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MIXED TYPE WEIGHTED INTEGRAL INEQUALITIES
FOR THE HARDY-STEKLOV INTEGRAL OPERATORS

RAJIB HALOI AND DURANTA CHUTIA*

(Communicated by I. Peri¢)

Abstract. We characterize the weights @,p,¢ and y for which the integral operator of Hardy-
Steklov type, 7 f(t) = h(t) ff((f)) K(t,z) f(z)w(z)dz satisfies weak type mixed modular inequal-
ities of the form

zwlgf/}@“W®P><V'(/V“”“W)

where the functions ¢ and 3 are increasing and the kernel K satisfies certain monotone con-
ditions. We also prove the following mixed integral inequalities of the extra-weak type under
appropriate conditions on the weights @, ¢ and .

otrr=n)<wer([¥(F)v)

Further, we discuss the above two integral inequalities for the adjoint of the integral operator of
Hardy-Steklov type.

1. Introduction

We consider the Hardy-Steklov integral operator .#, for a non-negative measur-
able function f on —eo < a < b < oo, defined by

B()
S0 =h0) [ KD Ewaas M)
o
where o, 3 : (a,b) — R are continuous and increasing functions satisfying (z) < (z)
for each z € (a K(t,z)

,b), h and w are positive measurable functions, and the kernel
defined on {(7,z) : ot(t) < z < B(¢)} satisfies the following conditions.

(a) K(t,z) >0.
(b) K(t,z) is non-decreasing in ¢ and non-increasing in z.
Mathematics subject classification (2020): 42B25, 46E30.
Keywords and phrases: Hardy-Steklov operators, integral operators with kernel, modular inequalities,

Young functions, weights.
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(c) There exists a constant M > 1 independent of ¢,z and 7 such that
K(1,2) <M[K(,B() +K(x,2)], @)

where 7 <1 and o(f) <z < B(1).

For K =1, the operator (1) is reduced to the Hardy-Steklov operator defined by

B(t)
710 =n) [ , s 3)

From (3), it is observed that the Hardy-Steklov operator extends the notion of the
Hardy operator to dynamic limits. We refer to [11, 15] and the references therein for a
detailed investigation on Hardy operators. Riemann-Liouville integral operators of the
form | f((f)) (t —2)* f(z)dz, u > 0; Steklov operators f,tj)z/ f(2)dz, y> 0 are some par-
ticular cases of the Hardy-Steklov operators. Many fruitful applications of this operator
mainly include the study of the abstract Cauchy problem with delay and analyzing the
stock market [11].

Weighted weak and strong type estimates for the Hardy-Steklov operator and its
integral version have been studied substantially by several authors [4, 5,7, 8,9, 19]. In
[4], characterization of weights p and y has been established such that

1 B(b) 1
(/ rowdy) <c( [ i wiay)” @
{re(ab): 7 f(1)>v} a(a)
holds for a suitable constant C > 0 and in the range 0 < g < p, 1 < p < oo with w=1.
In the case p < ¢, Gogatishvili and Lang [8] obtained the weak and strong type (p,q)
estimates in Banach function spaces for the operator (1). Stepanov and Ushakova [19]
proved L, — L, boundedness of (1) considering & and w as weight functions.
Through this article, we plan to address the inequality (4) in the Orlicz space set-
ting for the Hardy-Steklov integral operator and its adjoint .# defined by

50 =t [, Y K )z )

Among the various equivalent generalization of the estimate (4) in to the Orlicz
space setting, we will consider the following form.

([ w(rm)eor) < ([ (ermem) o)
{re(ab): 7 f(6)>r}

(6)

where ¥ > 0; @,p,¢ and y are weights and the conditions on % and #" will be set
down later.

