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GENERALIZED AMOS-TYPE BOUNDS FOR
MODIFIED BESSEL FUNCTION RATIOS

KURT HORNIK AND BETTINA GRUN*

(Communicated by S. Varosanec)

Abstract. Amos-type and generalized Amos-type bounds have been established in the literature
as lower and upper bounds for the modified Bessel function ratio Ry (1) = I,+1(t)/1,(z) for
t > 0. We complement previous results by providing a family of improved explicit lower bounds
of the generalized Amos-type given by Gg s (1) =1/(0t++/Ar2 +B2). We show that the
difference of two such bounds has a single sign change, and that for every ¢ > 0 the optimal
bound can easily be determined. We also show that the upper bound for the modified Bessel
function ratio established by Amos cannot be improved by considering A > 0 instead of fixing
A=1.

1. Introduction and overview

The (modified) Bessel function ratios Ry (¢) = I,,41(t) /I, (t), where I, is the mod-
ified Bessel function of the first kind of order v, have received attention due to their
occurrence in different areas of application such as statistics [7] and finite elasticity
[9]. Amos [1] introduced lower and upper bounds for Ry (¢) on (0,c0) in terms of
Ga,ﬁ,l(t) = t/Aa7ﬁ7A(l) with A = 1, where

A pa(t) =+ /A2 + B2, (1)

In what follows the parameters are always restricted to A > 0 and (without loss of
generality) to § > 0. Different variants of such “Amos-type” bounds A, g 3 with A =1
for R, were established in several references (e.g., [2, 4, 5, 6, 8, 10, 11, 13]), and
these bounds were also further characterized in detail [3]. The attractiveness of these
bounds stems from the fact that they allow both for explicit inversion and integration
thus yielding bounds for R, ! and the antiderivative of R, (equivalently, I, and its
logarithm).

Yang and Zheng [12] derived new “generalized” Amos-type bounds (with A not
necessarily equal to one) for Wy (r) =#/Ry() in terms of Ay g 3(7). (Clearly, when
there are no sign changes in Ry () and A, g 3 (¢), there is a one-to-one correspondence
between such bounds and bounds for Ry (#) in terms of G, g 5 (¢).) Note thatas ¢ — oo,
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Wy(t)/t =1/Ry(t) — 1 and Ay g4 (2)/t — V/A. Hence, upper bounds of W, () in
terms of Ay g 3 (r) need A > 1, and lower bounds need A < 1.
Write
Kk=2(v+1), Bvla)=xk—o=2(v+1)—c. (2)

Yang and Zheng [ 12, Proposition 4.4] show that the (uniformly) best upper bounds for
o<v—1lhawve a=v—-1, =B (a)=v+3 and A = (v+3)/(v+2), and for
o>v+1/2 have, a =v+1/2, B=py(a) =v+3/2,and A = 1. One can easily
show that as Wy (#) — x as t — 0+ (e.g., [3, Lemma 1]); hence, only bounds A, g 3
with 3 = By (o) are sharp at zero. For the intermediate range v — 1 < ot < v +1/2,
Yang and Zheng [12] give an implicit characterization of the best upper bounds, and
([12, Corollary 4.13]) provide the explicit bounds Wy (t) < U}% () forall # > 0, where

4v+5-20
U\%(I) =Aq B (a)arz (1), A (o) = Tovid

In this paper we improve these best known explicit bounds. Write

Aoer) = Bv(a) B 2v+2—o 3)
Y S a—1+2B(a)—a a—-1+22(v+i—a)
and
Uv,a(t) = Ag.py () Ay(a) (1)- “4)

THEOREM 1. Let v > —3/2. Then forall t 20 and v—1< a <v+1/2,
Wy (t) S Uya(t). For v—1<a<v+1/2, Ay(a) < AY?(a) and hence for all t > 0,
Uya(t) <UY5(1).

The new improved bounds are mutually incomparable over (0,e), with their dif-
ferences having exactly one sign change, and the function ot — —U, (¢) is unimodal
for all # > 0. More precisely, we have the following. Write

u(2 —u)(k+u?)?

@v(u):m(x—zHu—uz)?, 1<u<?2 (5)
and
uy(0) = vk —2a, v—l<a<v+1/2. (6)
THEOREM 2. Let v> —3/2 and v—1< oy < 0p < V+1/2, and write
* :2\/(062—061)(7Lv(062)ﬂv(061) — Av(on)Bv(a)) )
hul) = (2] |

(@) Uyey(t) <Uygyt) forall 0 <t <t o, and Uyq (t) > Uy o,(t) forall t >
*

tvﬂhaz'

(b) The functions o+t o o and oty o, are increasing on (ou,v +1/2] and,
respectively, [v—1,00).
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(c) We have

lim ¢ = lim
a—a— VO ot

t\t,maz =V Oy (uy(a)). (8)

with the limit increasing in o over (v —1,v+1/2).

