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QUADRUPLE INEQUALITIES:

BETWEEN CAUCHY–SCHWARZ AND TRIANGLE

CHRISTOF SCHÖTZ

(Communicated by I. Perić)

Abstract. We prove a set of inequalities that interpolate the Cauchy–Schwarz inequality and the
triangle inequality. Every nondecreasing, convex function with a concave derivative induces
such an inequality. They hold in any metric space that satisfies a metric version of the Cauchy–
Schwarz inequality, including all CAT(0) spaces and, in particular, all Euclidean spaces. Be-
cause these inequalities establish relations between the six distances of four points, we call them
quadruple inequalities. In this context, we introduce the quadruple constant — a real number
that quantifies the distortion of the Cauchy–Schwarz inequality by a given function. Addition-
ally, for inner product spaces, we prove an alternative, more symmetric version of the quadruple
inequalities, which generalizes the parallelogram law.

1. Introduction

1.1. Relating Cauchy–Schwarz and triangle

The Cauchy–Schwarz inequality states that in any inner product space (V,〈·, ·〉) ,
we have

〈u,v〉 � ‖u‖‖v‖ (1)

for all u,v∈V , where ‖u‖=
√〈u,u〉 . In any metric space (Q,d) the triangle inequal-

ity
y,z � y, p+ p,z (2)

is true for all p,y,z ∈ Q , where we use the short notation y,z := d(y,z) . These two
inequalities can be connected as follows: Consider the inequality

τ(y,q)− τ(y, p)− τ(z,q)+ τ(z, p) � Lτ q, pτ ′(y,z) (3)

for y,z,q, p ∈Q , a differentiable function τ : [0,∞)→R with derivative τ ′ , and a con-
stant Lτ ∈ [0,∞) . We call (3) a quadruple inequality [19] as it establishes a relationship
between the six distances among four points, see Figure 1. If we plug the identity
τ = τ1 := (x �→ x) and Lτ = 2 into (3), we obtain

y,q− y, p− z,q+ z, p � 2q, p . (4)
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The triangle inequality (2) implies (4). Furthermore, in a symmetric distance space
(Q,d) [8], where d does not necessarily fulfill the triangle inequality, (4) also implies
(2) by setting z = q . Next, let us evaluate (3) with τ = τ2 := (x �→ x2) and Lτ = 1. We
get

y,q2− y, p2 − z,q2 + z, p2 � 2q, py,z . (5)

If we assume that the metric space (Q,d) is induced by an inner product space (V,〈·, ·〉) ,
i.e., Q = V and d(q, p) = ‖q− p‖ , then (5) becomes

2〈q− p , z− y〉 � 2‖q− p‖‖y− z‖ . (6)

Thus, in this case, (5) is equivalent to (1). Hence, we can consider (5) to be a gener-
alization of the Cauchy–Schwarz inequality to metric spaces. Equation (5) is not true
in every metric space. But it plays an important role in the study of geodesic metric
spaces. A geodesic metric space is a metric space such that any two points q, p ∈ Q
can be joined by a geodesic, i.e., a curve of length q, p . Equation (5) is well-known to
hold in non-positively curved geodesic spaces, which are called CAT(0) spaces or, if
they are complete, Hadamard spaces or global NPC spaces. In these spaces, (5) is also
known as four point cosq condition [2] or Reshetnyak’s Quadruple Comparison [23,
Proposition 2.4]. Furthermore, a geodesic space is CAT(0) if it fulfills (5) [2, Theorem
1].

y,q

z,q

z, p

y, p

y,z

q, p

y q

z

p

Figure 1: Four points and their six distances.

1.2. Contributions

The functions τ1,τ2 are both nondecreasing, convex, and have a concave deriva-
tive. They can be considered as edge cases of all functions with these properties: As a
linear function, τ1 can be thought of as “least convex” of all convex functions. Simi-
larly, τ2 , which has a linear and strictly increasing derivative, is a “most convex” func-
tion among all functions with a concave derivative. As our main result, we show that in
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all metric spaces with the property (5), inequality (3) is true for all functions “between”
τ1 and τ2 , i.e., for all nondecreasing, convex functions with a concave derivative. In
this sense, we “interpolate” the triangle and the Cauchy–Schwarz inequality.

Denote by S the set of all nondecreasing, convex, and differentiable functions
τ : [0,∞) → R with concave derivative.

THEOREM 1. Let (Q,d) be a metric space. Let y,z,q, p ∈ Q . Assume

y,q2− y, p2 − z,q2 + z, p2 � 2q, py,z .

Let τ ∈ S . Then

τ(y,q)− τ(y, p)− τ(z,q)+ τ(z, p) � 2q, pτ ′(y,z) . (7)

We emphasize that (5) as condition in Theorem 1 is only required for the specific
four points y,z,q, p ∈ Q in the given order.

As the constant 2 in (4) is optimal (set y = p and z = q ), we see that the 2
on the right-hand side of (7) is optimal as a universal constant not depending on τ .
Furthermore, if this constant is allowed to depend on τ , we show that it must be at least
1 for all non-constant τ ∈ S :

Let τ : [0,∞) → R and Lτ ∈ [0,∞] . Assume for any metric space (Q,d) and
points y,z,q, p ∈ Q that fulfill (5), we also have (3). If Lτ is the smallest value with
this property, we call Lτ the quadruple constant of τ .

THEOREM 2. Let τ ∈S . Assume τ is not constant. Then the quadruple constant
of τ fulfills Lτ ∈ [1,2] .

Note that Lτ2 = 1 and τ = τ2 in (3) yields the Cauchy–Schwarz inequality. Hence,
we can interpret the quadruple constant Lτ as a factor describing the distortion of the
Cauchy–Schwarz inequality induced by applying τ instead of τ2 .

Let S0 be the set of functions in S with τ(0) = 0. For τ ∈ S0 , the right-hand
side of (7) can be bounded by 2τ(q, p) + 2τ(y,z) , see Corollary 1. In inner product
spaces, we derive a stronger upper bound:

THEOREM 3. Let (V,〈· , ·〉) be an inner product space with induced metric d . Let
y,z,q, p ∈V . Let τ ∈ S0 . Then

τ(y,q)− τ(y, p)− τ(z,q)+ τ(z, p) � τ(q, p)+ τ(y,z) . (8)

This can be viewed as a generalization of the parallelogram law in inner product
spaces, ‖u+ v‖2 +‖u− v‖2 � 2‖u‖2 +2‖v‖2 for u,v ∈V , as it implies

τ(‖u+ v‖)+ τ(‖u− v‖)� 2τ(‖u‖)+2τ(‖v‖) (9)

for τ ∈ S0 , see Corollary 3.
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1.3. Related literature

For a history of the Cauchy–Schwarz inequality and many of its extension, [22]
is highly recommended. The book [8] is an excellent reference for metric related con-
cepts.

