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GENERALIZED AMOS–TYPE BOUNDS FOR

MODIFIED BESSEL FUNCTION RATIOS

KURT HORNIK AND BETTINA GRÜN ∗

(Communicated by S. Varošanec)

Abstract. Amos-type and generalized Amos-type bounds have been established in the literature
as lower and upper bounds for the modified Bessel function ratio Rν (t) = Iν+1(t)/Iν (t) for
t > 0 . We complement previous results by providing a family of improved explicit lower bounds
of the generalized Amos-type given by Gα,β ,λ (t) = t/(α +

√
λt2 +β 2) . We show that the

difference of two such bounds has a single sign change, and that for every t > 0 the optimal
bound can easily be determined. We also show that the upper bound for the modified Bessel
function ratio established by Amos cannot be improved by considering λ > 0 instead of fixing
λ = 1 .

1. Introduction and overview

The (modified) Bessel function ratios Rν(t) = Iν+1(t)/Iν(t) , where Iν is the mod-
ified Bessel function of the first kind of order ν , have received attention due to their
occurrence in different areas of application such as statistics [7] and finite elasticity
[9]. Amos [1] introduced lower and upper bounds for Rν(t) on (0,∞) in terms of
Gα ,β ,λ (t) = t/Aα ,β ,λ(t) with λ = 1, where

Aα ,β ,λ (t) = α +
√

λ t2 + β 2. (1)

In what follows the parameters are always restricted to λ > 0 and (without loss of
generality) to β � 0. Different variants of such “Amos-type” bounds Aα ,β ,λ with λ = 1
for Rν were established in several references (e.g., [2, 4, 5, 6, 8, 10, 11, 13]), and
these bounds were also further characterized in detail [3]. The attractiveness of these
bounds stems from the fact that they allow both for explicit inversion and integration
thus yielding bounds for R−1

ν and the antiderivative of Rν (equivalently, Iν and its
logarithm).

Yang and Zheng [12] derived new “generalized” Amos-type bounds (with λ not
necessarily equal to one) for Wν(t) = t/Rν(t) in terms of Aα ,β ,λ (t) . (Clearly, when
there are no sign changes in Rν(t) and Aα ,β ,λ (t) , there is a one-to-one correspondence
between such bounds and bounds for Rν(t) in terms of Gα ,β ,λ (t) .) Note that as t → ∞ ,
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Wν(t)/t = 1/Rν(t) → 1 and Aα ,β ,λ (t)/t → √
λ . Hence, upper bounds of Wν(t) in

terms of Aα ,β ,λ (t) need λ � 1, and lower bounds need λ � 1.
Write

κ = 2(ν +1), βν(α) = κ −α = 2(ν +1)−α. (2)

Yang and Zheng [12, Proposition 4.4] show that the (uniformly) best upper bounds for
α � ν − 1 have α = ν − 1, β = βν(α) = ν + 3 and λ = (ν + 3)/(ν + 2) , and for
α � ν + 1/2 have, α = ν + 1/2, β = βν(α) = ν + 3/2, and λ = 1. One can easily
show that as Wν(t) → κ as t → 0+ (e.g., [3, Lemma 1]); hence, only bounds Aα ,β ,λ
with β = βν(α) are sharp at zero. For the intermediate range ν − 1 < α < ν + 1/2,
Yang and Zheng [12] give an implicit characterization of the best upper bounds, and
([12, Corollary 4.13]) provide the explicit bounds Wν(t) <UYZ

ν,α(t) for all t > 0, where

UYZ
ν,α(t) = Aα ,βν (α),λYZ

ν
(t), λYZ

ν (α) =
4ν +5−2α

2ν +4
.

In this paper we improve these best known explicit bounds. Write

λν(α) =
βν(α)

α −1+2
√

βν(α)−α
=

2ν +2−α
α −1+2

√
2(ν +1−α)

(3)

and
Uν,α(t) = Aα ,βν (α),λν(α)(t). (4)

THEOREM 1. Let ν > −3/2 . Then for all t � 0 and ν − 1 � α � ν + 1/2 ,
Wν(t) �Uν,α(t) . For ν −1 < α < ν +1/2 , λν(α) < λYZ

ν (α) and hence for all t > 0 ,
Uν,α(t) < UYZ

ν,α(t) .