THEOREM 3. Let v > —3/2 and t > 0.

(a) The function o — Uy (t) attains its minimum over [v —1,v +1/2] at its only
critical point o (t) in (v —1,v+1/2), and is decreasing for v—1 < a < o (1)
and increasing for o (1) < a < v+1/2.

(b) o (t) solves the equation t* = @, (uy (06i(1))).

(¢) The function t — () is increasing over (0,00), with lim,_04 (1) = v —1 and
limy e 0 (1) = V+1/2.

Therefore, for every ¢ > 0 the optimal upper bound min,_j<q<y41/2Uv.a(t) =
Uy, g (1) (t) can conveniently be found by direct minimization via golden search or bi-
section to find the unique critical point (or less practically, via solving @, (u) = 2,
which is a polynomial equation of degree 6 in u).

For v> —1and t >0, Rv(l) > 0 and Aaﬁv(a),l(t) > Aaﬁv(a)’l(o) =x>0,
giving the following lower generalized Amos-type bounds for Ry .

COROLLARY 1. Let v = —1. Then forall t >0 and v—1< a<v+1/2,
Ry(t) = Go (o) a () (1)

Hornik & Griin [3, Theorem 3] show that « = v+1/2 and f =, (a) =v+3/2
gives the uniformly best lower Amos-type bound G g1 for Ry. Using Theorem 3
(note that Ay (v +1/2) = 1) we can see that Gy 1/3y13/21() < Ggp, (a), 0 (a) (1) foOr
all>0and v—1< o < v+1/2, again illustrating the fact that the generalized Amos-
type bounds with B = B, () can successfully be employed for obtaining improved
lower bounds for R, .

Amos [1] also established that for v > 0 and all 7 > 0, R, (1) < Gy y42.1(f), or
equivalently, Wy (1) > Ay y421(¢). Noting that v +2 = f3,(v), it is of interest whether
this can be improved by new generalized lower bounds A, g ; for Wy with § =B (c).
However, this is not the case. We have the following:

THEOREM 4. Let v > =2 and o < 2(v+1). Then Wy(t) > Ag g, ()1 (1) for
all t > 0 if and only if A < min(By(o)/(v+2),1), and for all such A, Ay y12,1(t) >
A py(a)(t) forall t >0 unless oo =v and A = 1.

Thus, Ay y42,1 is the uniformly best generalized Amos-type lower bound for W,
of the form Ay g, ()1 -
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2. Lemmas
To prove the results, we first establish several lemmas.

LEMMA 1. Let v> -2, >0, a+B=x. Thenif L >B/(v+2) (A<B/(v+
2)), Wy(t) <Agpa(t) (Wy(t) >Agpa(t))forall t >0 sufficiently small.

Proof. As t — 0, using Lemma 1 and Lemma 2 in [3],
W, (t)—K+L+0(t4) A (t)—(a+ﬁ)+/l—t2+0(t4)
W (v+2) ’ A 2B

(note that the reference writes v, instead of W, ), from which the lemma immediately
follows. [

LEMMA 2. Let v> —3/2 and oo < v+1/2. Then By (o) > max(c,0).

Proof. For a <v+1/2, By(at) =2v+2—a > v+3/2 which is positive for
v>-3/2,and By(at) —a=2(v+1—0o)>1. O

LEMMA 3. For all v, the transformation o — uy (o) is decreasing from [v —
1,v+1/2] onto [1,2], with inverse o, (u) = (x —u?)/2.

Proof. Clearly, as a increases from v—1to v+1/2, k—200=2(v+1— )
decreases from 4 to 1, and hence u, (c) decreases from 2 to 1. The expression for the
inverse is immediate. [l

LEMMA 4. Let v > —3/2. Write Dy(a) = o« — 1 +2+/Bv(a) — a. Then as o
increases from v —1 10 v+1/2, Dy(a) decreases from v+2 to v+3/2, and A, (c)
decreases from (v+3)/(v+2) to 1.

Proof. We have

2 2
—u K—2+4u—u
5 +2u >

and, as K — o (1) = Kk — (K —u?) /2 = (k +u?) /2,

Dy (o () = =

K — oy (1) K+ u?

