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AN ESTIMATE OF THE MAXIMAL OPERATOR OF THE

NÖRLUND LOGARITHMIC MEANS WITH RESPECT TO

THE WALSH–PALEY SYSTEM ON THE HARDY SPACE Hp

NACIMA MEMIĆ

(Communicated by L. E. Persson)

Abstract. We define a weighted maximal operator L̃∗
p and prove that it is bounded from Hp(G)

to Lp(G) , for p ∈ (0,1) .

1. Introduction

Let Z2 denote the discrete cyclic group Z2 = {0,1} , where the group operation is
addition modulo 2.

The dyadic group G is obtained by G =


i=0

Z2 (see [15]), where topology and the

probability measure |.| are obtained by the product.
Let x = (xn)n�0 ∈ G . The sets In(x) := {y ∈ G : y0 = x0, . . . ,yn−1 = xn−1} , n � 1

and I0(x) := G are dyadic intervals of G . Let In = In(0) , and en := (in)i . It is easily
seen that (In)n is a decreasing sequence of subgroups.

Since every nonnegative integer i can be written in the form i = 
k=0 ik2k , where

ik ∈ {0,1} , we define the sequence (zi)i�0 of elements from G by

zi =



k=0

ikek.

It is easily seen that for each positive integer n , the set {zi, i < 2n} is a set of
representatives of In -cosets.

The Walsh-Paley system is defined as the set of Walsh-Paley functions:

n(x) =
|n|

k=0

(rk(x))nk , n ∈ N, x ∈ G,

where n =



k=0
nk2k , nk ∈ {0,1} , |n| = max{k,nk �= 0} and rk(x) = (−1)xk .
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If f ∈ L1 , we can define the Fourier coefficients, partial sums of the Fourier series
and Dirichlet kernels with respect to the Walsh system as

f̂ (k) :=
∫

G
fkd ,

Sn f :=
n−1


k=0

f̂ (k)k, (S0 f := 0) ,

Dn :=
n−1


k=0

k.

It can be easily seen that Sn f (x) = (Dn ∗ f )(x) and D2n(x) = 2n1In(x).
Nörlund logarithmic means and kernels are defined by

Ln f :=
1
ln

n


k=0

Sk f
n− k

,

and

Fn :=
1
ln

n


k=0

Dk

n− k
,

where

ln =
n


k=1

1
k
.

It is known that ([14])
‖Fn‖1 � c logn,

and

sup
n

∥∥∥∥∥ Fn

(n+1)1/p−1

∥∥∥∥∥
1

� C < . (1)

For every positive integer n , the algebra generated by the intervals {In(x),x ∈ G}
is denoted by Fn . If f = ( fn)n is a martingale with respect to Fn , then its maximal
function f ∗ is defined by f ∗ = sup

n
| fn| . If f ∈ L1(G) , then its maximal function is

defined by

f ∗(x) = sup
n

1
|In|
∣∣∣∣∫

In(x)
f (t)dt

∣∣∣∣ .
For every p∈ (0,) , the Hardy space Hp(G) consists of all martingales f = ( fn)n

such that f ∗ ∈ Lp(G) . The norm on Hp(G) is defined by

‖ f‖Hp := ‖ f ∗‖p.

A bounded measurable function a is a p -atom, if it is supported on some dyadic inter-
val I , such that ∫

I
a = 0, ‖a‖ �| I |− 1

p .
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Throughout the paper C denotes an absolute positive constant which may vary in
different contexts.

The a.e. convergence of a subsequence of logarithmic means of Walsh-Fourier
series of integrable functions was studied in the works [3], [5] and [6]. Results related
to partial sums and Nörlund logarithmic means with respect to unbounded Vilenkin
system can be found in [1] and [8]. Nörlund logarithmic means were studied in different
contexts in [1], [2], [4], [9], [10], [11], [12], [16], [17], [18], [19] and [20].

Many maximal operators were studied on the Hardy space Hp of general Vilenkin
groups, for p ∈ (0,1] (see for example [1], [12], [13] and [17]).