The new improved bounds are mutually incomparable over (0,∞) , with their dif-
ferences having exactly one sign change, and the function α �→ −Uν,α(t) is unimodal
for all t > 0. More precisely, we have the following. Write

Φν (u) =
u(2−u)(κ +u2)2

4(u−1)2(u+ κ)2 (κ −2+4u−u2)2, 1 � u � 2 (5)

and
uν(α) =

√
κ −2α, ν −1 � α � ν +1/2. (6)

THEOREM 2. Let ν > −3/2 and ν −1 � α1 < α2 � ν +1/2 , and write

t∗ν,α1,α2
= 2

√
(α2 −α1)(λν (α2)βν(α1)−λν(α1)βν(α2))

λν(α1)−λν(α2)
. (7)

(a) Uν,α1(t) < Uν,α2(t) for all 0 < t < t∗ν,α1,α2
, and Uν,α1(t) > Uν,α2(t) for all t >

t∗ν,α1,α2
.

(b) The functions α �→ t∗ν,α1,α and α �→ t∗ν,α ,α2
are increasing on (α1,ν + 1/2] and,

respectively, [ν −1,α2) .
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(c) We have

lim
α1→α− t∗ν,α1,α = lim

α2→α+
t∗ν,α ,α2

=
√

Φν (uν(α)). (8)

with the limit increasing in α over (ν −1,ν +1/2) .

THEOREM 3. Let ν > −3/2 and t > 0 .

(a) The function α �→ Uν,α(t) attains its minimum over [ν − 1,ν + 1/2] at its only
critical point α∗

ν (t) in (ν −1,ν +1/2) , and is decreasing for ν −1 � α < α∗
ν (t)

and increasing for α∗
ν (t) < α � ν +1/2 .

(b) α∗
ν (t) solves the equation t2 = Φν (uν(α∗

ν (t))) .

(c) The function t �→ α∗
ν (t) is increasing over (0,∞) , with limt→0+ α∗

ν (t) = ν −1 and
limt→∞ α∗

ν (t) = ν +1/2 .

Therefore, for every t > 0 the optimal upper bound minν−1�α�ν+1/2Uν,α(t) =
Uν,α∗

ν (t)(t) can conveniently be found by direct minimization via golden search or bi-
section to find the unique critical point (or less practically, via solving Φν(u) = t2 ,
which is a polynomial equation of degree 6 in u ).

For ν > −1 and t > 0, Rν(t) > 0 and Aα ,βν (α),λ (t) > Aα ,βν(α),λ (0) = κ > 0,
giving the following lower generalized Amos-type bounds for Rν .

COROLLARY 1. Let ν � −1 . Then for all t > 0 and ν − 1 � α � ν + 1/2 ,
Rν(t) � Gα ,βν (α),λν (α)(t) .

Hornik & Grün [3, Theorem 3] show that α = ν +1/2 and β = βν(α) = ν +3/2
gives the uniformly best lower Amos-type bound Gα ,β ,1 for Rν . Using Theorem 3
(note that λν(ν + 1/2) = 1) we can see that Gν+1/2,ν+3/2,1(t) < Gα ,βν (α),λν(α)(t) for
all t > 0 and ν−1 � α < ν +1/2, again illustrating the fact that the generalized Amos-
type bounds with β = βν(α) can successfully be employed for obtaining improved
lower bounds for Rν .

Amos [1] also established that for ν � 0 and all t � 0, Rν(t) � Gν,ν+2,1(t) , or
equivalently, Wν(t) � Aν,ν+2,1(t) . Noting that ν +2 = βν(ν) , it is of interest whether
this can be improved by new generalized lower bounds Aα ,β ,λ for Wν with β = βν(α) .
However, this is not the case. We have the following:

THEOREM 4. Let ν > −2 and α < 2(ν + 1) . Then Wν(t) � Aα ,βν(α),λ (t) for
all t � 0 if and only if λ � min(βν(α)/(ν +2),1) , and for all such λ , Aν,ν+2,1(t) >
Aα ,βν(α),λ (t) for all t > 0 unless α = ν and λ = 1 .