1.3.1. Convex analysis

Theorem 3 is related to Karamata’s inequality [17]: Let f : R → R be a convex
and nondecreasing function. Let a1, . . . ,an,b1 . . . ,bn ∈ R with

k

∑
i=1

ai �
k

∑
i=1

bi (10)

for k = 1, . . . ,n . Then
n

∑
i=1

f (ai) �
n

∑
i=1

f (bi) . (11)

If we set f = τ , n = 4, a1 = y,q , a2 = z, p , a3 = a4 = 0, b1 = q, p , b2 = y,z , b3 = y, p ,
b4 = z,q , then Karamata’s inequality proves Theorem 3 for configurations of distances
that fulfill (10). But this does not cover all cases.

1.3.2. Quadruple inequality

Theorem 1 extends [19, Theorem 3 and Appendix E], which imply the following:

PROPOSITION 1. Let α ∈ (0,∞) . Define τα : [0,∞) → R, x �→ xα . Then the
quadruple constant of τα is

Lτα =

{
22−α if α ∈ [1,2] ,
∞ otherwise .

(12)

Note that τα ∈ S if and only if α ∈ [1,2] . The proof of Theorem 1 requires
new ideas compared to the one of [19, Theorem 3], e.g., we cannot take derivatives
with respect to α . Our generalization to all functions τ ∈ S is less precise in the
quadruple constant: Theorem 1 applied to τα yields only the upper bound Lτα � 2.
But Lτα = 22−α < 2 for α > 1.

1.3.3. Metric geometry

Aside from CAT(0) spaces briefly discussed above, some further ideas in metric
geometry seem relevant in the context of quadruple inequalities.

A function ϕ : [0,∞) → [0,∞) is called metric preserving, if ϕ ◦ d is a metric for
any metric space (Q,d) . See [7] for an overview. As the quadruple inequality (3) with
τ = τ2 is a condition for Theorem 1, we may think of the main result as stating that a
Cauchy–Schwarz-like inequality is persevered under transformation with τ . But note
that the right-hand side of (3) is not written in terms of τ ◦ d .
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A metric space (Q,d) has the Euclidean k -point property [3, Definition 50.1] if
any k -tuple of points in Q has an isometric embedding in the Euclidean space Rk−1 .
If (Q,d) has the Euclidean 4-point property, then (5) is fulfilled. For γ ∈ (0,∞) , let
ϕγ(x) := xγ . This function is metric preserving for γ � 1. According to [3, Theorem
52.1], (Q,ϕγ ◦ d) has the Euclidean 4-point property for all γ � 1/2. Furthermore,
γ = 1/2 is the largest exponent with this property. Thus, (Q,ϕγ ◦ d) , fulfills (5) for
γ ∈ (0,1/2] . In particular,

y,q2γ − y, p2γ − y, p2γ + y, p2γ � 2q, pγ y,zγ . (13)

As d̃ = d2γ is a metric — x �→ x2γ is metric preserving for γ ∈ (0,1/2] — we obtain
from (4),

y,q2γ − y, p2γ − y, p2γ + y, p2γ � 2min
(
q, p2γ ,y,z2γ) , (14)

which also implies (13).
The Euclidean 4-point property can be weakened for CAT(0) spaces. A metric

space (Q,d) fulfills the CAT(0) 4-point condition [4, Definition II.1.10] if, for all
y,z,q, p ∈ Q , there are y, z , q, p ∈ R2 such that

y,q = ‖y − q‖ , y, p = ‖y − p‖ , z,q = ‖z − q‖ , z, p = ‖z − p‖ ,

q, p � ‖q− p‖ , y,z � ‖y − z‖ .

Every CAT(0) space fulfills the CAT(0) four-point condition, see [18] or [4,
Proposition II.1.11].

Another famous 4-point property is Ptolemy’s inequality: A metric space (Q,d)
is called Ptolemaic if, for all y,z,q, p ∈ Q , we have

y,qz, p+ y, pz,q � q, py,z . (15)

Every inner product space is Ptolemaic. If a normed vector space is Ptolemaic, then it
is an inner product space. All CAT(0) spaces are Ptolemaic. A complete Riemannian
manifold is Ptolemaic if and only if it is CAT(0) [5, Theorem 1.1]. Each geodesic met-
ric space satisfying the τ2 -quadruple inequality is Ptolemaic, but a geodesic Ptolemaic
metric space is not necessarily CAT(0) [13, 2].

Strongly related to Theorem 3 is the concept of roundness of a metric space:
A value α ∈ (0,∞) is called roundness exponent of a metric space (Q,d) if, for all
y,z,q, p ∈ Q ,

y,qα − y, pα − z,qα + z, pα � q, pα + y,zα . (16)

Let R = R(Q,d) be the set of all roundness exponents of (Q,d) . The roundness
r = r(Q,d) of (Q,d) is the supremum of the roundness exponents r := supR . By the
triangle inequality and the metric preserving property of (x �→ xα) for α ∈ (0,1] , we
have (0,1] ⊂ R for all metric spaces. The function spaces Lp(0,1) have roundness p
for p ∈ [1,2] [9]. For a geodesic metric space, roundness r = 2 is equivalent to being
CAT(0) , see [2, Remark 7]. A metric space is called ultrametric if the triangle inequal-
ity can be strengthened to y,z � max(y, p,z, p) for all points y,z, p . Every ultrametric
space can be isometrically embedded in a Hilbert space, see, e.g., [11, Corollary 5.4].
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A metric space is ultrametric if and only if r = ∞ , [11, Theorem 5.1]. Then R = (0,∞) ,
[11, Proposition 2.7]. In general, R is not necessarily an interval [10, Remark p. 254].
But if (Q,d) is a (subset of a) Banach space with the metric d induced by its norm,
then R = (0,r] with r ∈ [1,2] , [10, Proposition 4.1.2]. In particular, (16) holds for
α ∈ (0,2] in all inner product spaces. A metric space is called additive if

y,q+ z, p � max(y, p+ z,q,q, p+ y,z) (17)

for all points y,z,q, p . Every ultrametric space is additive. Every additive metric space
is Ptolemaic. Additive metric spaces have roundness r � 2 [11, Proposition 4.1].