In [19, Theorem 1] it was proved that the operator

sup
n

| Ln f |
(n+1)

1
p−1

is bounded from the space Hp to the space Lp on general Vilenkin groups. Moreover,
for every nondecreasing positive sequence {n} satisfying

limsup
n→

(n+1)
1
p−1

lognn
= ,

the maximal operator

sup
n

| Ln f |
n

is not bounded from Hp to Lp .
In Theorem 1 we prove that the operator

L̃∗
p := sup

n

log(n+1) | Ln f |
(n+1)

1
p−1

is bounded from the space Hp(G) to the space Lp(G) . Of course, the second part of
[19, Theorem 1] describes the sharpness of the result obtained in Theorem 1. Similar
results were obtained for the Walsh-Kaczmarz system in [7].

The following open problem was stated on pages 476–477 of the recent book [14]:

OPEN PROBLEM. For any 0 < p < 1 , is it possible to find non-negative, non-

decreasing sequence (n,n ∈ N) such that the maximal operator
∼
L
∗
p defined by

∼
L
∗
p f := sup

n∈N

|Ln f |
n+1

is bounded from the Hardy space Hp to the Lebesgue space Lp? Moreover, is it true
that the rate of (n,n ∈ N) is sharp, that is, for any non-negative, non-decreasing
sequence (n,n ∈ N) satisfying the condition

lim
n→

n

n
= ,
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there exists a martingale f ∈ Hp (G) such that the maximal operator

sup
n∈N

|Ln f |
n+1

is not bounded from the Hardy space Hp to the Lebesgue space Lp?

In [19] Tephnadze and Tutberidze partially answered this open problem and proved
that there exist absolute constants C1 and C2 such that

C1n1/p−1

log(n+1)
� n � C2n

1/p−1.

In this paper we establish an answer for the Walsh system by proving that such
optimal weights are {

n1/p−1

log(n+1)

}
.

2. Main results

LEMMA 1. Let n be a positive integer having the dyadic representation n = 2N1 +
. . .+2Nt , where N1 < N2 < .. . < Nt and Nt = |n| . Then, Dn(x) can be written in the
form

Dn(x) = D2Nt +
2Nt−1


j=0

An, j (D2Nt+1(x+ z j)−D2Nt (x+ z j)) , (2)

where

An,0 :=
t−1


i=1

2Ni−Nt , (3)

An, j := rNt−1(z j) . . . rNi+1(z j)

[
2Ni−Nt + rNi(z j)

i−1


s=1

2Ns−Nt

]
, (4)

if j = 0 (mod 2Ni) and j �= 0 (mod 2Ni+1) for some i ∈ {1, . . . ,t−1} .
For j �= 0 (mod 2N1) , An, j = 0 .

Proof. It was proved in [15] that

Dn =
t


i=1

rNt . . . rNi+1D2Ni . (5)
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Therefore,

Dn(x) = D2Nt (x)+
t−1


i=1

rNt (x) . . . rNi+1(x)D2Ni (x)

= D2Nt (x)+
t−1


i=1

2Ni−Nt rNt (x)D2Nt (x)

+
t−1


i=1

2Ni−Nt rNt (x) . . . rNi+1(x) 
j∈{1,...,2Nt−1}
j=0 (mod 2Ni )

D2Nt (x+ z j)

= D2Nt (x)+
t−1


i=1

2Ni−Nt (D2Nt+1(x)−D2Nt (x))

+
t−1


i=1

2Ni−Nt 
j∈{1,...,2Nt−1}
j=0 (mod 2Ni )

rNt−1(z j) . . . rNi+1(z j)(D2Nt+1(x+ z j)−D2Nt (x+ z j)),

because
rNt (y)D2Nt (y) = D2Nt+1(y)−D2Nt (y), ∀y ∈ G,

besides, rNt (z j) = 1, for every j < 2Nt , so that rNt (x) = rNt (x+ z j) . Therefore, we get