Thus, Aν,ν+2,1 is the uniformly best generalized Amos-type lower bound for Wν
of the form Aα ,βν (α),λ .
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2. Lemmas

To prove the results, we first establish several lemmas.

LEMMA 1. Let ν >−2 , β > 0 , α +β = κ . Then if λ > β/(ν +2) (λ < β/(ν +
2)), Wν(t) < Aα ,β ,λ (t) (Wν (t) > Aα ,β ,λ (t)) for all t > 0 sufficiently small.

Proof. As t → 0, using Lemma 1 and Lemma 2 in [3],

Wν(t) = κ +
t2

2(ν +2)
+O(t4), Aα ,β ,λ (t) = (α + β )+

λ t2

2β
+O(t4)

(note that the reference writes vν instead of Wν ), from which the lemma immediately
follows. �

LEMMA 2. Let ν > −3/2 and α < ν +1/2 . Then βν(α) > max(α,0) .

Proof. For α < ν + 1/2, βν(α) = 2ν + 2−α > ν + 3/2 which is positive for
ν > −3/2, and βν(α)−α = 2(ν +1−α) > 1. �

LEMMA 3. For all ν , the transformation α �→ uν(α) is decreasing from [ν −
1,ν +1/2] onto [1,2] , with inverse αν (u) = (κ −u2)/2 .

Proof. Clearly, as α increases from ν − 1 to ν + 1/2, κ − 2α = 2(ν + 1−α)
decreases from 4 to 1, and hence uν(α) decreases from 2 to 1. The expression for the
inverse is immediate. �

LEMMA 4. Let ν > −3/2 . Write Dν(α) = α − 1+ 2
√

βν(α)−α . Then as α
increases from ν −1 to ν +1/2 , Dν(α) decreases from ν +2 to ν +3/2 , and λν(α)
decreases from (ν +3)/(ν +2) to 1.

Proof. We have

Dν(αν (u)) =
κ −u2

2
−1+2u =

κ −2+4u−u2

2

and, as κ −αν(u) = κ − (κ −u2)/2 = (κ +u2)/2,

λν(αν (u)) =
κ −αν(u)
Dν(αν (u))

=
κ +u2

κ −2+4u−u2 .

The function u �→ Q(u) = κ − 2+ 4u− u2 has derivative 4− 2u which is positive for
1 � u < 2. Thus, as u increases from 1 to 2, Q increases from Q(1) = κ +1 = 2ν +3
(which is positive for ν >−3/2) to Q(2) = κ +2 = 2ν +4, and using Lemma 3, as α
increases from ν −1 to ν +1/2, Dν(α) decreases from ν +2 to ν +3/2. Next,

d
du

κ +u2

Q(u)
=

2uQ(u)− (κ +u2)(4−2u)
Q(u)2 ,
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where the numerator equals 4(u−1)(u+κ) and hence is positive for 1 < u � 2. Thus,
u �→ λν(αν (u)) is increasing for 1 � u � 2, and again using Lemma 3, α �→ λν(α) is
decreasing for ν −1 � α � ν +1/2. As clearly

λν(αν(1)) =
κ +1
κ +1

= 1, λν(αν(2)) =
κ +4
κ +2

=
ν +3
ν +2

,

the proof is complete. �

LEMMA 5. Let ν > −3/2 . For ν −1 � α � ν +1/2 ,

2(ν +1)−α
ν +2

� λν(α) � 4ν +5−2α
2ν +4

(9)

where the first inequality is strict unless α = ν −1 , and the second inequality is strict
unless α = ν +1/2 .