1.3.4. Martingale theory

Nondecreasing, convex functions with concave derivative play an important role
in the Topchii–Vatutin inequality of martingales, see [24, Theorem 2] and [1]: For a
suitably integrable martingale (Mn)n∈N0 , we have

E [τ(|Mn|)− τ(|M0|)] � 2
n

∑
k=1

E [τ(|Mk −Mk−1|)] (18)

for all τ ∈S0 , where E[·] denotes the expectation. In this context, the functions τ ∈S0

are named weakly convex. Moreover, [24, Lemma 6] gives a weaker version of Theorem
3: Let τ ∈ S0 . For a,b ∈ [0,∞) with a � b , it was shown that τ(a+b)+ τ(a−b) �
2τ(a)+2τ(b) .

1.3.5. Statistics

Theorem 1 can be applied to prove rates of convergence for certain kinds of
means [19]: We may want to calculate a mean value of some sample points in a
metric space. One candidate for this is the Fréchet mean [14], also called barycen-
ter. It is the (set of) minimizer(s) of the squared distance to the sample points. If
Y is a random variable with values in a metric space (Q,d) , the Fréchet mean is

argminq∈Q E[Y,q
2] , where we assume E[Y,q

2] < ∞ for all q ∈ Q . Similarly, one can
define the Fréchet median [12] as argminq∈Q E[Y,q] , or a more general τ -Fréchet mean
[20] as argminq∈Q E[τ(Y,q)] for functions τ : [0,∞) → R . Given a sequence of inde-
pendent random variables Y1,Y2, . . . with the same distribution as Y , a standard task in
statistics is to bound the distance between the sample statistics and its corresponding
population version. In our case, assume the τ -Fréchet mean is unique and define

m := argmin
q∈Q

E[τ(Y,q)] , m̂n := argmin
q∈Q

1
n

n

∑
i=1

τ(Yi,q) .

We want to bound m̂n,m depending on n . One can employ quadruple inequalities such
as (3) to obtain a suitable upper bound [19, Theorem 1]. This approach is particularly
useful, if we do not want to make the assumption that the diameter of the metric space
supq,p∈Q q, p is finite. With Theorem 1, one can obtain such a bound for τ -Fréchet
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means with τ ∈ S (under some conditions). We emphasize that this is only possible
with (3) and not with (8). Noteworthy examples of τ ∈ S in this context, aside from
τ = (x �→ xα) with α ∈ [1,2] , are the Huber loss τH,δ [16] and the Pseudo-Huber loss
τpH,δ [6] for δ ∈ (0,∞) ,

τH,δ (x) :=

{
1
2x2 for x � δ ,

δ (x− 1
2 δ ) for x > δ ,

τpH,δ (x) := δ 2

(√
1+

x2

δ 2 −1

)
,

as well as x �→ ln(cosh(x)) [15]. These functions are of great interest in robust statistics
and image processing as their respective minimizers combine properties of the classical
mean (τ2 -Fréchet mean) and the median (τ1 -Fréchet mean).

1.4. Outline

In the remaining sections, we first discuss the set S in section 2. The basic ideas
for the proof of Theorem 1 and further generalizations of this result are presented in
section 3. More technical details can be found in appendix A and even more detail in
the arXiv version of this article [21]. We prove Theorem 2 in section 4 and Theorem 3
in section 5. In section 6, we discuss implications of the main results.

2. Nondecreasing, convex functions with concave derivative

As the set of nondecreasing, convex functions with concave derivative is central
to this article, we start by discussing some basic properties of these functions in this
section.

We define S to be the set of nondecreasing convex functions τ : [0,∞) → R that
are differentiable on (0,∞) with concave derivative τ ′ . We extend the domain of τ ′ to
[0,∞) by setting τ ′(0) := limx↘0 τ ′(x) , which exists as τ ′ is nonnegative and nonde-
creasing. Let I ⊂ R be convex. Let t0 ∈ I with t0 < sup I . For a function f : I → R the
right derivative at t0 is defined as

∂+ f (t0) = lim
t↘t

f (t)− f (t0)
t− t0

(19)

if the limit exits. For τ ∈ S , one can show that the right derivative at 0 exits and
∂+τ(0) = τ ′(0) .

Let C k([0,∞)) denote the space of k -times continuously differentiable functions
[0,∞) → R , where derivatives at 0 are taken as right derivatives. Denote S0 :=
{τ ∈ S : τ(0) = 0} . Denote S k := S ∩C k([0,∞)) and S k

0 := S0 ∩C k([0,∞)) for
k ∈ N∪{∞} .

The following lemma illustrates that all functions τ ∈ S 3 are between a nonde-
creasing linear function and a parabola that opens upward. It can be shown via Taylor
approximations.
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LEMMA 1. (Polynomial bounds) Let τ ∈ S 3 . Let x,y ∈ [0,∞) . Then

(i)

τ(x)+ yτ ′(x) � τ(x+ y) � τ(x)+ yτ ′(x)+
1
2
y2τ ′′(x) ,

(ii)
τ ′(x) � τ ′(x+ y) � τ ′(x)+ yτ ′′(x) .

In the next lemma, we provide useful bounds for the proof of the main results.

LEMMA 2. (Difference bound) Let τ ∈ S .

(i) Let x,y ∈ [0,∞) . Assume x � y. Then

x− y
2

(
τ ′(x)+ τ ′(y)

)
� τ(x)− τ(y) � (x− y)τ ′

(
x+ y

2

)
.

(ii) Let x,y ∈ [0,∞) . Then

τ(x+ y)− τ(|x− y|) � 2min(x,y)τ ′(max(x,y)) .

Proof of Lemma 2.

(i) For the lower bound, as τ ′ is concave,

τ(x)− τ(y) =
∫ x

y
τ ′(u)du

� (x− y)
∫ 1

0
(1− t)τ ′(y)+ tτ ′(x)dt

=
x− y

2

(
τ ′(x)+ τ ′(y)

)
.