Dn(x) = D2Nt (x)+
t−1


i=1

2Ni−Nt (D2Nt+1(x)−D2Nt (x))

+
t−1


i=1


j=0 (mod 2Ni )

j �=0 (mod 2Ni+1)

rNt−1(z j) . . . rNi+1(z j)

×[2Ni−Nt + rNi(z j)2Ni−1−Nt + . . .+ rNi(z j) . . . rN2(z j)2N1−Nt
]

×(D2Nt+1(x+ z j)−D2Nt (x+ z j))

= D2Nt (x)+
t−1


i=1

2Ni−Nt (D2Nt+1(x)−D2Nt (x))

+
t−1


i=1


j=0 (mod 2Ni )

j �=0 (mod 2Ni+1)

rNt−1(z j) . . . rNi+1(z j)

×[2Ni−Nt +rNi(z j)2Ni−1−Nt + . . .+rNi(z j)2N1−Nt
]
(D2Nt+1(x+z j)−D2Nt (x+z j))

= D2Nt (x)+
t−1


i=1

2Ni−Nt (D2Nt+1(x)−D2Nt (x))

+
t−1


i=1


j=0 (mod 2Ni )

j �=0 (mod 2Ni+1)

rNt−1(z j) . . . rNi+1(z j)

[
2Ni−Nt + rNi(z j)

i−1


s=1

2Ns−Nt

]

×(D2Nt+1(x+ z j)−D2Nt (x+ z j)),
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where the previous sums are obviously taken over j ∈ {0, . . . ,2Nt −1} . �

The following remark is a direct consequence of formula (4).

REMARK 1. let j = 2l1 +2l2 +2l3M , where l1 < l2 < l3 and M is a nonnegative
integer. If n = |n|

i=0 ni2i is larger than 2| j|+1 and such that nl2 = 0, then

An, j = −An+2l2 , j.

LEMMA 2. Let n = 2N1 + . . .+2Nt , where N1 < N2 < .. . < Nt and let j = 2l1 +
2l2M, where l1 < Nt and M � 0 . Then,∣∣∣∣∣ 2Nt−1


k=2Nt−1

Ak, j

n− k

∣∣∣∣∣� Cmin{l2,Nt}2l1−Nt (6)

and ∣∣∣∣∣ n−1


k=2Nt

Ak, j

n− k

∣∣∣∣∣� Cmin{l2,Nt}2l1−Nt . (7)

Since the notation Ak, j wasn’t defined in Lemma 1 for k < 2| j|+1 , we may consider
in this case that Ak, j := Ak, j−2|k|	 j

2|k| 

.

Proof. We consider the following cases

1. l1 +1 = Nt ,

2. l1 +1 < Nt and l2 � Nt −1,

3. l1 +1 < Nt and Nt−1 � l2 < Nt −1,

4. l2 < Nt−1 .

In the first case we have Nt � l2 . Besides, it can be seen from formulae (4) and
(3) that |Ak, j| < 2l1−|k|+1 . Hence,

n−1


k=2Nt−1

∣∣∣∣ Ak, j

n− k

∣∣∣∣� n−1


k=2Nt−1

C
n− k

� C
n


t=1

1
t

� C ·Nt .

In the second case, estimates (6) and (7) can be deduced from

n−1


k=2Nt−1

∣∣∣∣ Ak, j

n− k

∣∣∣∣� 2l1−Nt+1
n−1


k=2Nt−1

1
n− k

� C ·Nt2
l1−Nt � C ·min{l2,Nt}2l1−Nt ,

because Nt � 2min{l2,Nt} .
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In case (3) we have

2Nt−1


k=2Nt−1

Ak, j

n− k

=
2Nt−1−1


k=0

A2Nt−1+k, j

n−2Nt−1 − k

=
2Nt−1−l2−1−1


r=0

2l2−1


i=0

( A2Nt−1+2l2+1r+2l2+i, j

n−2Nt−1−2l2+1r−2l2 − i
+

A2Nt−1+2l2+1r+i, j

n−2Nt−1−2l2+1r− i

)

