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REVERSED HARDY-LITTLEWOOD-SOBOLEV INEQUALITY
ON HEISENBERG GROUP H" AND CR SPHERE S$%''!

YAZHOU HAN*® AND SHUTAO ZHANG

(Communicated by S. Varosanec)

Abstract. This paper is mainly devoted to the study of the reversed Hardy-Littlewood-Sobolev
(HLS) inequality on Heisenberg group H" and CR sphere S**! . First, we establish the roughly
reversed HLS inequality and give an explicitly lower bound for the sharp constant. Then, the
existence of the extremal functions with sharp constant is proved by subcritical approach and
some compactness techniques. Our method is rearrangement free and can be applied to study
the classical HLS inequality and other similar inequalities.

1. Introduction

Heisenberg group is one of the simplest noncommutative geometries and is the
model space of CR manifolds, which arise from the study of real hypersurfaces of
complex manifolds. It is well-known that the non-commutativity and the complex
structure induced from complex manifolds inspire many interesting geometric prop-
erties and bring some new difficulties. In the past few decades, sharp inequalities
such as Sobolev inequality [22,23,36,43], Hardy-Littlewood-Sobolev(HLS) inequal-
ity [22,25], Moser-Trudinger inequality [3, 13, 14], Hardy inequality [26,51], Hardy-
Sobolev inequality [34], etc., play important roles in the study of problems defined on
Heisenberg group and CR manifolds. In this paper, we mainly concern with reversed
Hardy-Littlewood-Sobolev inequality on H" and CR sphere S*'*!.

1.1. HLS and reversed HLS inequalities on R”
The classical HLS inequality [40,41,53] on R" states that

/)1/)1 %dxdy’ < Np.anll fllplglle (1.1)

holds for all f € LP(R"), g € L'(R"), where 0 < ot <n and 1 < p,t < +eo satisfying

1 1 n—o
-+ -+ =2. (1.2)
p t n
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Using rearrangement inequalities, Lieb [46] proved the existence of the extremal func-
tions to the inequality (1.1) with the sharp constant. For the conformal case p =t =
ni”a , he classified the extremal functions and computed the best constant (different dis-
cussions can be found in [5,47]). In fact, he proved that the extremal functions with

p =t are given by

(nta)/2
£ ) : (1.3)

e+ |x —)C()|2

folx) = e18e(0) = ¢ (

where ci,c and € are constants, xy is some point in R”. Recently, the solutions of
the Euler-Lagrange equation in the conformal case were classified by the method of
moving planes [12] and the method of moving spheres [45], respectively.

For 0 < p,t <1 and a > n satisfying (1.2), Dou and Zhu [19] (also see [2,49])
established a class of reversed HLS inequality

/n/n f(f)jn(yldx‘iy 2 Np.on

|x

flipliglle, (1.4)

where f € LP(R"), g € I'(R") are nonnegative functions. Employing the rearrange-
ment inequalities and the method of moving spheres, they also classified the extremal
functions and computed the best constant in the conformal case. In fact, they found that
the extremal functions of (1.4) in the conformal case are given as (1.3), too.

As stated above, it can be found that rearrangement inequalities, the method of
moving planes and the method of moving spheres are basic and important tools in the
study of HLS inequalities. More applications of these techniques can be found in the
study of HLS inequalities and reversed HLS inequalities on the upper half space (see
[8,11,17,20,27,39,50] and the references therein).

Note that fr and ge will blow up as € — 0", and vanish as € — +oo. The phe-
nomenon makes it difficult to study the extremal problems. To overcome the difficulty,
we often renormalize the extremal sequence. For example, Lieb [46] renormalized the
extremal sequence {fj(x)} so that it satisfies f;(x) > B > 0 if |x| = 1. The technique
can also be found in [19].

Recently, Dou, Guo and Zhu [17] adopted the subcritical approach to study sharp
HLS type inequalities on the upper half space. By Young inequality, they first estab-
lished two classes of HLS type inequalities with subcritical power on a ball. Then,
using the conformal transformation between ball and upper half space and the method
of moving planes, they proved that the extremal functions of HLS type inequalities with
subcritical power are constant functions. Passing to the limit from subcritical power to
critical power, they obtained two classes of sharp HLS type inequalities on the upper
half space. In the process of taking the limit, since these extremal functions of HLS
type inequalities with subcritical power are constant functions, we can choose every
extremal function to be f =1 and avoid efficiently the blow-up phenomenon. Inspired
by the idea of [17], Gluck [27] established a class of sharp HLS type inequalities with
more general kernels

-

(WP

Ko p (x) = x= (' x,) € R x (0,00)
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on the upper half space R’ .