For the upper bound, concavity of τ ′ implies the existence of an affine linear
function h with h(u) � τ ′(u) for all u ∈ [0,∞) and

h

(
x+ y

2

)
= τ ′

(
x+ y

2

)
. (20)

Thus,

τ(x)− τ(y) �
∫ x

y
h(u)du

=
x− y

2
(h(x)+h(y))

= (x− y)h
(

x+ y
2

)
.
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(ii) Follows directly from the upper bound in (i). �

The following lemma is a consequence of τ ′ being concave.

LEMMA 3. (Concave derivative) Let τ ∈ S .

(i) Let x,y ∈ [0,∞) . Then

τ ′(x+ y) � τ ′(x)+ τ ′(y) � 2τ ′
(

x+ y
2

)
.

(ii) Let a,x ∈ [0,∞) . Then

τ ′(ax) � aτ ′(x) for a � 1 ,

τ ′(ax) � aτ ′(x) for a � 1 .

(iii) Let x,y ∈ [0,∞) . Assume y � x . Then

xτ ′(y) � yτ ′(x) .

In the proof of Theorem 1, we will first show the result for τ ∈ S 3 and then
approximate the remaining functions in S via smooth functions. The following lemma
shows that this is possible.

LEMMA 4. (Smooth approximation) Let τ ∈S . Then there is a sequence (τn)n∈N

⊂ S ∞ such that τ(x) = limn→∞ τn(x) and τ ′(x) = limn→∞ τ ′n(x) .

Proof. We will smooth τ ′ by convolution with a mollifier. The convolution is
executed in the group of positive real numbers under multiplication endowed with its
Haar measure μ(A) =

∫
A

1
xdx for A ⊂ (0,∞) measurable.

For n ∈ N , let ϕn ∈ C ∞((0,∞)) be a sequence of nonnegative functions with sup-
port in [exp(−1/n),exp(1/n)] and∫ ∞

0

ϕn(x)
x

dx = 1 . (21)

Let τ ∈ S with derivative τ ′ . For n ∈ N , x ∈ [0,∞) , we define

τn(x) := τ(0)+
∫ x

0

∫ ∞

0

ϕn(z)
z

τ ′
(

y
z

)
dzdy . (22)

Then, for y ∈ [0,∞) ,

τ ′n(y) =
∫ ∞

0

ϕn(z)
z

τ ′
(

y
z

)
dz =

∫
R

ϕn(et)τ ′
(
elog(y)−t

)
dt . (23)

Thus, s �→ τ ′n(es) is the convolution of t �→ ϕn(et) with t �→ τ ′(et) . Using standard
results on convolutions, the mollified function has following properties:
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(i) τ ′n is infinitely differentiable on (0,∞) , because ϕn is,

(ii) τ ′n is nonnegative, nondecreasing, and concave, because τ ′ is and ϕn is nonneg-
ative,

(iii) limn→∞ τ ′n(x) = τ ′(x) because τ ′ is continuous.

Furthermore, τn is convex, as τ ′n is nondecreasing and limn→∞ τn(x) = τ(x) by domi-
nated convergence. Thus, (τn)n∈N ⊂ S ∞ , and the sequence has the desired point-wise
limits. �

3. Outline of the proof of Theorem 1

In the first step of the proof of Theorem 1, we represent general 4-point metric
spaces with 6 real-valued parameters. We refer to this representation as a parametriza-
tion. It converts our problem from the domain of metric geometry to the domain of
real analysis. The rest of the proof consists of a complex sequence of elementary cal-
culus arguments. This sequence may seem difficult to discover. To aid this process, an
extensive application of computer-assisted numerical assessments was employed. The
inequality (3) and transformations of it were evaluated on a grid of the parameter space
and for a finite set of functions τ . This computational tool played a crucial role in guid-
ing the proof. It helped to identify steps that would not be useful and indicated steps
with potential merit.

3.1. Parametrization

For the proof of Theorem 1, we use a 4-point parametrization, see Figure 2. It is
based on repeated application of the Euclidean cosine formula. Its parameter space is a
subset of [0,∞)3× [−1,1]3 with rather complex constraints. We then relax the problem
by dropping these constraints.

PROPOSITION 2. (4-point parametrization)

(i) Let (Q,d) be a metric space and y,z,q, p∈Q . Set a := z, p , c := y, p , b := q, p,
s := cos(�ypq) , r := cos(�zpq) , t := cos(�ypz) , with all angles measured as
in an isometric 3 -point embedding in the Euclidean plane. Then,

y,z2 = a2 + c2−2tac , y,q2 = c2 +b2−2scb , z,q2 = a2 +b2−2rab .

Furthermore, a,b,c ∈ [0,∞) , r,s,t ∈ [−1,1] , and

−tac � b2− rab− scb+
√

a2−2rab+b2
√

c2−2scb+b2 ,

−rab � c2− tac− scb+
√

a2−2tac+ c2
√

c2−2scb+b2 ,

−scb � a2− rab− tac+
√

a2−2rab+b2
√

a2−2tac+ c2 .

(24)
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(ii) For all a,b,c ∈ [0,∞) , r,s,t ∈ [−1,1] that fulfill (24), there is a metric space
(Q,d) with a quadruple of points y,z,q, p ∈ Q such that

a = z, p , c = y, p , b = q, p ,

y,z2 = a2 + c2−2tac , y,q2 = c2 +b2−2scb , z,q2 = a2 +b2−2rab .

Proof.

(i) The inequalities (24) are due to the triangle inequality,

y,z � y,q+ z,q , z,q � y,z+ y,q , y,q � y,z+ z,q .

(ii) Define a four point set Q with elements named y,z,q, p . Define d : Q×Q →
[0,∞) with the equations given in the lemma, extended by symmetry and d(x,x)=
0 for all x ∈ Q . By construction, d is a semimetric [8] (vanishing distance for
non-identical points allowed) so that identifying points with distance 0 yields a
metric space. �

√
c2 +b2 −2scb

√
a2 +b2 −2rab

a

c

√
a2 + c2 −2tac

b

y q

z

p
�s

�r
�t

Figure 2: A 4-point parametrization. We denote �x := arccos(x) .