=
2Nt−1−l2−1−1


r=0

2l2−1


i=0

A2Nt−1+2l2+1r+2l2+i, j

×
(

1
n−2Nt−1−2l2+1r−2l2 − i

− 1
n−2Nt−1−2l2+1r− i

)
=

2Nt−1−l2−1−1


r=0

2l2−1


i=0

A2Nt−1+2l2+1r+2l2+i, j

× 2l2

(n−2Nt−1−2l2+1r−2l2 − i)(n−2Nt−1−2l2+1r− i)
,

where the third inequality is deduced from Remark 1. Therefore,∣∣∣∣∣ 2Nt−1


k=2Nt−1

Ak, j

n− k

∣∣∣∣∣ � 2l1−Nt+1
2Nt−1−l2−1−2


r=0

22l2

n−2Nt−1−2l2+1(r+1)

× 1
n−2Nt−1−2l2+1(r+1)+2l2

+2l1−Nt+1
2l2−1


i=0

2l2

(n−2Nt +2l2 − i)(n−2Nt +2l2+1− i)

� 2l1−Nt−1
2Nt−1−l2−1−1


r=1

1

( n−2Nt−1

2l2+1 − r)2
+2l1−Nt+1

2l2−1


i=0

1
2l2 − i

� C · l22l1−Nt ,

because n−2Nt +2l2+1 − i � 2l2 , for all i ∈ {0, . . . ,2l2 −1} . Hence, (6) is proved for
the case (3).

To establish (7) for the case (3), notice that n− 2Nt � 2Nt−1+1 � 2l2+1 , it follows
that

n−1


k=2Nt

∣∣∣∣ Ak, j

n− k

∣∣∣∣� 2l1−Nt+1
n−2Nt


t=1

1
t

� 2l1−Nt+1
2l2+1


t=1

1
t

� C · l22l1−Nt .

Now we study the fourth case where it is clear that l2 < Nt − 1, which means that
estimate (6) can be proved as done in the previous case. It only remains to prove
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estimate (7) in the fourth case. Assume that j = 2l1 + 2l2 + . . .+ 2ls + 2Nt−1M , where
s � 2, l1 < l2 < .. . < ls < Nt−1 and M is a nonnegative integer. We first assume that
l2 �= Ni for all i ∈ {1, . . . ,t−2} .

First we have

n−2ls−1


k=2Nt

Ak, j

n− k
=

2Nt +2l2+1	 n−2ls−2Nt

2l2+1 
−1


k=2Nt

Ak, j

n− k
+

n−2ls−1


k=2Nt +2l2+1	 n−2ls−2Nt

2l2+1 


Ak, j

n− k

=: I + II.

|II| � 2l1−Nt+1
n−2ls−1


k=2Nt +2l2+1	 n−2ls−2Nt

2l2+1 


1
n− k

(8)

� 2l1−Nt+1
2ls+2l2+1


m=2ls

1
m

� C · l22l1−Nt .

On the other hand,

I =
2l2+1	 n−2ls−2Nt

2l2+1 
−1


k=0

A2Nt +k, j

n−2Nt − k

=
	 n−2ls−2Nt

2l2+1 
−1


r=0

2l2−1


i=0

( A2Nt +2l2+1r+i, j

n−2Nt −2l2+1r− i
+

A2Nt +2l2+1r+2l2+i, j

n−2Nt −2l2+1r−2l2 − i

)

=
	 n−2ls−2Nt

2l2+1 
−1


r=0

2l2−1


i=0

A2Nt +2l2+1r+2l2+i, j

×
(

1
n−2Nt −2l2+1r−2l2 − i

− 1
n−2Nt −2l2+1r− i

)
.