In [54], Stein and Weiss established a class of weighted HLS type inequality,
named as Stein-Weiss inequality. Applying the rearrangement inequalities and under
the conditions o > 0 and 8 > 0, Lieb [46] proved the existence of the extremal func-
tions of Stein-Weiss inequality. Recently, more interesting results have been presented,
such as reverse Stein-Weiss inequality [6], Stein-Weiss inequality and reverse Stein-
Weiss inequality on the upper half space [9, 15], Stein-Weiss inequalities with Poisson
type kernel [10,55], etc.. Because of technical reason, the conditions oc > 0 and 8 >0
were assumed in the aforementioned articles.

The conditions were removed by Chen, Lu and Tao in [7]. In fact, by concentration-
compactness principles, they established the existence of extremal functions for two
kinds of Stein-Weiss inequalities on the Heisenberg group, which can also be applied
to the corresponding problems in [6,9, 10, 15,46, 55]. Tao and Wang [56] applied the
idea to prove the existence of extremal functions for a class of Stein-Weiss inequalities
with an extended Poisson kernel.

1.2. HLS inequlity on the Heisenberg group

We first recall Heisenberg group and some notations.
Heisenberg group H" consists of the set

C"xR={(z,t) :z= (21, -+,zn) € C",t € R}
with the multiplication law
(z,)(d 1) = (z+ 7t +1' +2Im(z- 7)),

where z-2 = Y_ 2;7}, zj = xj+ V= ly; and Zj = x; — v/~ 1y;.

For any points u = (z,¢), v = (Z,#') € H", denote the norm function by |u| =
(Jz]* +2)1/* and the distance between u and v by |[v~'u|. Moreover, there exists a
constant y > 1 such that |uv| < y(Ju|+|v|) holds for all u,v € H". Write B(u,R) ={v e
H": |u~'v| < R} as the ball centered at u with radius R. For any A > 0, the dilation
8, (u) is defined as &) (u) = (Az,A%t), and Q = 2n+2 is the homogeneous dimension
with respect to the dilations. For more details about Heisenberg group, please see [21,
22] and the references therein.

To study the sigular integral operator on CR manifolds, Folland and Stein [22]
established the following HLS inequality

L, [ Tl Cavau| < D(n, o p) s Il (1)

where f€ L9, g€ 1P, 0< a0 < Q, 1+ 1 +%5% =2 and du = dzdt = dxdyd is the
Haar measure on H". In fact, the inequality (1.5) can be deduced from Proposition 8.7
of [22].

Since rearrangement inequalities do not work efficiently on Heisenberg group, it
took a quite long time to study the problems about the sharp constant and extremal
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functions of (1.5). In 2012, Frank and Lieb [25] studied the conformal case p = g =
% of (1.5). They introduced a class of rearrangement free method and classified
the extremal functions. Then, sharp constants were computed for the HLS inequality,
Sobolev inequality and their limiting cases on Heisenberg group and CR sphere S*"*1.

Their results about HLS inequality on H" can be stated as follows.

THEOREM A. (Sharp HLS inequality on H") Let 0 < o < Q and py = Q2+—Qa.
Then for any f,g € LP«(H"),

/n - Fa) ™|~ @D g(v)dvdu| < Dy gl|f]|1re @)l I8 1o 1m) (1.6)
where
n.n+l (0-a)/0 n'r((x/z) .
wi(Fm)  Toiam 4
And the equality holds if and only if
f(u) = c1g(u) = c2H (8:(ug ' w), (1.8)

for some cy, c; € C, r >0 and uy € H" (unless f =0 or g=0). Here H is defined
as

H(u) = H(z,t) = (1 +]z|*)? +12)~(@ro)/s, (1.9)

REMARK A.1. Using the Green’s function of the sub-Laplacian [24] and making
a duality argument, we see that HLS inequality (1.6) with o0 = 2 is equivalent to the
sharp Sobolev inequality established by Jeison and Lee [43]. Based on the idea intro-
duced by Obata [52], they classified the extremal functions and computed the sharp
constant of the sharp Sobolev inequality (see [43]).