Proof. Again, it helps to substitute α = αν(u) . We have

2(ν +1)−αν(u)
ν +2

=
(κ +u2)/2

ν +2
=

κ +u2

κ +2

and
4ν +5−2αν(u)

2ν +4
=

2κ +1− (κ −u2)
κ +2

=
κ +1+u2

κ +2
,

so the assertions are equivalent to

κ +u2

κ +2
� κ +u2

κ −2+4u−u2 � κ +1+u2

κ +2

for 1 � u � 2, with the first inequality strict unless u = 2, and the second strict unless
u = 1. Note that κ − 2 + 4u− u2 > 0 by Lemma 4. The first inequality holds iff
κ +2� κ−2+4u−u2 , or equivalently, 0 � u2−4u+4= (u−2)2 , which indeed holds
for all u and strictly so unless u = 2. With C(u) = u3−3u2 +(κ +2)u− (3κ +2) , the
second inequality is equivalent to

0 � (κ +1+u2)(κ −2+4u−u2)− (κ +2)(κ +u2) = (1−u)C(u).

As C′′(u) = 6(u− 1) , u = 1 is the inflection point of C , and C cannot have a local
maximum for u > 1. Thus, max1�u�2C(u) = max(C(1),C(2)) = max(−2κ −2,−κ −
2) . Thus if ν > −3/2, κ > −1, so that for 1 � u � 2, C(u) < 0 and (1−u)C(u) � 0
with strict inequality unless u = 1. �

Let
Qα ,β ,λ (s) = (1−λ )s2 +(β − (α +1)λ )s−β λ (10)

and for λ > 1, write
Mα ,β (λ ) = max−∞<s<∞

Qα ,β ,λ (s). (11)
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LEMMA 6. Let α < β satisfy β > 0 and 0 < α − 1 + 2
√

β −α < β so that
λα ,β := β/(α −1+2

√
β −α) > 1 . Then Mα ,β (λα ,β ) = 0 and M′

α ,β (λα ,β ) < 0 .

Proof. If λ > 1, Qα ,β ,λ is maximized at the unique critical point s0 solving 2(1−
λ )s+(β − (α + 1)λ ) = 0, so that s0 = (β − (α + 1)λ )/(2(λ − 1)) , and Mα ,β (λ ) =
Qα ,β ,λ (s0) = Nα ,β (λ )/(4(λ −1)) , where

Nα ,β (λ ) = ((α +1)2−4β )λ 2−2(α −1)β λ + β 2. (12)

As (α +1)2−4β = (α −1−2
√

β −α)(α −1+2
√

β −α) we have

Nα ,β (λ ) = ((α −1−2
√

β −α)λ −β )((α −1+2
√

β −α)λ −β )

so that Nα ,β (λα ,β ) = 0, N′
α ,β (λα ,β ) = −4β

√
β −α and finally

M′
α ,β (λα ,β ) =

N′
α ,β (λα ,β )(λα ,β −1)−Nα ,β(λα ,β )

4(λα ,β −1)2 = −β
√

β −α
λα ,β −1

< 0,

as asserted. �

LEMMA 7. Let α + β = κ and Δα ,β ,λ (t) = Wν(t)−Aα ,β ,λ (t) . If Δα ,β ,λ (t) = 0
for some t > 0 , then

tΔ′
α ,β ,λ (t) =

(s−β )Qα ,β ,λ(s)
λ s

, s =
√

λ t2 + β 2. (13)

Proof. Wν satisfies tW ′
ν(t) = t2 +κWν(t)−Wν(t)2 (e.g., [10], Equation (3)), and

clearly

A′
α ,β ,λ (t) =

λ t√
λ t2 + β 2

.

Thus, if Δα ,β ,λ (t) = 0 for some t > 0, we have

tΔ′
α ,β ,λ (t) = t2 +(α + β )Wν(t)−Wν(t)2− λ t2√

λ t2 + β 2

= t2 +(α + β )Aα ,β ,λ(t)−Aα ,β ,λ(t)2− λ t2√
λ t2 + β 2

.

