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Abstract. In this paper, for each  ∈ [0,1] and two positive semidefinite matrices A and B , we
show the monotonicity decreasing property on q of −Tr[A1−qT

q
(Aq||Bq)] for 0 <  < q <

1 , which implies an Ando-Hiai result that complements Hiai-Petz inequality as q ↓ 0 , where
T(A||B) = A�B−A

 .

1. Introduction

Throughout this paper, a capital letter, such as T , means an n× n matrix. We
denote T � 0 if T is a positive semidefinite matrix and T > 0 if T is positive definite,
respectively. For A > 0,B � 0, 0 �  � 1, F. Kubo and T. Ando, in [7], introduce the
 -power mean of A and B as follows,

A�B = A
1
2 (A− 1

2 BA− 1
2 )A

1
2 .

If A,B � 0, T. Ando and F. Hiai, in [2], introduce the following relationship, which is
called log-majorization, denoted by A �

(log)
B , if

k


i=1

i(A) �
k


i=1

i(B) (k = 1,2, · · · ,n−1)

and
n


i=1

i(A) =
n


i=1

i(B) (i.e. detA = detB)

hold, where 1(A) � 2(A) � · · · � n(A) and 1(B) � 2(B) � · · · � n(B) are the
eigenvalues of A and B respectively arranged in decreasing order.

There are several important concepts related to relative entropy in quantum com-
puting as follows.
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DEFINITION 1.1. ([1], Tsallis relative entropy). For two positive semidefinite
matrices A and B , the Tsallis relative entropy is defined by

D(A||B) =
Tr[A−A1−B ]


(1.1)

for 0 <  � 1.

DEFINITION 1.2. ([11], Tsallis relative operator entropy). For two positive semidef-
inite matrices A and B , the Tsallis relative operator entropy is defined by

T(A||B) =
A�B−A


(1.2)

for 0 <  � 1.

DEFINITION 1.3. ([10], Umegaki relative entropy). For two positive semidefinite
matrices A and B , the Umegaki relative entropy is defined by

SU(A||B) = Tr[A(logA− logB)]. (1.3)

DEFINITION 1.4. ([3], Fujii-Kamei relative operator entropy). For two positive
semidefinite matrices A and B , the Fujii-Kamei relative operator entropy is defined by

S(A||B) = A1/2(logA−1/2BA−1/2)A1/2. (1.4)

DEFINITION 1.5. ([3], Fujii-Kamei relative entropy). For two positive semidefi-
nite matrices A and B , the Fujii-Kamei relative entropy is defined by

SFK(A||B) = −Tr[S(A||B)]. (1.5)

The following result is the famous Hiai-Petz inequality, which was first shown in
1993.

THEOREM 1.1. ([8], Hiai-Petz inequality and [2]). For A,B � 0

−Tr[A1−qS(Aq||Bq)] (1.6)

decreases to SU(A||B) as q ↓ 0 .

Recently, M. Fujii and Y. Seo obtained the following result.

THEOREM 1.2. ([4], Fujii-Seo type Tsallis relative entropy inequality).

D(A||B) � −Tr
[A1−q

q
T

q
(Aq||Bq)

]
(1.7)

holds for q �  > 0 and 0 <  � 1 .

In this paper, we shall show the monotonically decreasing property of

−Tr[A1−qT
q
(Aq||Bq)],

as a complement of Fujii-Seo type Tsallis relative entropy inequality, which implies an
Ando-Hiai result that complements Hiai-Petz inequality.

In order to prove the results, we list two lemmas first.
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LEMMA 1.1. ([6, 9], Löwner-Heinz inequality). If A � B � 0 , then

Ap � Bp (1.8)

holds for all 0 � p � 1 .

LEMMA 1.2. ([5], Grant Furuta inequality). If A � B � 0 and A > 0 , then

A1−t+r � (A
r
2 (A− t

2 BpA− t
2 )sA

r
2 )

1−t+r
(p−t)s+r (1.9)

holds for t ∈ [0,1], p � 1,s � 1 and r � t .

2. Main result

In this section, we shall obtain the monotonically decreasing property of

−Tr[A1−qT
q
(Aq||Bq)].

THEOREM 2.1. For A,B � 0 and each 0 <  � 1 and 1 � q �  ,

−Tr[A1−qT
q
(Aq||Bq)]

decreases to D(A||B) as q ↓ 0 (> 0) .

Proof. To show it, it suffices to show

Tr
[A1−p

p
T

p
(Ap||Bp)

]
� Tr

[A1−q

q
T

q
(Aq||Bq)

]
(2.1)

holds for 0 �  � q � p � 1.
By the definition of Tsallis relative operator entropy, we only need to prove that

Tr
[
A

1−p
2 (Ap� 

p
Bp)A

1−p
2

]
� Tr

[
A

1−q
2 (Aq� 

q
Bq)A

1−q
2

]
, (2.2)

which can be derived from

A
1−p

2 (Ap� 
p
Bp)A

1−p
2 ≺

(log)
A

1−q
2 (Aq� 

q
Bq)A

1−q
2 . (2.3)

Therefore, we only need to prove that

A
1−q
2 (Aq� 

q
Bq)A

1−q
2 � I (2.4)

ensures that
A

1−p
2 (Ap� 

p
Bp)A

1−p
2 � I. (2.5)

(2.4) is equivalent to (A− q
2 BqA− q

2 )

q � A−1 . Let A1 = A−1 and B1 = (A− q

2 BqA− q
2 )


q ,

then we have B1 � A1 , A = A−1
1 and B = (A

− q
2

1 B
q

1 A

− q
2

1 )
1
q .
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Notice that (2.5) is equivalent to

(A
p
2
1 (A− q

2
1 B

q

1 A

− q
2

1 )
p
q A

p
2
1 )


p � A1. (2.6)

For q ∈ [0,1] , q
 � 1, p

q � 1 and p � q , by Grant Furuta inequality, we have

(A
p
2
1 (A− q

2
1 B

q

1 A

− q
2

1 )
p
q A

p
2
1 )

(1−q+p)
p � A1−q+p

1 . (2.7)

Let 1 = 1
1−q+p , notice that 0 �  � 1, then by Löwner-Heinz inequality,

(A
p
2
1 (A− q

2
1 B

q

1 A

− q
2

1 )
p
q A

p
2
1 )

1(1−q+p)
p � A1(1−q+p)

1 (2.8)

holds, which is just (2.6).

Hence, the proof of Theorem 2.1 is completed. �

REMARK. Obviously, Theorem 2.1 is a complement of Fujii-Seo type Tsallis rel-
ative entropy inequality which complements Hiai-Petz inequality as q ↓ 0.
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