With this parametrization and

a2− c2− (a2−2rab+b2)+ (c2−2scb+b2) = 2b(ra− sc) , (25)

(5) can be expressed as

b(ra− sc) � b
√

a2 + c2−2tac , (26)

and (3) becomes

τ(a)− τ(c)− τ√
(
a2−2rab+b2)+ τ√

(
c2−2scb+b2)� Lτ bτ ′(a2 + c2−2tac) ,

(27)
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where we use the shorthand τ√(x) := τ(
√

x) . Thus, Theorem 1 is equivalent to showing
that (26) implies (27) for all a,b,c ∈ [0,∞) , r,s,t ∈ [−1,1] that fulfill (24). We will
prove a stronger but simpler looking result in section A of the appendix:

THEOREM 4. Let a,b,c � 0 , r,s ∈ [−1,1] , and τ ∈ S 3
0 . Then

τ(a)− τ(c)− τ√
(
a2−2rab+b2)+ τ√

(
c2 −2scb+b2)� 2bτ ′(max(ra− sc, |a− c|)) .

(28)

3.2. Remaining proof steps

From Theorem 4, we obtain a slightly stronger result than Theorem 1 by relaxing
(5):

THEOREM 5. Let τ ∈ S . Let (Q,d) be a metric space. Let y,z,q, p ∈ Q . As-
sume, there is L ∈ [2,∞) such that

y,q2 − y, p2− z,q2 + z, p2 � Lq, py,z . (29)

Then

τ(y,q)− τ(y, p)− τ(z,q)+ τ(z, p) � Lq, pτ ′(y,z) . (30)

Proof that Theorem 4 implies Theorem 5. Let τ ∈ S 3
0 . Using (25), the metric

version of (28) is

τ(y,q)− τ(y, p)− τ(z,q)+ τ(z, p)

� 2q, pτ ′
(

max

(
y,q2 − y, p2 − z,q2 + z, p2

2q, p
, |z, p− y, p|

))
.

(31)

Using (29) and the triangle inequality, we bound the right-hand side of (31), by

2q, pτ ′
(

max

(
L y,z

2
,y,z

))
. (32)

With Lemma 3 (ii) and L/2 � 1, we obtain (30).
We extend the result now shown for τ ∈ S 3

0 to τ ∈ S : We use Lemma 4 to
construct a smooth sequence (τn) ⊂ S 3

0 that approximates τ ∈ S . One can easily
show that (30) also holds in the limit. Furthermore, the condition τ(0) = 0 can be
dropped, as we can add a constant to τ without changing the validity of (30). �

Theorem 1 follows from Theorem 5 by fixing L = 2. The remaining part of the
main proof, i.e., the proof of Theorem 4, is given in the appendix section A. Figure 3
gives an overview of how the different intermediate results presented above and below
relate to each other.
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Theorem 1

Theorem 5

Theorem 4

Lemma 7: Elimination of r Lemma 11: (ii)

Appendix A.3: (i)

section 3.2

L = 2

section A.1.1

Figure 3: Overview of theorems and lemmas in the proof of Theorem 1.

4. Proof of Theorem 2

We only prove Lτ � 1 for τ ∈ S as the upper bound follows from Theorem 1.
Let u∈ (0,∞) be such that τ ′(u) �= 0. Then τ ′(u)> 0. Let ε ∈ (0,u) . In the metric

space of the real line with Euclidean metric, we choose z = q = 0, p = ε , y = u , see
Figure 4. Then (3) becomes

τ(u)− τ(u− ε)− τ(0)+ τ(ε) � Lτ ε τ ′(u) .

As τ is nondecreasing, we have τ(0) = limx↘0 τ(x) � τ(ε) . Thus,

Lτ τ ′(u) � τ(u)− τ(u− ε)
ε

ε→0−−→ τ ′(u) .

u

u− εε y
q = z

p

Figure 4: Construction for the proof of Theorem 2.

5. Proof of Theorem 3

The proof of Theorem 3 is inspired by the proofs of [10, Proposition 4.1.1, Propo-
sition 4.1.2]. We first state two useful lemmas. This first one is a well-known property
of concave functions.
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LEMMA 5. Let f : [0,∞) → R . Assume f is concave. Let a,b ∈ [0,∞) with
a � b. Then x �→ f (a+ x)+ f (b− x) is nonincreasing. If additionally f (0) � 0 , then
f is subadditive.

LEMMA 6. Let f : [0,∞) → R . Assume f (0) � 0 , f is nondecreasing, and f is
concave. Let x1, . . . ,x6 ∈ [0,∞) . Assume max(x1,x2,x3,x4) � max(x5,x6) and x1 +
x2 + x3 + x4 � x5 + x6 . Then

f (x1)+ f (x2)+ f (x3)+ f (x4) � f (x5)+ f (x6) . (33)

Proof. Without loss of generality, assume x1 � x2 � x3 � x4 and x5 � x6 .
First consider the case x1 � x6 . We decrease x5 and increase x6 while holding

x5 + x6 constant until one x• on the right-hand side coincides with one x• one the
left-hand side. By Lemma 5, this can only increase the right-hand side of (33). If
{x1,x2,x3,x4}∩{x5,x6} �= /0 , we can subtract the term with the value in the intersection
from (33). The inequality of the form f (x1)+ f (x2)+ f (x3) � f (x1 + x2 + x3) � f (x5)
for x5 � x1 + x2 + x3 is obtained using subadditivity of f , see Lemma 5, and the as-
sumption that f is nondecreasing.

Now consider the case x1 < x6 . Set s := (x5 + x6)/2. Using Lemma 5, we obtain
f (x5)+ f (x6) � 2 f (s) . Furthermore x1 � s and x1 + x2 + x3 + x4 � 2s . Thus, again
using Lemma 5 and the assumption that f is nondecreasing, we can increase x1 and x2

while decreasing x3 and x4 to 0 to get

f (x1)+ f (x2)+ f (x3)+ f (x4) � 2 f (s)+2 f (0) . (34)

As f (0) � 0, we arrive at the desired result. �

u

x

v

u+ x+ v

u+ x

x+ v

y q

z

p

Figure 5: Four points in a vector space V . Their relative position is described by three vectors
u,v,x ∈V .
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Proof of Theorem 3. For any four points y,z,q, p ∈V , we have

‖y−q‖2−‖y− p‖2−‖z−q‖2+‖z− p‖2 = 2〈y− z , p−q〉� ‖q− p‖2 +‖y− z‖2 .
(35)

Let u,v ∈V . Consider a parallelogram with vertices (0,(u− v)/2,u,(u+ v)/2) . It has
the diagonals u and v and the largest diagonal is not smaller than the largest side. As
τ ∈S0 , τ√ is nonnegative, nondecreasing, and concave. Thus, we can apply Lemma 6
to

x1 = x2 =
∥∥∥∥u− v

2

∥∥∥∥
2

, x3 = x4 =
∥∥∥∥u+ v

2

∥∥∥∥
2

, x5 = ‖u‖2 , x6 = ‖v‖2 , (36)

where x1 + x2 + x3 + x4 � x5 + x6 is ensured by (35). We obtain

τ(‖u‖)+ τ(‖v‖) � 2τ
(∥∥∥∥u− v

2

∥∥∥∥
)