For s =
√

λ t2 + β 2 we have Aα ,β ,λ (t) = α + s and t2 = (s2 −β 2)/λ , and the above
can be written as

s2 −β 2

λ
+(α + β )(α + s)− (α + s)2− s2 −β 2

s
=

s−β
λ s

Qα ,β ,λ (s). �
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LEMMA 8. Let β1,β2,λ1,λ2 > 0 , and write Δ(t) = Aα1,β1,λ1
(t)− Aα2,β2,λ2

(t) .
Then for t > 0 ,

Δ′(t)
t

=
λ1λ2(λ1−λ2)t2 +(λ 2

1 β 2
2 −λ 2

2 β 2
1 )

s1s2(λ1s2 + λ2s1)
, (14)

where s1 =
√

λ1t2 + β 2
1 and s2 =

√
λ2t2 + β 2

2 .

Proof. We have

Δ′(t)
t

=
λ1

s1
− λ2

s2

=
λ1s2 −λ2s1

s1s2

λ1s2 + λ2s1

λ1s2 + λ2s1

=
λ1λ2(λ1 −λ2)t2 +(λ 2

1 β 2
2 −λ 2

2 β 2
1 )

s1s2(λ1s2 + λ2s1)
. �

3. Proofs

We can now prove the theorems.

Proof of Theorem 1. From the results of [12], we know that the theorem is correct
for α = ν − 1 (where βν(α) = ν + 3 and λν(α) = (ν + 3)/(ν + 2)) and for α =
ν +1/2 (where βν(α) = ν +3/2 and λν(α) = 1), so we may restrict our attention to
ν −1 < α < ν +1/2.

Let β = βν(α) = κ − α . By Lemma 2, β > max(α,0) , and by Lemma 4,
Dν(α) = α − 1+ 2

√
βν(α)−α > ν + 3/2 > 0 and λν(α) = βν(α)/Dν (α) > 1 so

that βν(α) > Dν(α) > 0. Using Lemma 6, we find that for all λ > λν(α) sufficiently
small, Mα ,β (λ ) < 0. For such λ , Δα ,β ,λ (t) = Wν (t)− Aα ,β ,λ (t) < 0 for all t > 0
sufficiently small by Lemma 1. If Δα ,β ,λ (t) = 0 for some t > 0, Lemma 7 yields that

tΔ′
α ,β ,λ (t) =

√
λ t2 + β 2−β

λ
√

λ t2 + β 2
Qα ,β ,λ (

√
λ t2 + β 2)

�
√

λ t2 + β 2−β
λ
√

λ t2 + β 2
Mα ,β (λ )

< 0,

which is impossible for the first such root. Thus we must have Δα ,β ,λ (t) < 0 for all
t > 0, and the first assertion of the theorem follows by taking the infimum over all
sufficiently small λ > λν(α) . The second assertion is immediate from Lemma 5. �

Proof of Theorem 3 part one. Again, it will be convenient to substitute α = αν (u) ,
and show that

u �→ H(u) = Uν,αν (u)(t)
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attains its minimum over [1,2] at its only critical point u∗ in (1,2) , and is decreasing
for 1 � u < u∗ and increasing for u∗ < u � 2.

Write s = t2 , Q(u) = κ −2+4u−u2, and

λ (u) =
κ +u2

Q(u)
, τ(u) =

(
κ +u2

2

)2

, S(u) =
√

λ (u)s+ τ(u).

Then

H(u) =
κ −u2

2
+S(u), H ′(u) = −u+

λ ′(u)s+ τ ′(u)
2S(u)

.

Building on the derivations from the proof of Lemma 4 we obtain

λ ′(u) =
4(u−1)(u+ κ)

Q(u)2 , Q(1) = κ +1, Q(2) = κ +2,

from which

S(1) =
√

s+(κ +1)2/4, S(2) =

√
κ +4
κ +2

s+
(

κ +4
2

)2

,

and clearly τ ′(u) = u(κ +u2) . Hence,

H ′(1) = −1+
κ +1
2S(1)

= −1+
κ +1√

(κ +1)2 +4s
< 0

and

H ′(2) = −2+
4s/(κ +2)+2(κ +4)

2S(2)

=
1

S(2)

(
2s

κ +2
+(κ +4)−2S(2)

) 2s
κ+2 +(κ +4)+2S(2)
2s

κ+2 +(κ +4)+2S(2)

=
1

S(2)

( 2s
κ+2 +(κ +4)

)2−4
(

κ+4
κ+2s+

(κ+4
2

)2)
2s

κ+2 +(κ +4)+2S(2)