)= D)~ K2

The function u — Q(u) = k — 2+ 4u — u? has derivative 4 — 2u which is positive for
1 <u < 2. Thus, as u increases from 1 to 2, Q increases from Q(1) = x+1=2v+3
(which is positive for v > —3/2)to Q(2) = k+2 =2v+4, and using Lemma 3, as o
increases from v — 1 to v+ 1/2, Dy (o) decreases from v +2 to v +3/2. Next,

iK—f—uz ~ 2uQ(u) — (k+u?)(4 —2u)
du Q(u) O(u)’ ’
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where the numerator equals 4(u — 1)(u+ ) and hence is positive for 1 < u <2. Thus,
u— Ay (o (u)) is increasing for 1 < u < 2, and again using Lemma 3, o — A, () is
decreasing for v—1< a < v+1/2. As clearly

K+1

B K+4 v+3
K41

1 = =
K+2 v+42’

Av (o (1)) ) Av (o (2))

the proof is complete. [J

LEMMA 5. Let v> —3/2. Forv—1<oa<v+1/2,

2(v+1)—«a 4v+5-20a
T T (o) ——— =2 9

V+2 v(@) 2v+4 ©)
where the first inequality is strict unless o« = v — 1, and the second inequality is strict
unless o =v+1/2.

Proof. Again, it helps to substitute o« = o, (u). We have

2v+ D) —oy(u)  (k+u?)/2  k+u?

V42 v+2 k42

and
4v+5-20,u) 2k+1—(k—u?) K+1+u?

2v+4 K+2 k42
so the assertions are equivalent to

K+ u? K+ u? K+ 1+4u?
< <
K+2 K—2+4u—u? K+2

for 1 < u < 2, with the first inequality strict unless u = 2, and the second strict unless
u=1. Note that kK —2+4u—u> >0 by Lemma 4. The first inequality holds iff
K42 > Kk —2+4u—u?, orequivalently, 0 < u®> —4u-+4 = (u—2)?, which indeed holds
for all u and strictly so unless u = 2. With C(u) = u® — 3u® + (K +2)u— (3x+2), the
second inequality is equivalent to

0< (k+1+u?)(k—2+4u—u?) — (k+2)(k+u*) = (1 — u)C(u).

As C"(u) = 6(u—1), u=1 is the inflection point of C, and C cannot have a local
maximum for u > 1. Thus, max;<,<>C(#) = max(C(1),C(2)) = max(—2k—2,— K —
2). Thusif v > —3/2, k> —1,sothatfor 1 <u<2, C(u)<0and (1—u)C(u) >0
with strict inequality unless u = 1. [J

Let
Qupals)=(1-2)s+(B—(a+1)A)s—BA (10)
and for A > 1, write
Mypg(A)= max Qg (s). (1)

—oo§< o0
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LEMMA 6. Let o < B satisfy B >0 and 0 < o« —1+2/f—0o < B so that
Aapi=B/(a—1+2\/B—a)>1. Then My g(Ayp) =0 and M, ﬁ(la7ﬁ)<0

Proof. If A > 1, Qo g2 1s maximized at the unique critical point 5o solving 2(1—
A)s+(B—(o+1)A) =0, so that so = (B — (a+1)A)/(2(A — 1)), and My g(A) =
Qo1 (%) = Ngg(A)/(4(A —1)), where

Nop(A) = ((e+1)*=4B)A*—2(cc—1)BA + B> (12)
As (0 +1)?—4B = (o —1—-2/B—a)(ot — 1 +2+/B — &) we have

Nop(A)=((a=1-2VB—-0o)A = B)((a—1+2VB—0a)A —f)

so that N, g(Aq.5) =0, N —4B+/B — a and finally
/ 2 - N:x.p (Aaﬁ)(lmﬁ - 1) _Na,[}(la,[}) ﬂ\/ﬂ OC
Ma,ﬁ( a,ﬁ)_ 4(1{17[3_1)2 7L [3—1 0,

as asserted. [

LEMMA 7. Let oo+ 3 = K and Aa,ﬁ,l(t) =Wy(r) _Aa,ﬁ,l(t)- Ian’ﬁ?A(t) =0
for some t > 0, then

1A g (1) = M s =/ A2+ B2, (13)

Proof. W, satisfies tW},(t) = 1>+ kW, (t) — Wy (¢)? (e.g., [10], Equation (3)), and
clearly
At