The estimate (6) for the Hardy operators has been addressed in [6, 12, 14, 16].
Ortega Salvador and Ramirez Torreblanca [ 18] have established the inequality (6) with
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o =1 = ¢ for the Hardy-Steklov operators. The second objective of our article is to
prove the following weaker version of (6), that is

o(tre@n): s >n)<wor( [ f (f)%(Li"’(y’) voly). )

The estimate (7) is known as the extra-weak type mixed integral inequality as it
follows from (6) but not contrariwise. It was proved in [1, 2] that the extra-weak type
inequality provides exquisite bounds for the strong type integral estimates. Extra-weak
type inequalities for Hilbert transform, maximal function and its one-sided version have
been discussed in [3, 13, 17].

Before presenting the result, we will briefly discuss some basics associated with
N-functions [10]. An N-function %/ is continuous and convex on [0,e0) such that
% (0) =0 and W,ﬁ — 0 (and o) when # — 0 (and ). It is always possible to
write an N-function % in the integral form as, % (t) = [{u(y)dy, where u is non-
decreasing and right continuous at each point and satisfies u(0) =0, u(r) > 0 for
r >0 and u(r) — oo as r — oo. The complementary function % corresponding to a
given N-function % is defined by % (1) = sup,-(17 — % (7)) also verifies properties
of N-functions. For 7,7 > 0, the pair (%, w ) satisfies the following relations [6].

1t <U@M)+% (7). ®)
(%_) <@ ©)
w(t) <tu(t) <% (2t). (10)

Now we state the main results of the article.

THEOREM 1. Let ¥ be the complementary function corresponding to an N -
function V. Suppose that, ¥ o %~ is countably subadditive, where % is strictly
increasing and positive with % (0) = 0. We assume that h is monotone on R and let
the function h(-)K(-,y) satisfies that

inf h(x)K(x,y) =  inf  h(x)K
InfA(x)K(x,y) TR L (VK (x,y)

for all bounded set Q2 and all y. Then the following assertions are equivalent.
(i) There exists a positive constant C such that

v w(ew)enn) <y ([ (crmom)wo)

o(a)
{te(a,b): I f(t)>v}
(11)

holds for each y > 0 and all f >0
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(ii) There exists C > 0 such that

/ﬁm [ infie WK @ s)ws)n (r:e,7)
Cyo(s)w(s)

] y(s)ds <n(y:t,7) (12)

o(1)

and

v(s)ds <m(y:t,7)  (13)

/ﬁ@ 7 | e (BOIK (B ) wls)n (11, 7)
Cro(s)y(s)

o(1)

hold, where a < z <t <t <b with a(t) < B(z) < B(t) and

(s = (vou) (/T%<Yw(z)>l)(z)dz).

t

For K =1, estimates (12) and (13) are equivalent and reduced to the following
form:

/ﬁ(t) y [ (inf(, o) R)w(s)n(y;t,T)

h
Cyo(s)w(s) ] y(s)ds <n(yt,7). (14)

a(T)
Thus (14) characterizes the estimate (11) for the Hardy-Steklov operators of the
form .7 f(t) = h(t)ff((tg)f(z)w(z)dz.

THEOREM 2. Let %,V .,V and ¥ o % ~" satisfy all the conditions stated in The-
orem 1. Suppose that w is monotone on R and let the function w(-)K(y,-) satisfies
that

inf K = inf K
):2QW(X) (y’x) xe(inflg,supQ)W(X) (y’X)

for all bounded set Q and all y. Then the following conditions are equivalent.
(i) There exists a positive constant C such that

([ w(em)ewa) < ([1 T (esmom) o)

p ~a)
{re(ab): 7 f(6)>r}

holds for each v > 0 and all f > 0.

(ii) There exists C > 0 such that

/a'm 3 [(inf(m) w)K (s, T)h(s)n (y:1,T)
B

“1(1) Cyo(s)w(s) ] v(s)ds <n(yt,t)  (16)
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and

/“‘(f) y l(inf(r,w w(y)K (B~ (2).y)h(s)n(r:t,7)
B

@ Cro()w(s) vs)ds<n(yn7) A7)

hold for each a <t < T <z < b satisfying B~ (1) < B~(z) < a~ (1), where

() = (vou ) [*o (ro)pesac).