=
1

S(2)

4s2

(κ+2)2

2s
κ+2 +(κ +4)+2S(2)

> 0

and the proof can be completed by showing that H ′(u) = 0 implies H ′′(u) > 0.
Clearly,

H ′′(u) = −1− (λ ′(u)s+ τ ′(u))2

4S(u)3 +
λ ′′(u)s+ τ ′′(u)

2S(u)

=
1

S(u)

(
−S(u)−

(
λ ′(u)s+ τ ′(u)

2S(u)

)2

+
λ ′′(u)s+ τ ′′(u)

2

)
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and it suffices to show that the parenthesized expression is positive provided that H ′(u)=
0. Now in that case,

λ ′(u)s+ τ ′(u)
2S(u)

= u, S(u) =
λ ′(u)s+ τ ′(u)

2u

and the parenthesized expression becomes

−λ ′(u)s+ τ ′(u)
2u

−u2 +
λ ′′(u)s+ τ ′′(u)

2

=
s
2u

(uλ ′′(u)−λ ′(u))+
1
2u

(uτ ′′(u)−2u3− τ ′(u)). (15)

For the second term, we have τ ′′(u) = κ +3u2 and thus

uτ ′′(u)−2u3− τ ′(u) = u(κ +3u2)−2u3−u(κ +u2) = 0.

Next,

λ ′′(u) = 4
(2u+ κ−1)Q(u)2−2Q(u)Q′(u)(u−1)(u+ κ)

Q(u)4

=
4

Q(u)3

(
2u3 +3(κ −1)u2−6κu+ κ2+5κ +2

)
from which, with C(u) the parenthesized expression,

uλ ′′(u)−λ ′(u) =
4

Q(u)3 (uC(u)− (u−1)(u+ κ)Q(u))=
4

Q(u)3 Fκ(u),

and it can easily be verified that

Fκ(u) = 3u4 +(4κ −8)u3− (12κ −6)u2 +12κu+ κ2−2κ .

As a function of κ , this has derivative

2κ +(4u3−12u2 +12u−2)= 2κ +4(u−1)3 +2,

which, as by ν >−3/2 we have κ = 2(ν +1) >−1, is thus positive for u � 1. Hence,
for all 1 � u � 2,

Fκ(u) > F−1(u) = 3u4−12u3 +18u2−12u+3 = 3(u−1)4 � 0.

Thus, for all 1 � u � 2, uλ ′′(u)− λ ′(u) > 0, establishing that H ′(u) = 0 implies
H ′′(u) > 0, and completing the proof of (a).

For (b), note that the equation for the critical point is

2u
√

λ (u)s+ τ(u) = λ ′(u)s+ τ ′(u).
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Taking squares and rearranging,

λ ′(u)2s2 +(2λ ′(u)τ ′(u)−4u2λ (u))s+(τ ′(u)2−4u2τ(u)) = 0.

Writing this as As2 +Bs+C = 0, we find that the constant term is

C = τ ′(u)2−4u2τ(u) = u2(κ +u2)2−4u2
(

κ +u2

2

)2

= 0,

so that at the critical point we must have s = −B/A . Now

B = 2
4(u−1)(u+ κ)

Q(u)2 u(κ +u2)−4u2 κ +u2

Q(u)
=

4u(κ +u2)
Q(u)2 (u−2)(κ +u2)

so that

s =
4u(2−u)(κ +u2)2

Q(u)2

Q(u)4

16(u−1)2(u+ κ)2 = Φν (u),

establishing (b).
The limits from (c) follow readily from the fact that 0 < Φν(u) < ∞ for 1 < u < 2

with limits ∞ and 0 for u → 1+ and u → 2− . Monotonicity will be established
following the proof of Theorem 2. �

Proof of Theorem 2. For i ∈ {1,2} , let βi = βν(αi) and λi = λν(αi) . Clearly,
β1 > β2 . Using Lemma 4, λ1 > λ2 and β1/λ1 = Dν(α1) > Dν(α2) = β2/λ2 > 0.
Consider the difference

Δ(t) = Uν,α1(t)−Uν,α2(t) = Aα1,β1,λ1
(t)−Aα2,β2,λ2

(t).