+2τ
(∥∥∥∥u+ v

2

∥∥∥∥
)

. (37)

To extend the result from parallelograms to any quadrilateral, we note that τ is nonde-
creasing and convex, and apply Lemma 5: For every x ∈V ,

2τ
(∥∥∥∥u− v

2

∥∥∥∥
)

� τ(‖x‖)+ τ(‖u− v− x‖) , (38)

2τ
(∥∥∥∥u+ v

2

∥∥∥∥
)

� τ(‖u− x‖)+ τ(‖v+ x‖) . (39)

By appropriate choice of u,v,x for a given quadrilateral with vertices y,z,q, p , see
Figure 5, we have shown

τ(‖y−q‖)+ τ(‖z− p‖)� τ(‖q− p‖)+ τ(‖y− z‖)+ τ(‖y− p‖)+ τ(‖z−q‖) (40)

and finished the proof of Theorem 3. �

6. Corollaries

With Theorem 1 and Theorem 3, we have shown new fundamental inequalities in
metric spaces and inner product spaces that are related to the Cauchy–Schwarz and the
Triangle inequalities. In this section, we discuss some corollaries of these results.

6.1. Symmetries

Figure 6 illustrates the symmetries in quadruple inequalities. Sides of the same
color contribute essentially in the same way in the inequality. In (3), the diagonals of
Figure 6 come up in non-exchangeable terms. But they can be swapped in the assump-
tion (5). Thus, if the conditions of Theorem 1 are fulfilled, we have, for τ ∈ S ,

τ(y,q)− τ(y, p)− τ(z,q)+ τ(z, p) � 2min(q, pτ ′(y,z),y,zτ ′(q, p)) . (41)
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y,q

z,q

z, p

y, p
y,z

q, p

y q

z

p

Figure 6: Four points as a quadrilateral. The sides of the quadrilateral show up on the left of
the quadruple inequalities (the terms of opposite sides have the same sign); the diagonals form
the right-hand side.

Furthermore, swapping y and z or q and p does not influence the right-hand side but
changes the sign on the left-hand side. Thus, assuming∣∣y,q2 − y, p2− z,q2 + z, p2

∣∣� 2q, py,z (42)

we get

|τ(y,q)− τ(y, p)− τ(z,q)+ τ(z, p)| � 2min(q, pτ ′(y,z),y,zτ ′(q, p)) . (43)

Further bounds of the right-hand side are shown in the next subsection.

6.2. Bounds for the right-hand side

COROLLARY 1. Let τ ∈ S0 . Let (Q,d) be a metric space. Let y,z,q, p ∈ Q .
Assume

y,q2− y, p2 − z,q2 + z, p2 � 2q, py,z . (44)

Then the value
τ(y,q)− τ(y, p)− τ(z,q)+ τ(z, p) (45)

is bounded from above by all of the following values:

(i) 2min(q, py,z)τ ′(max(q, py,z)) ,

(ii) 2q, pβ y,z1−β τ ′
(
q, p1−β y,zβ) for all β ∈ [0,1] ,

(iii) 2(β q, p+(1−β )y,z)τ ′((1−β )q, p+ βy,z) for all β ∈ [0,1] ,

(iv) 2
√

q, py,zτ ′(
√

q, py,z) ,

(v) (q, p+ y,z)τ ′
(

q,p+y,z
2

)
,

(vi) 4τ(
√

q, py,z) ,
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(vii) 4τ
(

q,p+y,z
2

)
,

(viii) 2τ(q, p)+2τ(y,z) .

Proof. We first apply Theorem 1 twice, to (y,z,q, p) and to (q, p,y,z) , to obtain

τ(y,q)− τ(y, p)− τ(z,q)+ τ(z, p) � 2min(q, py,z)τ ′(max(q, py,z)) . (46)

This shows (i). Let a,b ∈ [0,∞) and β ∈ [0,1] . Next we use Lemma 3 (ii) and the
weighted arithmetic–geometric mean inequality,

min(a,b)τ ′(max(a,b)) � aβ b1−β τ ′(a1−β bβ )
� (βa+(1−β )b)τ ′((1−β )a+ βb) .

Applying these inequalities to (46) shows (ii) and (iii), and their special cases (iv) and
(v), where β = 1/2. By Lemma 2 (i) with y = 0, we have

xτ ′(x) � 2τ(x) (47)

for all x ∈ [0,∞) . Thus,

min(a,b)τ ′(max(a,b)) �
√

abτ ′(
√

ab)

� 2τ(
√

ab) ,

which yields (vi). The remaining parts (vii) and (viii), can be obtained using (47) and
Jensen’s inequality:

min(a,b)τ ′(max(a,b)) � a+b
2

τ ′
(

a+b
2

)

� 2τ
(

a+b
2

)
� τ(a)+ τ(b) . �

6.3. Corollaries for special cases

We apply Theorem 1, Theorem 3, and Proposition 1 for a triple of points (a quadru-
ple of points with two identical points) and for parallelograms in inner product spaces
to demonstrate the main results.

COROLLARY 2. (For three points) Let (Q,d) be a metric space. Let y,q, p ∈ Q .

(i) Let τ ∈ S0 . Then

τ(y,q)− τ(y, p)+ τ(q, p) � 2q, pτ ′(y,q) . (48)

(ii) Let α ∈ [1,2] . Then

y,qα − y, pα +q, pα � α22−α q, py,qα−1 . (49)
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Proof. By the triangle inequality, |y,q−q, p| � y, p . After squaring this inequal-
ity, we obtain (5) with z = q , which is

y,q2− y, p2 +q, p2 � 2q, py,q . (50)

Thus, Theorem 1 implies (48) and Proposition 1 implies (49). �

COROLLARY 3. (In inner product spaces) Let (V,〈· , ·〉) be an inner product space
with induced norm ‖ · ‖ . Let u,v ∈V .