Similarly in the case of adjoint if we consider K = 1, then estimates (16) and (17)
are equivalent and reduced to the following form,

ale)
/ 7
B~1(z)
Thus (18) characterizes the estimate (15) for the adjoint of Hardy-Steklov opera-

tors of the form .7 f(¢) = w(t) | ﬁaj(y)) f(2)h(z)dz.
We also prove extra-weak type integral inequalities and the results are as follows.

(infw)h(s)n(y:1,7)
Cr9(s)y(s)

y(s)ds < n(y:t, 7). (18)

THEOREM 3. Let %,V , ¥,V o% ', h and the function h(-)K(-,y) satisfy all
the conditions stated in Theorem 1. Then the following assertions are equivalent.

(i) There exists a positive constant C such that

of{re ) gy > v}y cw o ([ (L0 )y )

o(a)
(19)
holds for each y > 0 and all f > 0.
(ii) There exists C > 0 such that
B@ | (inf, ) h)K(t,5)w(s)0(t,T)
v . v(s)ds < 0(t,7 (20)
L l o) bl 000

and

Co(s)y(s) v(s)ds < 0(t,7) Q1)

o(7)

/13(2) 7 [ (infh(y)K (v, B(z))w(s)0(t,7)

hold for each a < z <t <t <b with o(t) < B(z) < B(t), where

0(,7)=(vou) (/tra)(z)dz).
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THEOREM 4. Let %,V .,V and ¥ o % ~" satisfy all the conditions stated in The-
orem 1. Let the function w be monotone on R and let the function w(-)K(y,-) satisfies
that

inf K = inf K
):2QW(X) (y’x) xe(inflg,supQ)W(X) (y’X)

for all bounded set Q and all y. Then the following assertions are equivalent.

(i) There exists a positive constant C such that

<{t € (a,b): If(t) > y}) < %o”f/‘l</ﬁa1:j)7/<M>W(Y)dY>

Y
(22)
holds for each vy > 0 and f > 0.
(ii) There exists C > 0 such that
a ') 1 (infw)K (s, T)h(s)0(t,7)
v ! ’ $)ds < 0(t, 7T (23)
Jrovo l Cobwls) | YOIesoeT

and

y(s)ds < 0(t,7) (24)

/awf (infw()K (B~ (2),9) ()01, 7)
b Co)w(s)

hold for each a <t < T <z <b with B~(1) < B~ (z) < ! (¢), where

0(,1)=(Vou! </w dz)

Similarly, the extra-weak type integral inequalities for the Hardy-Steklov operators
and its adjoint follow directly from the above two theorems by considering K = 1.
We skip the proof of Theorem 2 and Theorem 4 as those can be obtained with some
modifications from Theorem | and Theorem 3 respectively. Based on the methods
developed in [4, 5, 18] we will prove the Theorem 1 and give a sketch of the proof of
Theorem 2. Next, we state the following lemma [5], which plays a pivotal role in the
remaining sections.

LEMMA 1. Let I'={z € (a,b) : a(z) < B(2)}. Then there exists a countable col-
lection of open intervals {(am,by)} such that T = Uy, (am,by) and

(@) (o). (b)) O (exlan). B (b)) = ¢ for m#k,

(b) for each m, there exists a sequence of real numbers {&"} satisfying

(l) (ama m) = Uk(é,ﬁ",élﬁl) a.e. fOV all m,
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(ii) am < &' < §k+1 < by, for each m and k,

(iti) o(EL ) < B(E) for each m,k and also, o(&" ) = B(E") if am < &'
&t < bm.

In section 2 we prove Theorem | and the proof of Theorem 3 is given in section 3
We use C to denote a positive constant not necessarily same in all cases.