In view of the efficiency of the method of moving planes and the method of moving
spheres in the study of Euler-Lagrange equation of (1.1), a natural question is whether
one can adapt them on the Heisenberg group. There have been a number of attempts by
several mathematicians in the directions (see [4,35] and the references therein). But, it
seems that these methods are not suitable very well with Heisenberg group.

For the case p # g, Han [30] used the concentration-compactness principles to
study the existence of extremal functions of (1.5). Recently, Han, Lu, Zhu [31] and
Chen, Lu, Tao [7] established two classes of weighted HLS inequalities on Heisenberg
group and proved the existence of extremal functions by the concentration-compactness
principles.
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1.3. Reversed HLS inequalities on the Heisenberg group

If o > Q, we will establish the following reversed HLS inequality.

PROPOSITION 1.1. Let ¢ > Q > 4 and py = Q2+—ro' Then for any nonnegative

functions f,g € LP*(H"), there exists a sharp constant Ng o 1 such that

F(u)G(v
[ T dudy > No sl Fliean |Gl (110

The sharp constant satisfies

(8|By])(@-)/C
2p},

b

Noa 1 =

5 =

where B := B(0,1) and the volume of By is given (see [13,30]) as

_ _ 2= 1“(l) (Q—
|Bl|—/H<ldu_ S 2 7

Since pg € (0, 1), the extremal problem of (1.10) is analytically different from the
case o € (0,Q). This brings some difficulties to study the case o > Q by the method
of [25] and [30].

We will discuss the extremal problem by subcritical approach. However, be-
cause of the non-commutativity and the complex structure of Heisenberg group and CR
sphere, which make the method of moving planes and the method of moving spheres
ineffective, it is not easy to prove that the extremal functions of HLS inequalities with
subcritical power on the CR sphere should be constant functions. We will encounter
the blow-up phenomenon and circumvent it by renormalization method (see Section 4).
Furthermore, our method is rearrangement free and different from the method in [25].
Recently, we have successfully experimented with the method and provided a new proof
for the existence of extremal functions of (1.1) and (1.4) (see [58]).

The unit CR sphere is the sphere S*"*! = {& = (&;,--+,&,. € C™FL: ||E =1}
endowed with standard CR structure. Cayley transformation ¢ : H" — S*"+1\ & and
its reverse are defined respectively as

2z l—|z\2—it>
L+ |z2+it’ 1+ |z +it
n 1
&1 e ¢ .Im §n+1>’
1+ 1+&1” 148

C(2,1) = (

(&)= (

where & = (0,---,0,—1) is the south pole. The Jacobian of the Cayley transformation
5 22n+1

(P +

Jg(z,1) =
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Lo 0060E = [ 0(% @) (0 (L.11)
S2n+1 H~

for all integrable function ¢ on S?**!, where d& is the Euclidean volume element of
S?*1_ Under the Cayley transformation, we have the following relations between two
distance functions

which implies that

=geml =2 WP (P +2) P (PP T )
where { =% (u), N =%), u= (z,t) and v=(Z,7').
For any f € LP(S*"*1), there is a corresponding function

F(u) = [Jog (u)| /7 £ (% () € LP(H")

Such that Hf||Lp(SZn+l) - ||FHLp(Hn) .
Applying the Cayley transformation to (1.10), we have that

>
Lo fons “ e dgdn > Noal f e I8y (113

holds for all nonnegative functions f,g € LP*(S*"*1), where Np 4 is the sharp constant
and satifies

Qo
(8[B1]) @

Noo =
oo = 21+n%Q

o
Pa
Define the extremal problem of (1.13) as

f(&)g(n)
Ve [ [ SO,
Q’a HfHLpa §2n+l) HgHLpa S2n+l)—1 S+l JS2n+1 ‘1 _é |(Q o /2 é n
_ inf Jozni1 Jon1 £(E)g ()1 — & - 11 aiQ)/zd(Sdn. (1.14)
f.geLpo (S2H\{0} £ 1l pa (g2t 18| Lpoc (s201y

Then, it is easy to get the following estimate.