Write s = t2 and δ = α2 −α1 . Then

Δ(t) = 0 ⇔
√

λ1s+ β 2
1 −

√
λ2s+ β 2

2 = δ .

Taking squares, it follows that

δ 2 = λ1s+ β 2
1 −2

√
(λ1s+ β 2

1 )(λ2s+ β 2
2 )+ λ2s+ β 2

2

or equivalently,

2
√

(λ1s+ β 2
1 )(λ2s+ β 2

2 ) = (λ1 + λ2)s+(β 2
1 + β 2

2 − δ 2).

Taking squares again, we obtain a quadratic equation for s of the form As2 +Bs+C =
0, where

A = (λ1 + λ2)2 −4λ1λ2 = (λ1−λ2)2
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and, as β1−β2 = (κ −α1)− (κ −α2) = δ ,

B = 2(λ1 + λ2)(β 2
1 + β 2

2 − δ 2)−4(λ1β 2
2 + λ2β 2

1 )
= 4(β1−β2)(λ1β2−λ2β1)

= 4(β1−β2)λ1λ2

(
β2

λ2
− β1

λ1

)
< 0.

As Δ(0) = (α1 +β1)− (α2 +β2) = κ −κ = 0, s = 0 must be one root of the quadratic
equation. Hence, C = 0 and the other root is obtained as

s∗ = −B
A

= −4(β1−β2)(λ1β2−λ2β1)
(λ1−λ2)2 = −4

(α2−α1)(λ1β2−λ2β1)
(λ1−λ2)2 > 0.

Using Lemma 8,

Δ′(t)
t

=
λ1√

λ1t2 + β 2
1

− λ2√
λ2t2 + β 2

2

→ λ1

β1
− λ2

β2
< 0

as t → 0+ , so Δ(t) < 0 for all t > 0 sufficiently small. On the other hand, as t → ∞ ,
Δ(t)/t → √

λ1 −
√

λ2 > 0, so Δ(t) > 0 for all t > 0 sufficiently large. Hence, at
t∗ =

√
s∗ Δ changes from negative to positive, establishing (a).

For (b), note that Uν,α1(t
∗
ν,α1,α2

) = Uν,α2(t
∗
ν,α1,α2

) . Now take ν − 1 � α1 < α <
α2 � ν + 1/2. Theorem 3 (a) implies that Uν,α1(t

∗
ν,α1,α2

) > Uν,α(t∗ν,α1,α2
) . Using

Theorem 2 (a) this gives t∗ν,α1,α2
> t∗ν,α1,α . Similarly, we must have Uν,α2(t

∗
ν,α1,α2

) >
Uν,α(t∗ν,α1,α2

) and thus t∗ν,α1,α2
< t∗ν,α ,α2

. Hence indeed, the functions α �→ t∗ν,α1,α and
α �→ t∗ν,α ,α2

are increasing on (α1,ν +1/2] and, respectively, [ν −1,α2) .
For (c), parametrize αi = αν (ui) . Then, writing β (u) = βν(αν (u)) and λ (u) =

λν(αν (u)) ,

(t∗ν,α1,α2
)2 = 4

(u2
1−u2

2)/2
(λ (u1)−λ (u2))2 λ (u1)λ (u2)

(
β (u1)
λ (u1)

− β (u2)
λ (u2)

)

= 2λ (u1)λ (u2)
u2
1−u2

2
u1−u2(

λ (u1)−λ (u2)
u1−u2

)2

(
Q(u1)−Q(u2)

2(u1−u2)

)

so that as u2 → u1 ,

(t∗ν,α1,α2
)2 → 2λ (u1)2 2u1

λ ′(u1)2

Q′(u1)
2

= 2
(κ +u2

1)
2

Q(u1)2 u1
Q(u1)4

16(u1−1)2(u1 + κ)2 (4−2u1)

= Φν(u1).