2. Proof of Theorem 1

Proof. (ii) = (i).
Let {"} be the sequence given by Lemma 1, then we have

Yo~ ( / w (Yw(y))p(y)dy)

{re(ab): 7 f(6)>r}

< %7/0%1< / 3 (J/w(y))p(y)dy)- (25)

{re(§ & )2 f(0)>7}

Now for ¢ € (&",&", ), we use Lemma 1 to break the integral (1) as

(&) BE)
FE(t) = h(t) /a o KOs +0) /a o, K wls)ds

) [ KOs = 570+ 5f0) + 5570). @6)

Thus from (26), we have

vout( / % (100))p0)ay)

{re(& 5k+1 (t)>v}
3

< 1_21%%( / %(yw(w)p(y)dy). 27)

{re(gr g ):sif(0)>%}
We will first estimate .#] f. Applying inequlity (2), we now break the kernel K as

(&) (&)
Ao =10 [ WOK@BED) [ rpwsis

)

K(t,s)f(s)w(s)ds <M

(&%)
o [ K(é;é“,s)f(s)W(s)ds] = M[ A0+ 5120 0)]
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Thus

Vou! [ (rm)ee)
e g o f0>1)

<27 o%‘< / %(m(w)p(y)dy). (28)

=1
{re(Er.em )aif (0> 651 }

To estimate .#| ; f, we define a sequence {xj} as xo = é,:” and for each x;_; let x;

be the number given by f;(f"; v fw= f;((;’ )1) fw. The sequence {x;} increases and
J J—

)

satisfies | ;(f’:)"l* Vifw=4 f;((;_:z)) Sw. Let us consider the set
J 7

Q= {t LX) s Aaflt l}
11 =€ (xg) t A () >
We define 5{71 = ian{"l and 8{’1 = supQ{’l. For x € Q{,u we have

o(xj12)

o7 <K B(E) [ oy SOV (29)

As the estimate (29) holds for each x € Q{ 1, thus

) o(xjy2)
y<2m( inf hOK(BED) [ r@ws (30)

(87 .8l 1) o(xji1)

. . J

Letus denote n(y; 6/ |, &/ ) = <“i/o%‘1> (f;}‘l 4 (y(u(r))p(r)dr), then using (8)
’ 1,1

and (30), we obtain

S a(xjs2) infh(x)K (x, 7)) )w(z
2n(r:8,.8] 1) < /a<x_,-+l> [4smCr @00 [( = Z(y(mf)(wlzz;)) 1 via
a(xj+2)
<[ . 7 (48MCr(2)9()) y(z)dz
alxji2) o (infh(x)K (x, B(EM)))w(z)n
o 7( STIEITE ) Vi 6D

As a(e] ) < alxj) < alxo) < (gl ) < BEM < Blx;) < B(8],), thus from
(13), we have

/a(x1+2)77 (infh(x)K (x, B(&M))w(z)n
Cyo(2)y(z)

)w(Z)dz <n(rdl el 32

o(xjy1)
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Combining (31) and (32), we obtain

(vou) (/Qj

w (yw(r))p(r)dr) < /a(x'fm 7/<48MCf(z)¢(z)> v(z)dz.

11 o(xjr1)
(33)
Summing up over j and applying sub-additivity of ¥ o % !, we get
Vou! (/  (yo(z zdz)
( ) §k+l Jl lf ) } ( ( )>p( )
(&)
< / 7(48MCF(2)6(2) ) (2)dz. (34)
a(&")

To estimate .7 », we define a sequence {y;} as yo = é,:" and for each y;_; let y; be
the number given by f é"“ K(&",5)f(s)w(s)ds = f ') (é,g", )f(s)w(s)ds. Then

{yj} 1ncreasesandsatlsﬁes f é"“ K(&",s)f(s)w(s )ds—4f ;,:12 K(&",s)f(s)w(s)ds.