PROPOSITION 1.2. (Upper and lower bound for the sharp constant)

O—a

(8|B1]) 2 2N (@-w)/Q  nIT(0/2)
0< ——— <Npg < S e 1.15
it s < Noe (5r) Plotap; Y

where
2N (@-)/Q  nT(a/2) 11— 2

s> T - 1.1
o) g S [ =gt e

Combining the subcritical approach and renormalization method, we prove the
following attainability of the sharp constant Ny .
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THEOREM 1.3. (Attainability) Ng o can be attained by a pair of positive func-
tions f,g € C1(S*"*1). Applying the Cayley transformation, we also have that Ng,o.1
is attained by a pair of positive functions F,G € LP*(H")NC" (H").

In the following, we outline the ideas of the proof of Theorem 1.3. First, consider
the extremal problems with subcritical power p € (0, py) and get the existence of ex-
tremal function pairs {f,,g,}, see Section 3. Then, prove that the sequence {f,,g,}
form a minimizing sequence of (1.14) as p — p¢ . Lastly, we circumvent the blow-up
phenomenon by renormalization method and show the attainability of the sharp con-
stant Ng ¢ .

Moreover, since nonlinear terms with negative power appear in the Euler-Lagrange
equations (see Section 3 and Section 4), we need not only a upper bound to control the
blow up of the sequence, but also a lower bound to avoid the blow up of terms with
negative power. So, different techniques are needed for the extremal problem (1.14).
More details can be seen in Section 3 and Section 4.

The paper is organized as follows. Section 2 is devoted to establishing the roughly
reversed HLS inequalities (1.10). In Section 3, we study the extremal problems related
to subcritical case and get the existence of the corresponding extremal functions. These
functions will provide a minimizing sequence of (1.14). Then, we prove the attainability
of Ng, ¢ in Section 4.

We always use C,C;,Cs,---, etc. to denote positive universal constants though
their actual values may differ from line to line or within the same line itself.

2. Roughly reversed HLS inequalities on H"

This section is mainly devoted to establishing the roughly reversed HLS inequality
(1.10). In fact, we present a more general reversed HLS inequalities as follows.

PROPOSITION 2.1. Assume A >0, 0 < p,t < 1 with I%—I— % - % = 2. Then, for

any nonnegative functions F € LP(H") and G € L'(H"), there exists some positive
constant C(Q, A, p,H) such that

/n [ F@lyuf*G(v)dudy > C(Q. 2 p ) [Fllie |Gl @D

Moreover, the constant satisfies

(4|By])~*/2 /2 p ~1/0
C(Q,l,p,HDT(amax{ﬂ,:}) . 2.2)

Proof. Our proofis similar to the argument given by Ngo6 and Nguyen [49, Section
2], where authors adopted the idea of Lieb and Loss [47]. For completeness, we will
give the detailed proof. Since the homogeneity of (2.1), without loss of generality, we
assume that ||F||zpny = ||G|| @y = 1. So, it is sufficient to show that the right side
of (2.2) is a lower bound of the left side of (2.1).
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By the layer cake representation [47, Theorem 1.13],
I ;:/ F(u)v""u)*G(v)dudv

H’
—2 /m/m/mclflj(a,b,c)da db de, 2.3)
0 0 0
where
J(a,b,c) 1=/n HnX{F>a}(”)XH"\BC(uilv)X{G>h}(V)d” dv

and yq(u) is the characteristic function of set Q, B, := B(0,¢). Noting the basic fact
lu='v| = [v~lu|, we have an\BC(u_lv) :an\BC(v_lu). Write ¢(a) = [gn X{F>a) (1)du
— |{F > a}| and Y(b) = Jyn Z(G-) (V)dv = |{G > b}

If ¢(a) > y(b) and 2|B.| = 2C2|B| < ¢(a), then

Habe) = [ 2i6-n ()F > a} N (E\ Be(v))dv
> [ x{c>b}<v>(\{F > a}| = |B(v) ) v

o [ o2y = £V

Similarly, if ¢(a) < w(b) and 2|B.| = ZCQ\BI| < y(b), the above formula also holds.
Therefore, if 2|B.| = 2C2|B;| < max{¢(a), y(b)}, it follows

o(a)w(b)

J(a,b,c) >
(a7 7C) 2

(2.4)