Mgl = ——

Thus, if Ay g2 (1) =0 for some # > 0, we have

A2
VA2 B?
(t)2 _ L
SN/ yea Eh

For s = \/A1?+ B2 we have Ay g, (1) = a+s and 1* = (s* — %) /A, and the above
can be written as

SZ_ﬁZ
A

tAix,ﬁ,A(t) = t2+ (O‘+ﬁ)Wv(t) _Wv(t)2 -

=+ (a+P)Agpalt) —A

B » B _s-B
ot Bty - (@rar- TP =P o
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LEMMA 8. Let B17[327/11,7L2 > 0, and write A(l) = Aahﬁlall (l) _Aa27ﬁ272'2(t).
Then for t > 0,
N(t)  dado(A—X)* + (ATB5 — 322131
P s152(A1s2 + Azs1)

where 51 =/ Mt?>+ BF and s = \/ Aot> + B3

Proof. We have

(14)

A/(l‘) M A
ros ow
_ Asy — Aasy Aisy + Aosy
N $152 Aisz + Apsy
_ Mada(h — Ao + (AFBF —A3B7)
; s182(Ars2 +Aasi)

O

3. Proofs

We can now prove the theorems.

Proof of Theorem 1. From the results of [12], we know that the theorem is correct
for « = v —1 (where By(a) =v+3 and Ay(cx) = (v+3)/(v+2)) and for o =
\ + 1/2 (where By () = v+3/2 and A, (o) = 1), so we may restrict our attention to

—l<a<v+ 1/2
Let B = By(a) = K— o. By Lemma 2, 3 > max(c,0), and by Lemma 4,
Dy(a) =a—142/By(a)—a>v+3/2>0 and A,(x) = By(a)/Dy(cx) > 1 so
that By(a) > Dy (o) > 0. Usmg Lemma 6, we find that for all A > A, (o) sufficiently
small, My g(4) < 0. For such A, Ay p (1) =Wy(t) —Agpa(t) <O forall >0
sufficiently small by Lemma 1. If A, 5 5 (#) = 0 for some # > 0, Lemma 7 yields that

121 B2
D5 (0) = —WQWWHM
S BNy /32

<0,

which is impossible for the first such root. Thus we must have A, g, (t) < 0 for all
t > 0, and the first assertion of the theorem follows by taking the infimum over all
sufficiently small A > A, (). The second assertion is immediate from Lemma 5. [

Proof of Theorem 3 part one. Again, it will be convenient to substitute o = o, (u),
and show that

ur— H(M) = Uv,av(u)(t)
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attains its minimum over [1,2] at its only critical point «* in (1,2), and is decreasing
for 1 <u < u* and increasing for u* <u < 2.
Write s =12, Q(u) = kK — 2 +4u—u?, and

M2 I/l2 2
M) = ’ZZW r(u):<"+2 ) S = VAW + o).

Then ) Y )
H(u) = Kou +S(u), H/(u)z—u—i-%

2

Building on the derivations from the proof of Lemma 4 we obtain

2 (u) = %, o()=k+1, 0(2)=K+2,

from which

2
st)= oo, sy Sk (224)]

and clearly 7/(u) = u(x +u?). Hence,

gy K+1 K+ 1
H(l)——l-ﬁ-m—— m<
and
H(2) = 2+ 4s/(;<+22;(42r)2(1<+4)

! 2s 24+ (k+4)+28(2)

_m<,€—+2+(1<+4)—25(2)) K2_L+(K+4)+2S(2)
(B () 4 (s (55)7)

~8(2) 25+ (k+4)+28(2)

48
_ 1 (k+2)?

S(2) &5+ (k+4)+28(2)
>0

and the proof can be completed by showing that H'(u) = 0 implies H” (u) > 0.
Clearly,

(A (w)s+ /()2 A" (w)s+ 7" (u)

H(w) = —1- sS@d T 25w
g (M) A ws T
= S(u)( S(u) ( 25(0) ) 3 )
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and it suffices to show that the parenthesized expression is positive provided that H' (1) =
0. Now in that case,

Au)s+1'(u) ~ A(u)s+ 7 (u)
sw o Sw= 2u
and the parenthesized expression becomes
AMu)s+t(w) 5 A'(uw)s+1"(u)
- _l’_ PR ——
2u 2
S N A i NeN A3
=% (A" (u) — A" (u)) + > (ut"(u) —2u” — 7' (u)). (15)

For the second term, we have 7”(u) = k 4 3u” and thus

ut” (u) — 2u® — 7' (u) = u(x + 3u?) — 20 — u(x +u?) = 0.