As in the previous case, we deﬁne 91'2 = {t jsyjr1) = F1af(t) > %} with

o J o J J
i, =infQ], and & , =sup€j ,. For x € Q] ,, we have

0‘( Jj+2
o <anx) [ (yfm K(E",2) f(2)w(2)dz. (35)

As the estimate (35) holds for each x € Q{ 5, thus

peaam( nt ww) [ kg o 36)

(87,81 ) o(yjt1)

We denote (7, 5{72,8{72) = (”f/o%’l> (féjl . %( (T ))p(r)dr). Applying (8) and
(36), we get -

a(yja

. . )
2n(rdlpeln) < | o 7 (48MCF(2)9(2) ) wi2)dz

a(yjra) . (infh) (§k7z) (z)n
/. ”( CHEVE

) v(z)dz. 37)

o Yj+1)

As a(e] ) < alyjan) < lyjez) < B(8],), thus (12) gives

/a()’j+2) ; ( (infh)K (&, 2)h(z)n

dz < n(7:8],.¢] ). (38)
a(yjt1) Cyo(2)y(z) )l//(z) esnly 1.2 172)
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Combining (37) and (38), we have

(vou) (/Qj

1,2

% (Yw(z)>P(z)dz> < 0y, (48MCr(2)9(2)) y(2)dz.

a(yjr1)

Summing up in j and applying sub-additivity of # 0% ~!, hence we obtain

Voy ! (/ U (yol(z zdz)
( ) {re(gr.gm ) a2 (0)> 57} (}’ ( ))P( )

(5
< /a o 4 (48Mcf(z)¢(z)) w(z)dz. 39

Arguing similarly as in the previous case, we have

Vo! (/ % | yo(z pzdz)
( ) {(re(& &) (0> 5} ( ()> (2)

B(&")
< / ”1/(48MCf(z)¢(z)) v(z)dz. (40)
(&)
For %3 f, we consider zg = é,:’_’H and define a decreasing sequence {z;} as
B(zj) iy
L) = [ Ko Ew(ras = 1) 2 )
k

Now, we have

L(zj) = M+1)°L(zj:2)
B(zj+2)

— (M+1)? /ﬁ o K DT 1)

o 2[4 [P K (o
em  Jpn 17

/ﬁ(z’%) M{K(Zj+2aﬁ(zj+3)) +K(zj43, T)}

< (M+1)?
B

B(zj12)
+ /ﬁ K(zj42,7) | f(R)w(z)de

(zj+3)

; B(zj+3) B(zj+2)
<M+ D KB [ [ K, pfow(md
BE B
5 B(zj+3)
T MM+ 1) /13 oy K D@D 42)
k

From the construction of the sequence {z;},

B(zj+3) .
Sy K5 DA =2 (23:3) = M4 1) UL a0) = (M 41) 2 ()
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Thus (42) implies

B(zj+3)
K(a ) [ 7 few(nar

L() < M+ 1) e
k

(zj+3)

B(zj+2)
+/ﬁ K(zj12,7)f(T)w(T)dT|.

Next, we define 53jl = iané.z and 831'.1 = supQéil for I = 1,2, where

o _ N VK B(zj+3) 4 y
1 =4y € (@a1zy) hOIK (a2, B(zj3)) /ﬁ oy SO

a=1z¢€( ) M)/M%ﬂ ( )f(D)w(T)d > 1
Q5 , = it1,27) - K(zio,T)f(T)w(T)dT .
32 AR ‘ B(zj+3) ik 6(M+1)*

Thus
(7/0 %*1> ( /{ R U (Yw(Y)>P()’)dY>

<2{(%o%1)</@,

j=0 3,1

+(vou ) (/Qj

32

# (100)p0)ay

# (100))p0)as } 3)

For the first part, we define a decreasing sequence {d;} in (§",&". ) with the iteration
dy =& | and
L pepar =27 [ powoa
T)w(T)dT = T)w(T)dT.
B(&") B(&")