Substituting (2.4) into (2.3), we have

mdx{tb y(b)} e

1>x/ / / a s 1<P(a)2w( )dc>dadb
:/O /O 9(a 2 max{¢(a)7w(b)}>%dadb

2|By|
“A/Q  poo pallt
>M// ¢<a>w(b)”3dbda

~1/0
2‘3 1) / / / w(b)db da
af”

_.Q2[Bil)” ”Q
=: 3
By reversed Holder inequality, it yields

ab/t 2
I = / / 0(a)w(b) "B db da

> /0 ¢(a>( Oap/t

(It + ). (2.5)

aplt

(b )bt‘ldb)%go b(H)QT”db)_

Q>

da
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:/ 0(a / o 'ab) 51<Qt()ltlip)>éa”1da

-3 ap/t o0+24
1 %lL / pab1o / W (b)) ©da 26)
— 0

and
e 1+ = b 1+2
b= [ [ @ ey@abda= [ " ¢a) by (b)daar
1 /0 ¢ _ A e B b/p B 0+1
>E(§:> ¢ /0 1 ll//(b)< /0 pa? lq)(a)da> Cab. @7
Noting that
1= ”FHZP(Hn) ZPA ap_lq)(a)daa
L= [1Glly =t/0 bV y(b)db
and % > 1, it follows from Jensen inequality that
1 )/t %
11> Ql / paP~ 1o / 'Yy (b)db da) . (2.8)
- 0
L/A &t N5/, . v o5t
b >_(§1——t> Q(/o tb' 1l[/(b)/o pa® 1¢(a)dadb> ¢
_1 é% Q / pa” 1o /p/ttb”ly/(b)dbda> E 2.9)
Write

cton- B

0+
Substituting (2.8) and (2.9) into (2.5) and using the convexity of function x 5 , wWe

arrive at

0+

>¢1(0.2.0)( /0 " pat 19 (a) /0 " by da)
O+
0

+Ci(Q,4,p) ( / pa’~'¢(a) / by (b)db da)
0 ablt
A
>Cl (anap)z_a .
The inequality (2.1) is established and the proof is completed. [

REMARK 2.2. The inequality (2.1) includes the inequalty (1.10). In fact, suppose
that A = a—Q with « > Q>4 and p =1 = pqy, (2.1) is reduced to (1.10).
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3. Subcritical HLS inequalities on S*'*!

LEMMA 3.1. Let p € (0,py). There exists some positive constant C = C(Q, o, p)
such that

n)
/Sznﬂ /SZHI 11— Q o) /2d§dn C||fHLp 2t llgll» (S2rH1y 3.1
holds for any nonnegative f,g € LP(§2"+1)_

Proof. It is easy to verify that (3.1) holds for any nonnegative f,g € LP(S***1)n
LP(S?"+1) by (1.13) and Holder inequality. Then we complete the proof by a density
argument. [

Define the extremal problem of (3.1) as

f(&)g(n)

Noap— inf / / ) dédn.  (3.2)
Q.0,p HfHLp(SZnH)=HgHLI’(SZ'1+1)=1 st Jgaml |1 — E. n‘(Q—OC)/2

From (3.1), it is easy to see that

0<C<Noap <875 [ j1-g-a an

S§2n+1

2 tIN2-2 pIl(a/2
= (=) "= (@/2) (3.3)

n! (Q+a)/2)

Furthermore, inspired by the argument of Lemma 3.2 of [16] and Proposition 2.5 of
[17], we will prove the following attainability of sharp constant Ng o .

PROPOSITION 3.2. (1) There exist a pair of nonnegative functions (f,g) €
CH(S? 1) x CH(S? ) such that ANl o (san1y = N8l Lo (s2nt1y = 1 and

_ f(8)g(n)
NQ,le o ‘/S2n+l ‘/S2n+l ‘1 _éﬁ‘(g_a)/zdgdn

(2) Minimizer pair (f,g) satisfies the following Euler-Lagrange equations

No.apfP~HE) = faner [1 = & |@= D 2¢(m)dn,
No.ap8” N (E) = Joourr [1 =& - 7| D2 f(n)dn

(3) There exists some positive constant C = C(Q, o, p) such that

(3.4)

1
0<E<f,g<C<+oo,
and

£ llcr sy, l1gllergansny < C-
( (s2r+)
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Proof. We will divide the proof into three parts:

1. We show that Ny 4, can be attained by a pair of nonnegative functions (f,g) €
Ll (§2"+1) % Ll(S2n+l).

By density argument, we can choose a pair of nonnegative minimizing sequence
{fi,8;} 5 CcC=(S*"F1) x C=(S*"*1) such that

1 fillr(sonery = llgjllps2nery =1, j=1,2,-+
and
= : ; _g.plle=0)/2
Noa,= fim [ [ (@ mit—g-q|* 2 agan.
Step 1. We prove that
Hfj”Ll (S2n+1) < C, ”ngLl(SZ"H) < C, uniformly. (35)

Indeed, from (3.3) we know that there exist two constant C; and C, such that

&;(n)
O < Cl ‘/S2n+1 /SZVH»I ‘1 _ *| Q a /2d§dn C2 < oo,

By reversed Holder’s inequality, it holds that

||Iocfj||Lp’(Szn+1) = ”ngLP(SZ”“) HIOtfj ”LP’(SZHI) G,

<
||Iagj||Lp’(SZn+l) = ||fjHLﬁ(SZn+1)Hlocgj”U’(San) < G,

where Il—?—i—# =1 and I f(E) = fspur1 |1 — E-1|C=%)/2f(n)dn . Noting that 0 > p’ >

Go = Q{—Qa , for some constant M > 0 determined later, we have

' < / IfilPd / Lfi|"d +/ Ifi|Pd
St ‘ af./‘ é | af./| é Iaf_,-<M| af]| é

17 i
< M? |SZ"“\+}{1af,-<M}| “(f  afieag)E G

Ji<

By reversed HLS inequality (1.13) and reversed Holder inequality, we have

||Iafj||an(82"+1) = C3Hfj||LPa(SZ"+1)

1 _1 11
> G|S™H 77 || fll ppgznery = CaIS¥H e 70 (37)

We choose M satisfying MP'[S¥11] = %Cgl and follow from (3.6) and (3.7) that

/

Cpgl.Ml_p_;/ ].fjad%
2 |{af./< }} ! ( IIafj|<M‘afJ‘ g)q

-2 2
< [{tafy <y|H ([ Mafl*ag)te

< |{Iafj <M}’1_‘;’_°‘(C3|SQ"+1\p%—§)p’,
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which leads to

Cé qo—p'
{lafj <M} > | —5— >0,

s [S2+1| et

where (c’z)l’/ = %Cfl . So, there exists an & > 0, such that for any j € N™, we can find
two points &1,&7 € {Io.f; < M} satisfying |§] —&7| > . Then

‘/S2n+l (g) g < /S2’1+1\{B§l E0 (€> é SZn#»l\{B(éz@)}fJ(é)dg
<C / 1, =(0-a)/2 d
4 SZWFI\{B(&;,%) ‘ g T” (g) g
+C. | £2.7Q-0/2 (£
4 S2n+1\{3(§j27%)}| é./ n| fj(é) é
< 2G:M.

Hence, we obtain || fj || 1(s2n+1y < C. In the same way, we have [|g;l| 1 (s2ni1y < C.

Step 2. There exist two subsequences of {f}'} and {g/} (still denoted by {f}'}
and {g”}) and two nonnegative functions f,g € L' (S**!) such that

ppag— [ ograg, [ ghag— [ grdE as jo e (38)

s+ S2n+1 S2n+1

In fact, according to the theory of reflexive space, we know from (3.5) that there
exist two subsequences of {f]'} and {g} (still denoted by {f]'} and {g’}) and two

nonnegative functions f,g € L1 (S*+1) such that
1
fjp — fP and gi —gP weaklyin L7 (S**1).