(i) Let τ ∈ S0 . Then

τ(‖u‖)− τ(‖v‖) � ‖u− v‖τ ′(‖u+ v‖) . (51)

(ii) Let α ∈ [1,2] . Then

‖u‖α −‖v‖α � α21−α‖u− v‖‖u+ v‖α−1 . (52)

(iii) Let τ ∈ S0 . Then

τ(‖u+ v‖)+ τ(‖u− v‖)� 2τ(‖u‖)+2τ(‖v‖) . (53)

(iv) Let α ∈ [1,2] . Then

‖u+ v‖α +‖u− v‖α � 2‖u‖α +2‖v‖α . (54)

Proof. For the first two parts, set y = 0, z = u+ v , q = u , p = v ; for the last two
parts, set y = 0, z = v , q = u+ v , p = u . Then apply Theorem 1, Theorem 3, and
Proposition 1. �

REMARK 1. Recall the parallelogram law: Let (V,〈· , ·〉) be an inner product
space with induced norm ‖ · ‖ . Let u,v ∈V . Then

‖u+ v‖2 +‖u− v‖2 � 2‖u‖2 +2‖v‖2 , (55)

which is also true with equality. Thus, we can say that Corollary 3 generalizes the
parallelogram law.

A. Proof of Theorem 4

This section gives a more detailed view of the proof of Theorem 4. The proof con-
tains many simple calculus arguments, which do not seem to be particularly interesting
beyond the scope of this proof. Thus, not every step is laid out in full detail here. An
extended version of the proof with a step-by-step description is given in [21].

Before we start with the main proof, let us remark on some technicality: If we want
to show f (x) � 0 for all x ∈ A , where A ⊂ R

n , for a continuous function f : A → R ,
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f τ τ ′ τ ′′ τ ′′′ τ√ τ ′√ τ ′′√ τ ′′′√

f (0) 0 � 0 � 0 � 0 0 � 0 � 0
f (x) � 0 � 0 � 0 � 0 � 0 � 0 � 0

f monotone ↗ ↗ ↘ ↗ ↘
f curvature � � �

Table 1: Properties of τ ∈ S 3
0 and function τ√(x) = τ(

√
x) . We denote ↗ (↘ ) to indicate a

nondecreasing (nonincreasing) function and � (� ) for a convex (concave) function.

it is enough to prove the inequality on a dense subset of A . We use this fact in the
following. If we write an expression with a quotient, we silently restrict the domains
of the real parameters in all statements about this expression to a domain on which the
denominator is not 0. The restricted domain, will always be dense in the unrestricted
domain.

Recall τ√(x) = τ(
√

x) . Properties of τ ∈ S 3
0 and the corresponding τ√ are sum-

marized in Table 1 for reference.

A.1. Lemma 7: elimination of r

We will show that the following lemma implies Theorem 4.

LEMMA 7. (Elimination of r ) Let τ ∈ S 3
0 .

(i) For all a,b,c ∈ [0,∞) , s ∈ [−1,min(1,2 a
c −1)] , we have

τ(a)− τ(c)− τ(|a−b|)+ τ√(c2 −2scb+b2) � 2bτ ′(a− sc) . (56)

(ii) For all a,b,c ∈ [0,∞) with a � c, we have

τ(a)− τ(c)− τ√((a−b)2−4bc)+ τ√(b+ c) � 2bτ ′(a− c) . (57)

A.1.1. Proof that Lemma 7 implies Theorem 4

For this proof, we first show some auxiliary lemmas. We distinguish the cases
ra− sc � |a− c| and ra− sc � |a− c| as well as a � c and c � a . Some trivial
implications of these cases are recorded in following lemma.

LEMMA 8. Let a,b,c � 0 , r,s ∈ [−1,1] . Then

ra− sc � a− c ⇔ s � (r−1)
a
c

+1 ⇔ r � (s−1)
c
a

+1 ,

ra− sc � c−a ⇔ s � (r+1)
a
c
−1 ⇔ r � (s+1)

c
a
−1 .
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Denote

�τ(a,b,c,r,s) := τ(a)− τ(c)− τ√
(
a2−2rab+b2)+ τ√

(
c2−2scb+b2) ,

Fτ(a,b,c,r,s) := �τ(a,b,c,r,s)−2bτ ′(ra− sc) .

For ra− sc � |a− c| , we want to show Fτ(a,b,c,r,s) � 0. Because of the next
lemma, which has a straight forward proof, we can reduce the number of values of r
for which we need to check this inequality.

LEMMA 9. (Convexity in r ) Let τ ∈ S 3
0 . Let a,b,c � 0 , s,r ∈ [−1,1] . Assume

ra− sc � 0 . Then
∂ 2

r Fτ(a,b,c,r,s) � 0 .

In the case |a−c|� ra−sc , the right-hand side of (27) does not depend on r or s .
Thus, we will only need to check the inequality with the left-hand side �τ maximized
in r and s .

LEMMA 10. (Maximizing the left-hand side for |a− c|� ra− sc) Let τ ∈S 3
0 . Let

a,b,c ∈ [0,∞) , r,s ∈ [−1,1] . Assume |a− c|� ra− sc.

(i) If a � c and a2 � c2 +2ab−2cb, then

�τ(a,b,c,r,s) � τ(a)− τ(c)− τ(|a−b|)+ τ(|c−b|) .

(ii) If a � c and a2 � c2 +2ab−2cb, then

�τ(a,b,c,r,s) � τ(a)− τ(c)− τ√((a−b)2 +4cb)+ τ(c+b) .

(iii) If a � c, then

�τ(a,b,c,r,s) � τ(a)− τ(c)− τ√(|a−b|)+ τ√((c+b)2−4ab) .

Proof. As τ√ is nondecreasing, s �→ �τ(a,b,c,r,s) is nonincreasing and r �→
�τ(a,b,c,r,s) nondecreasing, i.e., for s0,r0 ∈ [−1,1] ,

max
s�s0,r�r0

�τ(a,b,c,r,s) = �τ(a,b,c,r0,s0) .

Case 1: a � c . For r ∈ [−1,1] , set smin(r) := (r−1) a
c +1, cf. Lemma 8. Define

f (r) := �τ(a,b,c,r,smin(r))

= τ(a)− τ(c)− τ√(a2−2rab+b2)+ τ√(c2 −2rab+2ab−2cb+b2) .

Then
f ′(r)
2ab

= τ ′√(a2−2rab+b2)− τ ′√(c2 −2rab+2ab−2cb+b2) .
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Case 1.1: a2 � c2 +2ab−2cb . As τ ′√ is nonincreasing, we have

a2−2rab+b2 � c2−2rab+2ab−2cb+b2 ,

τ ′√(a2−2rab+b2) � τ ′√(c2−2rab+2ab−2cb+b2) .