It follows that

|I| � 2l1−Nt+1

	 n−2ls−2Nt

2l2+1 
−1


r=0

2l2−1


i=0

2l2

(n−2Nt −2l2+1r−2l2 − i)(n−2Nt −2l2+1r− i)

� 2l1−Nt+1

	 n−2ls−2Nt

2l2+1 
−1


r=0

22l2

(n−2Nt −2l2+1(r+1))(n−2Nt −2l2+1(r+1)+2l2)

= 2l1−Nt−1

	 n−2ls−2Nt

2l2+1 



r=1

1

( n−2Nt

2l2+1 − r)( n−2Nt

2l2+1 − r+ 1
2 )

(9)

� 2l1−Nt−1

	 n−2Nt

2l2+1 



t=2ls−l2−1

1
t2

.
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Then, if l2 +1 < ls we have

n−2l2+1−1


k=n−2ls

Ak, j

n− k

=
2ls−2l2+1−1


k=0

An−2ls+k, j

2ls − k

=

2ls−2l2+1

2l2+1 −1


r=0

2l2−1


i=0

(An−2ls+2l2+1r+i, j

2ls −2l2+1r− i
+

An−2ls+2l2+1r+2l2+i, j

2ls −2l2+1r−2l2 − i

)

=

2ls−2l2+1

2l2+1 −1


r=0

2l2−1


i=0

An−2ls+2l2+1r+2l2+i, j

(
1

2ls −2l2+1r−2l2 − i
− 1

2ls −2l2+1r− i

)

=

2ls−2l2+1

2l2+1 −1


r=0

2l2−1


i=0

An−2ls+2l2+1r+2l2+i, j

2l2

(2ls −2l2+1r−2l2 − i)(2ls −2l2+1r− i)
,

where the third equality is obtained from Remark 1 because if l2 �= Ni for all i ∈
{1, . . . ,t − 2} , then the integers n− 2ls + 2l2+1r + i , where r is a nonnegative inte-
ger and i ∈ {0, . . . ,2l2 − 1} , satisfy the condition mentioned in Remark 1. It follows
that

∣∣∣∣∣n−2l2+1−1


k=n−2ls

Ak, j

n− k

∣∣∣∣∣ � 2l1−Nt+1

2ls−2l2+1

2l2+1 −1


r=0

22l2

(2ls −2l2+1(r+1))(2ls −2l2+1(r+1)+2l2)

= 2l1−Nt−1

2ls−2l2+1

2l2+1


r=1

1

(2ls−l2−1− r)(2ls−l2−1− r+ 1
2 )

(10)

� 2l1−Nt−1
2ls−l2−1−1


t=1

1
t2

.

It remains to estimate the sum∣∣∣∣∣ n−1


k=n−2l2+1

Ak, j

n− k

∣∣∣∣∣ =

∣∣∣∣∣2
l2+1−1


k=0

An−2l2+1+k, j

2l2+1− k

∣∣∣∣∣ (11)

� 2l1−Nt+1
2l2+1


t=1

1
t

� C · l22l1−Nt .

Summing the terms in (8), (9), (10) and (11) proves estimate (7) in case (4) under
the assumption that l2 �= Ni for all i ∈ {1, . . . ,t − 2} . Now, assume that l2 = Ni for
some i ∈ {1, . . . ,t −2} . It is clear that the sums in (8) and (9) can be estimated in the
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same way as in the previous case. In this case we first estimate∣∣∣∣∣n−2ls+2l2−1


k=n−2ls

Ak, j

n− k

∣∣∣∣∣� 2l1−Nt+1
2ls


t=2ls−2l2+1

1
t

� C2l1−Nt . (12)

Then we have if l2 +2 < ls

n−2l2+1−2l2−1


k=n−2ls+2l2

Ak, j

n− k
=

2ls−2l2+2−1


k=0

An−2ls+2l2+k, j

2ls −2l2 − k

=
2ls−l2−1−3


r=0

2l2−1


i=0

( An−2ls+2l2+2l2+1r+i, j

2ls −2l2+1r−2l2 − i
+

An−2ls+2l2+1+2l2+1r+i, j

2ls −2l2+1r−2l2+1 − i

)