We define dy = d;, and if dj > z; > dj, | then d, 1 = d. |, otherwise we delete the
term d;,; and continue the process. Thus, we get a subsequence {d,} of {d;}. Let
6§71 = in’fQ’i1 and éﬁ',l = supQ’il, where 93,1 = U{j:d,1>z_,'+32dn+l}g'§’1. Now, if d{H =
dpy1 < 2j43 < dp, then zjy3 < dj and d,y2 < d,,. We have

B(js3)  Bd) Bl ) Bldys1)
/ < / =4 / <4 / . (44)
B(EM B(EM) B(d],,) Bldys2)

Now for x € Q% |, we obtain

Y B(dn+1)
oM+ < 4h(X)K(x,l3(Zj+3))/ﬁ(dn+2) f(t)w(r)dr. (45)
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As (45) holds for each x € ng thus

4. B(dns1)
y<AM+ D inf (h(x)K(x,B(zj13))) /ﬁ fOw(t)dr.  (46)

(6:?1 ’ég‘l) (dn+2)

We denote 1(7; S§,1»5§,1) = (”// o %‘1) (fi,f‘ll %(yw(r))p(r)dr). From (8)
and (13) we obtain %

n  ~n ﬁ(dn+l)
21(7;031,85,) < /

13 (dn+2)

”1/<48(M+ 1)4Cf(r)¢(1:)> w(t)dt

))w(T)n

)
7o (0w (T) vindz

</ﬁ(dn+1)“j/(48(M—|—1)4Cf(1-)¢(1)> (T)dT n( .Sn gn )
= JB(dsa) v V:031,€31)-
47)

+/ﬁ(dn+l)77 inf (h(x)K(x, B (zj+3
Bldni2) ¢

Thus

(”f/o%*l) (/;:l %(yw(r))p(r)dr)

ﬁ(dnﬂ) .
s /ﬁ(dn+2) 7/<48(M +1)°Cf (T)<P(T))u/(r)dr.

(vou) (/%

B(dus1)
</ "y (a8 + 1000 Wi,

(dn+2)

This implies

w <yw(r)>p(r)d1:>

Summing up over n and then applying sub-additivity of ¥ 0% ~!, we obtain

T (ren) ([, #(rom)p0ar)

3,1

B(& )
) /13(5,:") 7/(48(M+1>4Cf(7)¢(1)> y(1)dr.

This implies

> (rou) (/Qj %(yw(r))p(r)dr)

= 3.1

B&EL) y
s /ﬁ(é,:") 7 (48 +1)*Cr(2)6 (7)) y(x)dr. )
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Next, for Qéz working as similar to the previous cases and thus we have

s (row)( [, # (o))

j=0 Iy
B(& ) y
< g ¥ (200 D'CA06) ) e @9)
Combining (27), (28), (34), (39), (40), (43), (48) and (49) we obtain

(7/ ° %_1> </{t€(§,§”~§,§i1)¢ff(t)>7/} v <7/a)(z)> P (z)dz)

B )
<1&m ¥ (960 1)*CF2)6() ) w2 0

Summing up (50) over m and k we obtain the estimate (11) with constant 96(M + 1)4C.
(i) = (iD).
Conversely, let us assume ¢ < T such that o(7) < B(z). For each N € N we
consider the set Ey = {a(7) <s < B(t): + <K(t,s),w(s) <N} has finite measure.
We have

»( A(infR)K(r,y)w(y) y(y)+1/k 2 Bl (infh)5 2
S 7 (Gt ity ) (P ) < 2l (imesaini

< oo
for each [,k € N and A > 0. Thus for each p > 0 we can choose A such that

- A(infh)K(t,y)w(y) vy)+1/k\
17 (o ramor i) (P Jas= e
where C is the constant in (11). We consider