1
Using the fact 1 € LT (S*"*1), we get (3.8).
Step 3. We show

n) (11)
<
/S2n+1 /gznﬂ |1 — dédn ljlglj.gf/gznﬂ /S2)1+1 [1— Q ) /2d§d1‘]
(3.9
As in Lemma 3.2 of [16], we have that, as j — oo,

/ g7 (m)g'*(n) J _)/ g() 4 (3.10)
szl |1 — & - q|(@-e)/2 n szl |1 — & - q|(@-e)/2 n '

uniformly for & € S*"*1. Then, for any & > 0, there exists some N > 0 such that for
any j >N,

’/ gime' () _/ U P
S+l ‘1_§-ﬁ|(Q*0‘)/2 n S+l ‘l_g-ﬁ‘(Q*a)/z s
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and

_ g7 (mg'r(n)
Lo 1@ [ i s

- g(m)
o HOST@ [ g nds
<e [, SO TEE<Ce, G

On the other hand, noting 177 (&) € Ll/(lfp)(g2n+l) and

/S [1=&-n|DPg(mydn <C | g(n)dn <,

S2n+1

we have by the weak convergence that, as j — 4o,

- g(n)
Lo @8 7@) [ g mandnd
f(&)g(n)
_)/an+1 /S2n+1 W‘lndé (3.12)

Combining (3.11) and (3.12), it holds that

/(S)g(n)
/gzn+1 /gznﬂ mdndé

EFP(E)eh (g P (n)
j—>+o<>/§2n+1 /Sznﬂ d?’]d&

|l —é | Q a)/2
gi(n)
j—>+oo /S2n+1 /Szn+1 |1_ *| Q 1—&.pl0-a)2 ndé)
&)g(n) -p
' /ywl/SZ"H ded€> . (3.13)

Thus, (3.9) holds.

Combining Step 1, Step 2 with Step 3, we know that the function pair (f,g) €
LY (S¥+1) x L1(S*+1) is a minimizer.

2. We present that f, g satisfy the Euler-Lagrange equations (3.4).

Because 0 < p < 1, it brings some difficulties to deduce (3.4). To overcome it, we
need to prove f >0, g >0 a.e. on S*+1.

For any positive ¢ € C(S***!) and ¢ > 0 small, we have f+¢ >0 on S?**!
and

_ a-0)/2

,/S2)1+l /SZVH»I 1 é n| dédn

= _&.p|le=0)/2
_/S2n+l ‘/S2n+l f+t(P g(n)‘l & n| dgdn

/S2n+l ~/SZ”+1 5 Tl| o= Q /2d€dn
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2Ng.ap (Il +10lpgonsty = 1 fllp(s2re))
1
Nowst- ([, (F+60)0dE)" [ (r+00)paz 0 <6<, (.14)

where the mean value theorem was used between the fourth and fifth line. Then, by
Fatou’s lemma, it has

o—0)/2
/S2n+l/52n+l & T” dgdn
14
P LT -1
>No.ap lim ( /S (4 00)dE)" tim [ (r+09) gds
>No,a.p /S%Hf””(r)dé- (3.15)

By now, we claim that f > 0 a.e. on S*"*!. Otherwise, for any & > 0, there exists
Q. C §*"*! such that |Q,| > 0 and

fé)<e, VEeQ.

Then, it follows from (3.15) that

sp—l/g dé </ FrIgE

NQOC ‘/S2n+l /82n+1 |1 _g T” o Q /ngdn
p

<C g(n)dn <C,

§2n+1

which yields a contradiction as € > 0 small enough. Similarly, we also have g > 0 a.e.
on 1. So, minimizer pair (f,g) is a weak solution of (3.4).

3. We finally prove that (f,g) € C'(S>*+1) x C1(S***1).

Since f,g € L'(S*"*1) and 0 < p < py < 1, itis easy to prove from (3.4) that f >
Cs >0 and g > Cs > 0. Then, by (3.4), we have f < C; and g < C;. Moreover, since
o> Q >4, wehave f,g € C'(S*™) and || f]lc1(gznsr) | fllcr(gaminy < Cg < +eo. O

4. Sharp HLS inequalities on S?**!

LEMMA 4.1. Ng.o.p — No.o as p — py. Further more, the corresponding min-
imizer pairs {fp.8p} € c! (Szn“) x CY(S*™+1) form a minimizing sequence for sharp
constant No o, namely,

NQ,OC: hm fS271+1fS271+1fp(§) ( )|l—§ n‘ o— Q/zdédn

4.1
P—Do ”prLPoc Sently HgPHLPa (S2n+1)
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Proof. Let {f,,gp} € C1(S**1) x C1(S**!) be a pair of minimizer given by