From (b), we have that if α1 < α2 < α3 , t∗ν,α1,α2
< t∗ν,α1,α3

< t∗ν,α2,α3
. Thus if α0 <

α1 < α < α2 < α3 ,
t∗ν,α0,α1

< t∗ν,α1,α < t∗ν,α ,α2
< t∗ν,α2,α3
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and by letting α0 → α1− and α3 → α2+ we obtain√
Φν (uν(α1)) � t∗ν,α1,α < t∗ν,α ,α2

�
√

Φν(uν((α2)),

completing the proof. �

Proof of Theorem 3 part two. The monotonicity of Theorem 3 (c) now follows by
combining Theorem 3 (b) and Theorem 2 (c). �

Proof of Theorem 4. Let us first verify that Wν(t) � Aν,ν+2,1(t) for all t > 0. For
all λ < 1, Lemma 1 shows that Δν,ν+2,λ (t) = Wν(t)−Aν,ν+2,λ (t) > 0 for all t > 0
sufficiently small. In general,

Qα ,β ,λ (β ) = β (2β − (α + β +2)λ ), Q′
α ,β ,λ (β ) = 3β − (α +2β +1)λ .

Thus if λ < 1,

Qν,ν+2,λ (ν +2) > (ν +2)(2(ν +2)− (2(ν +1)+2)) = 0

and
Q′

ν,ν+2,λ (ν +2) > 3(ν +2)− (ν +2(ν +2)+1) = 1,

so that Qν,ν+2,λ (s) > 0 for all s � ν + 2. Thus, if Δν,ν+2,λ (t) = 0 for some t >
0, Lemma 7 yields that tΔ′

ν,ν+2,λ (t) > 0, which is impossible for the first such root.
Hence, we must have Δν,ν+2,λ (t) > 0, or equivalently Wν(t) > Aν,ν+2,λ (t) for all t > 0
and λ < 1, and thus by taking the sup over all λ < 1, also Wν(t) � Aν,ν+2,1(t) for all
t > 0.

Using Lemma 1 and the asymptotics for t → ∞ , Wν(t) � Aα ,βν(α),λ (t) for all
t > 0 is only possible if λ � min(βν(α)/(ν + 2),1) , and the proof can be completed
by establishing the last assertion of the theorem. To this end, first take α < ν . Then
βν(α) > ν + 2 and λ = 1. Using Lemma 8, Δ = Aν,ν+2,1 −Aα ,βν (α),1 has deriva-
tive Δ′(t) > 0 for all t > 0, so that Aν,ν+2,1(t) > Aα ,βν (α),1(t) for all t > 0. Second,
take ν < α < 2(ν + 1) . Then βν(α) < ν + 2, so that λ � βν(α)/(ν + 2) < 1 and
1 · βν(α)2 − λ 2(ν + 2)2 � 0. Again using Lemma 8, Δ = Aν,ν+2,1 −Aα ,βν (α),λ has
derivative Δ′(t) > 0 for all t > 0, so that again, Aν,ν+2,1(t) > Aα ,βν(α),λ (t) for all
t > 0, completing the proof. �

4. Concluding remarks

Hornik and Grün [3] summarize the “best” (in the sense of not being uniformly
weaker than other) known Amos-type bounds for Rν(t) by:

Gν+1/2,ν+3/2(t) < Rν(t), ν � −1,

Rν(t) < Gν,ν+2(t), ν � −1,

Rν(t) < Gν+1/2,
√

(ν+1/2)(ν+3/2)(t), ν > 0,

Rν(t) < Gν+1/2,ν+1/2(t), −1/2 � ν � 0.
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Yang and Zheng [12] generalize the Amos-type bounds by adding the parameter
λ > 0 and their results imply the additional bound

Gν−1,ν+3,(ν+3)/(ν+2)(t) < Rν(t), ν � −1.

In this paper we add the bounds

Gα ,βν(α),λν (α)(t) � Rν(t), ν � −1, (16)

for ν − 1 � α � ν + 1/2. We also show that the upper bound Gν,ν+2(t) cannot be
improved by generalizing the Amos-type bound. Further research could investigate
if the other upper Amos-type bounds might be improved by generalized Amos-type
bounds with the additional parameter λ .
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