Thus, f ′(r) � 0 and f is maximal at r = rmax = 1, with smin(r) = 1. Hence,

�τ(a,b,c,r,s) � f (1) = τ(a)− τ(c)− τ(|a−b|)+ τ(|c−b|) .

Case 1.2: a2 � c2 +2ab−2cb . As τ ′√ is nonincreasing, we have

a2−2rab+b2 � c2−2rab+2ab−2cb+b2 ,

τ ′√(a2−2rab+b2) � τ ′√(c2−2rab+2ab−2cb+b2) .

Thus, f ′(r) � 0 and f is maximal at r = rmin = 1−2 c
a , with smin(r) = −1. Hence,

�τ(a,b,c,r,s) � f (rmin) = τ(a)− τ(c)− τ√((a−b)2 +4cb)+ τ(c+b) .

Case 2: a � c . For r ∈ [−1,1] , set smin(r) := (r+1) a
c −1, cf. Lemma 8. Define

f (r) := �τ(a,b,c,r,smin(r))

= τ(a)− τ(c)− τ√(a2−2rab+b2)+ τ√(c2 −2rab−2ab+2cb+b2) .

Then
f ′(r)
2ab

= τ ′√(a2−2rab+b2)− τ ′√(c2 −2rab−2ab+2cb+b2) .

Case 2.1: a2 � c2 −2ab+2cb . As τ ′√ is nonincreasing, we have

a2−2rab+b2 � c2−2rab−2ab+2cb+b2 ,

τ ′√(a2−2rab+b2) � τ ′√(c2−2rab−2ab+2cb+b2) .

Thus, f ′(r) � 0 and f is maximal at r = rmax = 1, with smin(r) = 2 a
c −1. Hence,

�τ(a,b,c,r,s) � f (1) = τ(a)− τ(c)− τ√(|a−b|)+ τ√((c+b)2−4ab) .

Case 2.2: a2 � c2 − 2ab+ 2cb . This cannot happen for a < c . Hence, the proof
is finished. �

Proof that Lemma 7 implies Theorem 4.

Case 1: |a− c|� ra− sc .

Case 1.1: a � c . We can apply Lemma 10 and it suffices to show

τ(a)− τ(c)− τ(|a−b|)+ τ(|c−b|)� 2bτ ′(a− c) (58)
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for a2 � c2 +2ab−2cb , and for a2 � c2 +2ab−2cb ,

τ(a)− τ(c)− τ√((a−b)2 +4cb)+ τ√(c+b) � 2bτ ′(a− c) . (59)

The latter is exactly Lemma 7 (ii). The former follows from Lemma 7 (i) with s ∈
{−1,1} .

Case 1.2: a � c . We can apply Lemma 10 and it suffices to show

τ(a)− τ(c)− τ√(|a−b|)+ τ√((c+b)2−4ab) � 2bτ ′(c−a) . (60)

This follows from Lemma 7 (i) with s = 2 a
c −1.

Case 2: |a− c|� ra− sc .

Case 2.1: a � c . In this case, Fτ(a,b,c,r,s)� 0 implies (28). As r �→Fτ(a,b,c,r,s)
is convex by Lemma 9, it suffices to show Fτ(a,b,c,r,s) � 0 for the extreme values of
r in order to establish this inequality for all r . By Lemma 8,

r ∈
[
(s−1)

c
a

+1, 1
]

. (61)

For maximal r , by Lemma 7 (i), we have Fτ(a,b,c,1,s) � 0. For minimal r , we have
ra− sc = a− c . Thus, we are in case 1.1.

Case 2.2: a � c . As in case 2.1, it suffices show Fτ(a,b,c,r,s) � 0 for extreme
values of r . By Lemma 8,

r ∈
[
(s+1)

c
a
−1, 1

]
. (62)

For maximal r , by Lemma 7 (i), we have Fτ(a,b,c,1,s) � 0. For minimal r , we have
ra− sc = c−a . Thus, we are in case 1.2. �

A.2. Proof of Lemma 7 (ii)

LEMMA 11. Let τ ∈ S 3
0 . Let a,b,c ∈ [0,∞) . Assume a � c. Then

τ(a)− τ(c)− τ√((a−b)2−4bc)+ τ√(b+ c) � 2bτ ′(a− c) . (63)

Proof. Define

f (a,b,c) := τ(a)− τ(c)− τ√((a−b)2 +4cb)+ τ(c+b)−2bτ ′(a− c) . (64)

By distinguishing the cases a−b−2c� 0 and a−b−2c� 0, some simple calculations
show

2(a−b−2c)τ ′√((a−b)2 +4cb)+ τ ′(c+b)−2τ ′(a− c) � 0 . (65)

Thus, ∂b f (a,b,c) � 0. Hence, as b � 0, we have f (a,b,c) � f (a,0,c) = 0. �
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A.3. Outline of proof of Lemma 7 (i)

The proof of Lemma 7 (i) follows a similar pattern as part (ii): Define the function
f (a,b,c,s) as left-hand side minus right-hand side of (56). Take suitable partial deriva-
tives (potentially after re-parameterization of the domain of f ) until one can easily
show that the respective derivative is always nonpositive or nonnegative, which allows
one to fix one of the parameters at an extreme value of the domain. This procedure is
repeated until f � 0 is shown. As f (or its derivatives) may not always be monotone
on the whole domain, one has to distinguish several different cases and sub-cases. E.g.,
in the step-by-step version of the proof [21], following cases of Lemma 7 (i) are shown
separately:

1. c � a � b � sc ,

2. c � a � b , b � sc ,

3. c � a , a � b ,

4. a � c , b � 2sc , sc � a−b ,

5. a � c , b � 2sc ,

6. a � c , b � 2sc , sc � a−b .

Each case may have additional sub-cases that are distinguished. It is not obvious at first
which cases should be distinguished and which partial derivatives should be taken. The
choices in [21] were found by guidance via numerical evaluation of f and its partial
derivatives.

We do not go into further detail here, as the execution of the method described
above does not seem to be of additional mathematical interest, but refer to [21] for the
step-by-step proof.

Acknowledgements. I want to thank Christophe Leuridan for his very quick answer
on math overflow1 that sped up the creation of Lemma 4 significantly.
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