=
2ls−l2−1−3


r=0

2l2−1


i=0

An−2ls+2l2+1(r+1)+i, j

×
(

1
2ls −2l2+1(r+1)− i

+
1

2ls −2l2+1(r+1)+2l2 − i

)
,

where the last equality is obtained from Remark 1 because the numbers n−2ls +2l2 +
2l2+1r + i , where r is a nonnegative integer and i ∈ {0, . . . ,2l2 −1} , satisfy the condi-
tion mentioned there. It follows that∣∣∣∣∣n−2l2+1−2l2−1


k=n−2ls+2l2

Ak, j

n− k

∣∣∣∣∣ � 2l1−Nt+1
2ls−l2−1−3


r=0

2l2−1


i=0

2l2

2ls −2l2+1(r+1)− i

× 1
2ls −2l2+1(r+1)+2l2 − i

� 2l1−Nt+1
2ls−l2−1−3


r=0

22l2

(2ls −2l2+1(r+1)−2l2)(2ls −2l2+1(r+1))

� 2l1−Nt−1
2ls−l2−1−2


r=1

1

(2ls−l2−1− r− 1
2)(2ls−l2−1− r)

� 2l1−Nt−1
2ls−l2−1−1


t=1

1
t2

� C ·2l1−Nt . (13)

Now, we consider the sum∣∣∣∣∣ n−1


k=n−2l2+1−2l2

Ak, j

n− k

∣∣∣∣∣ =

∣∣∣∣∣2
l2+1+2l2−1


k=0

An−2l2+1−2l2+k, j

2l2+1 +2l2 − k

∣∣∣∣∣
� 2l1−Nt+1

2l2+1+2l2


t=1

1
t

� C · l22l1−Nt . (14)

Summing the terms in (8), (9), (12), (13) and (14) proves estimate (7) in case (4)
under the assumption that l2 = Ni for some i ∈ {1, . . . ,t −2} . �



AN ESTIMATE OF THE OPERATOR OF THE NÖRLUND LOGARITHMIC MEANS 725

THEOREM 1. Let 0 < p < 1 , then the maximal operator

L̃∗
p := sup

n

log(n+1) | Ln f |
(n+1)

1
p−1

is bounded from the space Hp(G) to the space Lp(G) .

Proof. Since L̃∗
p is bounded (see (1)) according to [17, Lemma 1], it suffices to

prove that ∫
IN

∣∣L̃∗
pa
∣∣p � C, (15)

for every atom a supported on IN , where I N := G\ IN .
Let a be an atom supported on the interval IN . We have according to Lemma 5

that ∫
IN

sup
n

∣∣∣∣∣ log(n+1)Lna

(n+1)
1
p−1

∣∣∣∣∣
p

dx =
∫

I N

sup
n

logp(n+1)
(n+1)1−p

1
l p
n

∣∣∣∣∣n−1


k=1

Ska
n− k

∣∣∣∣∣
p

dx

=
∫

IN

sup
n

logp(n+1)
(n+1)1−p

1
l p
n

∣∣∣∣∣|n|−2


s=1

2s+1−1


k=2s

Ska
n− k

+
2|n|−1


k=2|n|−1

Ska
n− k

+
n−1


k=2|n|

Ska
n− k

∣∣∣∣∣
p

dx

� C
∫

IN

sup
n

1
(n+1)1−p

∣∣∣∣∣|n|−2


s=1

2s+1−1


k=2s

2s−1


j=0

Ak, j

n− k
(S2s+1a(x+ z j)−S2sa(x+ z j))

∣∣∣∣∣
p

dx

+C
∫

I N

sup
n

1
(n+1)1−p

∣∣∣∣∣2
|n|−1−1


j=0

2|n|−1


k=2|n|−1

Ak, j

n− k
(S2|n|a(x+ z j)−S2|n|−1a(x+ z j))

∣∣∣∣∣
p

dx

+C
∫

I N

sup
n

1
(n+1)1−p

∣∣∣∣∣2
|n|−1


j=0

n−1


k=2|n|

Ak, j

n− k
(S2|n|+1a(x+ z j)−S2|n|a(x+ z j))

∣∣∣∣∣
p

dx

=: I1 +I2 +I3.