:L,;< A (infh)K (1, y)w(y) ) w(y)+1/k
C \(00)+1/D(w(y)+1/k) ) A (infh)K(t,y)w(y)

f) XEN (Y)-

For t <x < 7, we have

() = h(x) K(w)lf((d,k(infh)K(t’y)w(y) ) 0 VOLELJE oy (v)ay

ey KNG\ G T D) + 170 ) A Gt Ky w)
1 A (infR)K(t,y)w(y)
% ey c/<<¢<y>+1/z><w<y>+1/k>) ("’(y’“/ k)dy
=(+u)y>7r.
This implies

[1,7) C {x: I f(x) > v}
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Thus using (9) and (11) we obtain

<8 ([ * oot

)
)
( A (infh)K (2, y)w(y) ) v() +1/k
A
(

</EN"”@ GO+ 10wk + 1) (mfh)K(uy)w(y)q’(”)"’(”dy
. (mfh)K(t,y)w(y)

< E/<<¢ SESYIIT >+1/k>>‘”(y)dy

< (14 u)CAy.

Since ¥/(r)/r increases as r increases, thus we have

T a)ey <y>+1/z> 10 o)
- A(infR)K(t,y v(y)+1/k
< /EN%<< CESYOIEE >+1/k>>

L+ u)Cry
By the Monotone convergence theorem

. (infh)K(t,y)w(y)n(y:t,7) v(y)+1/k
J 7(( 5 w0) ) ¢
( dy=1.

dy < 1.

/ 7/< (infh)K(t,y)W(y)n(%t,r)) v(y)
ey \(1+u)Cy(¢(y)+1/Dw(y)) n(y:t,7)

Letting [,N — o and u — 0", we thus obtain

/ﬁ(t) 7 ( (infh)K(t,)’)W(Y)z(Y;t’T) ) v()dy <n(yt,7).

a(7) Cyo(y)w(y

In a similar way we can prove the estimate (13). Let a < z < t < T < b satisfying
(1) < B(z) < B(t). For N € N we consider the set Ey = {a(7) <5< B(z): & <
w(s) <N} has finite measure and we define

fy) =

X ~<)L(infh(s)K(S,ﬁ(Z))>W()’)) : v(y)+1/k xen ().

(6) +1/D)(w(y)+1/k) ) A(infR)K(t,y)w(y)

And the rest of the proof proceeds similarly. Hence the proof is complete. [
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3. Proof of Theorem 3

Proof. (ii) = (i).
Let {&"} be the sequence given by Lemma I, then using the identity (26) and
applying subadditivity of 7 o % ~! we obtain

oo ) [

{re( é; 5k+1 (t)>r}

3
< ; <7/o~?/1>< / w(y)dy). (51)
{re (& &) Aif (0> 5}

We will first estimate .#] f. Applying inequlity (2), we now break the kernel K as

(&)
S f(t) :h(t)/(x(t) K(t,z)f(2)w(z)dz
(8¢kr) (&)
<M[h<>{ wpE [2 0 [0 K <z>dz]
=M[ A1 £(0)+ 5120 0)]

7/0%1)< / w(y)dy)

{re(Er.em ) f>%}

< i (V/o%*1> ( / a)(y)dy). (52)

{te é; 5k+1 lef ) ﬁM}

Thus

/N

To estimate .7 1 f, we consider the sequence {x;} as defined in section 2. Let us define
6{1 = infQ] 1.1 and 81 = supQ1 |» where

Qil = {f € (xj,xj41) A f(t) > 63:/1}

Let us denote 6(5l 1€ )= <”//o?/ 1)(

obtain

s/ (z)dz)7 then using (8) and (30), we
1,1

200806l < /‘:(xjﬂ) l48MC];(z)¢(z)] [(infh(x)[((x, B(EM))w(2)6

o(xj1)

o(xj12) 48MC
S /a(XjH) 7/< J;(Z)(P(Z) ) vie)dz

a(xj2) [ (infh(x)K (x,B(E")))w(z)6
“Ja 7( IBE

) y(z)dz. (53)

o(xj1)
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As a(e] ) < o) < alge) < aEl,) < BE) < Blxy) < B(8],). thus from
(21), we have