Next,
wey g Qut k= 1)0u)* —20(u) Q' (u) (u — 1) (u + k)
A (u) =4 o)
= ﬁ (20 +3(k — 1)u? — 6xu+ K>+ 5K +2)

from which, with C(u) the parenthesized expression,

4 4

ud" () = () = 5oz (uC(u) = (= 1)(u+ K)Qu)) = 53

and it can easily be verified that
Fie(u) = 3u* + (45 — 8)u® — (12K — 6)u® + 12Ku + K> — 2K.
As a function of «, this has derivative
2K+ (4 — 120 4 12u — 2) = 2k + 4(u— 1)3 42,

which, as by v > —3/2 we have k =2(v+1) > —1, is thus positive for u > 1. Hence,
forall 1 <u<2,

Fe(u) > F_(u) = 3u* — 120° + 180° — 12u+3=3(u—1)* > 0.
Thus, for all 1 <u <2, ul”(u) —A'(u) > 0, establishing that H'(«) = 0 implies

H"(u) > 0, and completing the proof of (a).
For (b), note that the equation for the critical point is

2ur/A(u)s+ t(u u)s+7'(u).



784 K. HORNIK AND B. GRUN
Taking squares and rearranging,
A (u)?s® 4+ 24 ()T (u) — 4u*A(u))s + (7' (u)? — 4’1 (u)) = 0.

Writing this as As® 4 Bs+C = 0, we find that the constant term is

2\ 2
C=17(u)?—4*t(u) = *(k+ 1) — 4 (K—;u ) =0,

so that at the critical point we must have s = —B/A. Now

4(u—1)(u+x) JK+u? du(k+u?)

B=2

u(k+u?) —4u (u—2)(x+u?)

O(u)? o) o)
so that
~ 4u(2 —u)(x+ u?)? Qu)* oy ()
T 0(u)? 16(u—12w+x2 )
establishing (b).

The limits from (c) follow readily from the fact that 0 < @y, (1) < eo for | <u <2
with limits e and 0 for ¥ — 14 and u — 2—. Monotonicity will be established
following the proof of Theorem 2. [

Proof of Theorem 2. For i € {1,2}, let B; = By(0y) and A; = A (0y). Clearly,
B1 > B>. Using Lemma 4, A; > A, and B;/A; = Dy(0y) > Dy(ow) = /A, > 0.
Consider the difference

A(t) = UV7051 (t) - UV7052 (t) = AOtl B (t) - Aaz,ﬁz,lz (t) .

Write s =#% and § = 0 — ¢ . Then

A =0 \JAus+ B2~ \[Aas + 7 = 6.

Taking squares, it follows that

87 = Mus+ 7 — 2/ (s + BR) (has + B) + das + B3

or equivalently,

2/ (s + BR) (s + B2) = (A + Aa)s + (B + B3 — 6°).

Taking squares again, we obtain a quadratic equation for s of the form As> 4 Bs+C =
0, where

A= (2,1 -l-lg)z — 42,112 = (ll — 2,2)2



GENERALIZED AMOS-TYPE BOUNDS FOR MODIFIED BESSEL FUNCTION RATIOS 785

and,as B —Br=(k—oy)—(Kk—p) =9,
B =2(A1+A) (B} + B3 — 8%) —4(MPB5 + MaP7)
=4(B1 — B2) (M2 — A2P1)
=4(B1 - B2) M2z (% - %)
< 0.

As A(0) = (a; + 1) — (0 + B2) = kK — k=0, s = 0 must be one root of the quadratic
equation. Hence, C = 0 and the other root is obtained as

o B AB-B)MB—2B) _ (0o —01)(ufs—AaB)

A (M — A2)? (A1 —Ap)?

Using Lemma 8,
A(t) _ M B Ao ~ & B @
! \/2,11‘24-[312 \/2,21‘24-[322 ﬁl ﬁ2

as 1 — 0+, so A(r) < 0 for all 7 > 0 sufficiently small. On the other hand, as t — oo,
At)/t — VA — V22 >0, so A(t) > 0 for all £ > 0 sufficiently large. Hence, at
t* = \/s* A changes from negative to positive, establishing (a).