Notice that for all s � |n|−2,

2s+1−1


k=2s

1
n− k

�
n−2s


t=n−2s+1

1
t

� C log
n−2s

n−2s+1 � C log
n
2s −1
n
2s −2

� C. (16)

Since S2sa(x) = 0 for all s � N and x ∈ G , we have from the fact that a is sup-
ported on IN , Remark 1 and (16) that

I1 � C
2N−1


i=1

∫
IN (zi)

sup
n�2N

1
(n+1)1−p

×

∣∣∣∣∣∣∣∣
|n|−2


s=N

2s+1−1


k=2s


j∈{0,...,2s−1},
j=i (mod 2N)

Ak, j

n− k
(S2s+1a(x+ z j)−S2sa(x+ z j))

∣∣∣∣∣∣∣∣
p

dx
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� C‖a‖p


2N−1


i=1

sup
n�2N

1
(n+1)1−p

⎛⎜⎜⎝|n|−2


s=N

2s+1−1


k=2s


j∈{0,...,2s−1},
j=i (mod 2N)

|Ak, j|
n− k

⎞⎟⎟⎠
p ∫

IN (zi)
dx

� C
N−1


r=0


i=0 (mod 2r)

i�=0 (mod 2r+1)

sup
n�2N

1
(n+1)1−p

(|n|−2


s=N

2s+1−1


k=2s

2s−N 2r−s

n− k

)p

� C
N−1


r=0

2(r−N)p2N−r sup
n�2N

1
(n+1)1−p (|n|−N)p

� C2N(1−p) sup
n�2N

1
(n+1)1−p (|n|−N)p � C,

where in the third inequality we used the fact that from Remark 1, |Ak, j| � 2r−s+1 , if
k ∈ {2s, . . . ,2s+1 − 1} and j �= 0 (mod 2r+1) , while the fourth inequality is deduced
from (16).

We use (6) to estimate I2 . We have

I2 � C‖a‖p


2N−1


i=1

sup
n�2N

1
(n+1)1−p

⎛⎜⎜⎜⎝ 
j∈{0,...,2|n|−1−1},

j=i (mod 2N)

∣∣∣∣∣ 2|n|−1


k=2|n|−1

Ak, j

n− k

∣∣∣∣∣
⎞⎟⎟⎟⎠

p∫
IN (zi)

dx

� C
N−2


l1=0

N−1


l2=l1+1


i∈{0,...,2N−1},
i=2l1+2l2M,

M odd

sup
n�2N

1
(n+1)1−p

⎛⎜⎜⎜⎝ 
j∈{0,...,2|n|−1−1},

j=i (mod 2N)

∣∣∣∣∣ 2|n|−1


k=2|n|−1

Ak, j

n− k

∣∣∣∣∣
⎞⎟⎟⎟⎠

p

+C
N−1


l1=0

sup
n�2N

1
(n+1)1−p

⎛⎜⎜⎜⎝ 
j∈{0,...,2|n|−1−1},
j=2l1 (mod 2N)

∣∣∣∣∣ 2|n|−1


k=2|n|−1

Ak, j

n− k

∣∣∣∣∣
⎞⎟⎟⎟⎠

p

:= I2,1 +I2,2.

According to (6), for all j = 2l1 + 2l2M̃ , where M̃ is some odd number, l1 ∈
{0, . . . ,N−2} and l2 ∈ {l1 +1, . . . ,N −1} , we have that∣∣∣∣∣ 2|n|−1


k=2|n|−1

Ak, j

n− k

∣∣∣∣∣� C · l22l1−|n|.

