means of Walsh-Fourier series, Acta Math. Sin., 22 (2006), 497-506.
[5] U. Goginava, Almost everywhere convergence of subsequence of logarithmic means of WalshFourier series, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 21 (2005), no. 2, 169-175.
[6] N. Memić, Almost everywhere convergence of some subsequences of the Nörlund logarithmic means of Walsh-Fourier series, Anal. Math., 41 (2015), 45-54.
[7] N. Memić, An estimate of the maximal operator of the Nörlund logarithmic means with respect to the character system of the group of 2-adic integers on the Hardy space H_{1}, Bull. Iran. Math. Soc. 48, no. 6 (2022), 3381-3391.
[8] N. Memić, On the divergence of Nörlund logarithmic means with respect to the L_{1} norm on some unbounded Vilenkin groups, Facta. Univ., Ser. Math. Inf., 29 (2014), no. 3, 271-279.
[9] L.-E. Persson, F. Schipp, G. Tephnadze and F. Weisz, An analogy of the Carleson-Hunt theorem with respect to Vilenkin systems, J. Fourier Anal. Appl, 28, 48 (2022), 1-29.
[10] L. E. Persson, G. Tephnadze and P. Wall, On an approximation of 2-dimensional WalshFourier series in the martingale Hardy spaces, Ann. Funct. Anal., 9, 1 (2018), 137-150.
[11] L. E. Persson, G. Tephnadze and P. Wall, On the maximal operators of Vilenkin-Nörlund means, J. Fourier Anal. Appl., 21 (2015), 76-94.
[12] L. E. Persson, G. Tephnadze and P. Wall, On the Nörlund logarithmic means with respect to Vilenkin system in the martingale Hardy space H_{1}, Acta math. Hung., 154, 2 (2018) 289-301.
[13] L. E. Persson, G. Tephnadze and P. Wall, Some new ($H p, L p$) type inequalities of maximal operators of Vilenkin-Nörlund means with non-decreasing coefficients, J. Math. Inequal, 9, 4 (2015), 1055-1069.
[14] L. E. Persson, G. Tephnadze and F. Weisz, Martingale Hardy Spaces and Summability of onedimensional Vilenkin-Fourier Series, Birkhäuser/Springer, 2022.
[15] F. Schipp, W. R. Wade, P. Simon, J. Pál, Walsh series: an introduction to dyadic harmonic analysis, Adam Hilger, Bristol and New York, 1990.
[16] G. Tephnadze, On the convergence of partial sums with respect to Vilenkin system on the martingale Hardy spaces, J. Contemp. Math. Anal., 53, 5 (2018) 294-306.
[17] G. Tephnadze, On the partial sums of Vilenkin-Fourier series, J. Contemp. Math. Anal. 49 (2014), 23-32.
[18] G. Tephnadze, On the partial sums of Walsh-Fourier series, Colloq. Math., 141, 2 (2015), 227-242.
[19] G. Tephnadze and G. Tutberidze, A note on the maximal operators of the Nörlund logaritmic means of Vilenkin-Fourier series, Transactions of A. Razmadze Math. Inst., 174, 1 (2020), 107-112.
[20] G. Tutberidze, A note on the strong convergence of partial sums with respect to Vilenkin system, J. Contemp. Math. Anal., 54, 6 (2019), 319-324.
(Received December 6, 2023)

> Nacima Memić
> Department of Mathematics
> Faculty of Natural Sciences and Mathematics, University of Sarajevo Zmaja od Bosne 33-35, Sarajevo, Bosnia and Herzegovina
> e-mail: nacima.o@gmail. com

[^1]
[^0]: Mathematics subject classification (2020): 42C10.
 Keywords and phrases: Walsh-Paley system, Hardy space, Nörlund logarithmic means, inequalities.

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