For (b), note that Uy o, (y ¢y 0,) = Uv,o (£ 0y y) - NOW take v —1< 0y < o0 <
op < v+1/2. Theorem 3 (a) implies that Uy o, (1) 4, .0,) > Uv.a(ty 0y.0,) - Using
Theorem 2 (a) this gives #; , , > 17, 4 o Similarly, we must have Uy o, () o, o,) >
Uv.a(ty oy 0,) and thus ), o <15 o, - Hence indeed, the functions o — t; , , and
a1, o 4, areincreasing on (oq,Vv + 1/2] and, respectively, [v —1,0p).

For (c), parametrize o; = oy (u;). Then, writing B(u) = By (o (1)) and A(u) =

Av(oy (u)),
SN I Blw)  Plw)
(tv,ochocz) - 4(2{(1/”1) —A(Mz))zl(ul)k(uz) < )

> 0.

<0

= 2A(u1)A(uz) (@)2 ( 2(

uy—uz

so that as uy — uy,

(fan.00)” = Zl(ul)zxfz(z)z Ql(zul)
_ (K+u2)2 Q(u )4
—2 Q(u1)12 0 16(”1_1)21(u1+1<)2(4_2”1)
= q)v(ul).

From (b), we have that if o < 0 < 03, 17 4 o, <1 g 05 <Ivaya- Thusif o <
o <o<op<og,

* * * *
Iy.og.00 <tvo.0 <lvoon <vomo
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and by letting 0op — o — and o3 — 0+ we obtain

q)V(uV(al)) < t\yj,al,a < té,a,az < (DV(MV((OQ))v

completing the proof. [J

Proof of Theorem 3 part two. The monotonicity of Theorem 3 (c) now follows by
combining Theorem 3 (b) and Theorem 2 (¢). [

Proof of Theorem 4. Let us first verify that W, (t) > Ay y42,1(¢) forall # > 0. For
all A <1, Lemma 1 shows that A, .5, (¢) =Wy () —Ay y42,(¢) >0 forall £ >0
sufficiently small. In general,

Qupi(B)=B2B—(a+B+2)A),  Qyps(B)=3B—(a+2B+1)A.
Thusif A <1,
Oyyiaa(Vv+2)>(v+2)2(v+2)—(2(v+1)+2))=0

and
Q,yina(V+2)>3(v+2) = (v4+2(v+2)+1) =1,

so that Qy 192 (s) >0 for all s > v+2. Thus, if A, .5, () =0 for some 7 >
0, Lemma 7 yields that tA|, ., ;(r) >0, which is impossible for the first such root.
Hence, we musthave A, ., 3 (t) > 0, or equivalently W, (1) > Ay yi0(2) forall £ >0
and A < 1, and thus by taking the sup overall A < 1, also Wy (r) > Ay y12,1(¢) for all
t>0.

Using Lemma 1 and the asymptotics for t — co, Wy (t) > Ay p, ()2 (7) for all
t > 0 is only possible if A < min(fy(ct)/(v+2),1), and the proof can be completed
by establishing the last assertion of the theorem. To this end, first take o¢ < v. Then
Bv(o) >v+2 and A = 1. Using Lemma 8, A=Ay y21 —Agyp,(x),1 has deriva-
tive A’(r) > 0 for all 7 >0, so that Ay y121(¢) > Ag g, (q),1(¢) forall £ > 0. Second,
take v < a < 2(v+1). Then By(cr) < v+2, sothat A < By(o)/(v+2) <1 and
1-By(x)> —A%(v+2)> > 0. Again using Lemma 8, A=A, 21 —Agpy(a)2 has
derivative A’(z) > 0 for all z > 0, so that again, Ay y12.1(f) > Agp,(0)(2) for all
t >0, completing the proof. [J

4. Concluding remarks

Hornik and Griin [3] summarize the “best” (in the sense of not being uniformly
weaker than other) known Amos-type bounds for Ry () by:

Gyi1/2,v43/2(t) < Ry(t), v,
Ry (1) < Gyy+2(1), v>-—I,
Ry(1) < Gan’W(m v >0,
Ry(1) <Gyi1yav+172(1), -1/2<v<0.
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Yang and Zheng [12] generalize the Amos-type bounds by adding the parameter
A > 0 and their results imply the additional bound

Gvfl,v+3,(v+3)/(v+2)(t) < Rv(’); vz-L

In this paper we add the bounds
Gapu(o) (e (t) SRy(1), v=—1, (16)

for v—1< o< v+1/2. We also show that the upper bound Gy y42(t) cannot be
improved by generalizing the Amos-type bound. Further research could investigate
if the other upper Amos-type bounds might be improved by generalized Amos-type
bounds with the additional parameter A .
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