Hence,

I2,1 � C
N−2


l1=0

N−1


l2=l1+1

2N−l2 sup
n�2N

1
(n+1)1−p

(
2|n|−Nl22

l1−|n|
)p

� C sup
n�2N

2N(1−p)

(n+1)1−p

N−2


l1=0

2l1 p
N−1


l2=l1+1

2−l2 l p
2 .
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Let p′ ∈ (p,1) , we have

N−1


l1=0

2l1 p
N


l2=l1+1

2−l2 l p
2 � C

N−1


l1=0

2l1(p−p′)
N


l2=l1+1

l p
2

2l2(1−p′) 2
(l1−l2)p′

� C
N−1


l1=0

2l1(p−p′)



l2=l1+1

l p
2

2l2(1−p′) � C



l1=0

2l1(p−p′) � C.

Hence, I2,1 � C . In a similar way we get,

I2,2 � C
N−1


l1=0

sup
n�2N

1
(n+1)1−p

⎛⎜⎜⎜⎜⎜⎝
|n|−1


l2=N


j∈{0,...,2|n|−1−1},

j=2l1+2l2M,
M odd

∣∣∣∣∣ 2|n|−1


k=2|n|−1

Ak, j

n− k

∣∣∣∣∣
⎞⎟⎟⎟⎟⎟⎠

p

+C
N−1


l1=0

sup
n�2N

1
(n+1)1−p

∣∣∣∣∣ 2|n|−1


k=2|n|−1

Ak,2l1

n− k

∣∣∣∣∣
p

� C
N−1


l1=0

sup
n�2N

1
(n+1)1−p

(|n|−1


l2=N

2|n|−l2 l22
l1−|n|

)p

+C
N−1


l1=0

sup
n�2N

1
(n+1)1−p (|n|2l1−|n|)p.

We have

N−1


l1=0

2l1 p

(



l2=N

2−l2 l2

)p

� C(N2−N)p
N−1


l1=0

2l1p � C ·Np.

Moreover,

N−1


l1=0

sup
n�2N

1
(n+1)1−p (|n|2l1−|n|)p � sup

n�2N

|n|p
(n+1)1−p

N−1


l1=0

2(l1−N)p

� C sup
n�2N

|n|p
(n+1)1−p .

Therefore, by the definition of |n| we get that

I2,2 � C sup
n�2N

|n|p
(n+1)1−p � C

logp n

(n+1)1−p � C,

which means that I2 � C . It is easily seen that using (7), I3 � C can be proved in a
similar way. We deduce that (15) is verified for every atom a supported on IN . �
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[8] N. MEMIĆ, On the divergence of Nörlund logarithmic means with respect to the L1 norm on some
unbounded Vilenkin groups, Facta. Univ., Ser. Math. Inf., 29 (2014), no. 3, 271–279.

[9] L.-E. PERSSON, F. SCHIPP, G. TEPHNADZE AND F. WEISZ, An analogy of the Carleson-Hunt theo-
rem with respect to Vilenkin systems, J. Fourier Anal. Appl, 28, 48 (2022), 1–29.

[10] L. E. PERSSON, G. TEPHNADZE AND P. WALL, On an approximation of 2-dimensional Walsh-
Fourier series in the martingale Hardy spaces, Ann. Funct. Anal., 9, 1 (2018), 137–150.

[11] L. E. PERSSON, G. TEPHNADZE AND P. WALL, On the maximal operators of Vilenkin-Nörlund
means, J. Fourier Anal. Appl., 21 (2015), 76–94.

[12] L. E. PERSSON, G. TEPHNADZE AND P. WALL, On the Nörlund logarithmic means with respect to
Vilenkin system in the martingale Hardy space H1 , Acta math. Hung., 154, 2 (2018) 289–301.

[13] L. E. PERSSON, G. TEPHNADZE AND P. WALL, Some new (Hp,Lp) type inequalities of maximal
operators of Vilenkin-Nörlund means with non-decreasing coefficients, J. Math. Inequal, 9, 4 (2015),
1055–1069.

[14] L. E. PERSSON, G. TEPHNADZE AND F. WEISZ, Martingale Hardy Spaces and Summability of one-
dimensional Vilenkin-Fourier Series, Birkhäuser/Springer, 2022.
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