/ v( infh()K (x, (&’ ”>W(Z>9(5‘j’"8{’1>>w<z>dz

ofxjip1)

< 0(8 ¢l ). (54)

Combining (53) and (54), we obtain

(%@ﬂ)( /Q j w(z)dz) < / T(xm)”f/(w>llf(z)dz. (55)

1,1 o(xji1) Y

Summing up over j and applying subadditivity of ¥ o % !, we get

(vou) (/ (z)dz)
te é; 5k+1 Jllf ) }

@) A8MCF(2)9(z)
) L (BMCFROQY 56
S /oz@k"w 7 vess ”

Estimation of the integrals .#1 > f, % f and .#3f also follows the similar pattern used to
obtain (56) and in the proof of Theorem 1. Thus we obtain (19) with constant 96(M +
1*c.

(i) = (iD).

Conversely, let us assume ¢ < 7 for which a(7) < B (¢
N € N we consider the set Ey = {a(7) <s < B(t): v <K(
measure. We have

(A (infR)K(t,y)w(y) y(y) +1/k 2 Bl (infh)5 20
/E/<<<z><y>+1/z><w<y>+1/k>)( x )"yg”v En|(inf ) A LKN" inth)

). Correspondmg to each
1,5),w(s) <N} has finite

< oo

for each [,k € N and A > 0. Thus for each p > 0 we choose A such that

~(  A(infh)K(t,y)w(y) wO) 1KY
/EN7/<(¢(y)+1/l)(w(y)+1/k)>( p) )dy— (I+u)C,

where C is the constant in (19). For each 7 > 0 we consider

fy(y)zy“i(( A (infh)K (2,y)w(y) ) : v(y)+1/k

¢\ G0+ 1/Dw0) +178) A (mtm) Ky 2
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If t <x < 7, then

infh)K(t,y)w(y)
S =h [ Keng <<z><y+1/1>< )
o YO+ 1/k
A (infh) K (t,y)w(y)
Yy A(infh)K(,y)w(y)
> Ey C7L7/<(¢(y)+1/1)(W(y)+1/k)>(‘l/()’)+1/k>dy
=(+u)y>r.

\/

w(y)dy

This implies
[t,7) C{x: 7 fy(x) > 7}
Thus using (9) and (19) we obtain

0(t,7 <”//o (/ oy dy>

07N (g o)
2 (infh)K(
%0

( (infh)K (1.)w(y) ) y) + 1/k
)F /Dy 0)+1/8) ) A (inth)K(t.y)w(y)

A (inf)K (1,9)w()

(00) + 1/0(w() + 1/8)

A.

¢(y)> v(y)dy

gj\
<
—~
<

Jvoias

Since ¥ (r)/r increases as r increases, thus we have

~ (infh)K(t,y)w(y)O(t,T) v(y)+1/k
/ %<(1+u)C(¢(y>+l/l)(w(y)+1/k)> o)

~(  A(infR)K(t,y)w(y) v(y)+1/k,
s /E/<<¢<y>+1/l><w<y>+1/k>> armea® ="

By the Monotone convergence theorem, we obtain

~( (infR)K(1,y)w(»)0(t,7) \ w(y)
/E/<<1+u>c<¢<y>+l/zw/(y)) st

Letting [,N — oo and u — O™, thus we obtain

/ﬁ(t) 7 ( (infh)K(1,y)w(y)0(1,7) ) w(y)dy < 0(1,7).

o(t) Co(y)w(y)

In a similar way we can prove the estimate (21). Hence the proof is complete. []
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