Proposition 2.1. Namely, {f,,g,} satisfy ||prLp snity = [|gpllp(s2re1y =1 and
gp(1)
Noap= /Sznﬂ /Sznﬂ 11— _‘ 0-a) /ngdn
1 F— fi &
Write fp B HfI’HLPa S2n+1) and gp Hg[)HLpa §2n+l) - Then

fr(8)gp(n)
No.o.p :”fP”U’Df(SZ”H)”gPHLPOC(SZ"“)/SZHH /sml md&m

>‘S2n+1|2(1/17,1—1/17)]\7Q70C — Noas 3 p— Dg,

which implies that

hmmfNQ op = No.a- 4.2)
P—pi

Let {f,gi}{= C LP=(S* ) x LP(S*"*1) be a pair of minimizing sequence of
Ng,o , namely,

Jpnit S fi(E)gr(m)[1 — & -~ Q/zdédn

NQ o = lim
T ke 1 fillLra (s2t1) |8kl Lra (s2n1)
B fe _ .
Write f; = Tl and g, = 7\\&\\“ pE forany p € (0,pq). Itis easy to see

Jszit Jeonet fi(§)@()[1 =& - | D/2dEdn
NQ,OW <

||kaLP(S2"+1 HngLp (S2+1)
_ Jgert S fie(8)ge(m)[1— 6 - 1)~ Q/zd’g'dn

[felor g Tk @
Sending p to p, in (4.3), we get
limsupNge < J20 Jnst fil@)ge(m|L — & -1 OPdGdn
by 1/l ra (s2nt1) 18l Lra (s2+1)
And then, letting k — +oo, we deduce
limsupNg ¢, p < No,o- 4.4)

P—ps
Combining (4.2) with (4.4), we arrive at limpﬂpﬁ Ng.a,p = No,a-
By the definition of Np  and Holder inequality,

NQangzwfsszp(é) gp(M)|1— &7 O/2aEan

1Fpllra g2 18 | e (g2

e Jgn £o(E)gp(m) 11 =& 0| @" @ 2agan
= |SZn+l‘2 1/pa—1/p)

—Noo as p—pg.
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Hence, we deduce that (4.1) holds and the lemma is proved. [

Proof of Theorem 1.3. Asin Lemma4.1, take the minimizer {f,,g,} € C'(S*"*!) x
C!(S***1) as a minimizing sequence for Np o. Then, {f,,g,} satisfy (3.4). By the
translation invariance, we assume, without loss of generality, that f,,(0) = maxgcgn £ (&)
with 91 = (0,---,0,1).

Case 1: For some subsequence p; — pg,, max{max;;egzn“ fpj»MaXe cganit 8p;}
is uniformly bounded. Then, sequences {f,;} and {gp,} are uniformly bounded and
equicontinuous on S?**!. Moreover, by (3.4), there exists some positive constant C
independent of p; such that fp_,.,gp i > C > 0. So, by Arzela-Ascoli theorem, there
exist two subsequences of {f,;} and {gp,} (still denoted by {f,;} and {g,;}) and
two positive functions f,g € C'(S**!) such that

fp;—f and g, —g uniformlyon S¥*'.

Then,

fPe(€)dé = lim f(E)dE =1,

S2n+1 Pj—Pa S2n+1

/SMg”“(é)dé = lim g (E)dE =1.

Pj—Pa S2n+1

Furthermore, by (3.4) and Lemma 4.1,

(4.5)

No.af* (€)= Jsomer [1 =& 1| *~ 9 2g(n)an,
No.ag"* (&) = Joonst [1 =& - 0|~/ 2g(m)dn,

as j — +oo. Namely, {f,g} are minimizers.

Case 2: For any subsequence p;j — pg, fp;(M) — +oo or maxecgn gp; — +oo.
Without loss of generality, we assume f},; (9M) — +oo.

Ip; (0

Case 2a: limsup; —
pJHJr‘X’ maX56S2n+1 8p;

= +-oo. Then, there exists a subsequence of
Jp; (0

{pj} (still denoted by {p;}) such that Jp; (M) — oo and WA oot 187, — +oo, Let
; :fll,:fl and y; :g%*l. Then, ¢; and y; satisfy
4j _ qj _
/S 0;dE= |, Vi =1 (4.6)
and by (3.4),
o 1
{Nga,p,»%(é):fsw [1—&-n|@ D2y (mdn. “7)
No.op; Wi (&) = Jazusr [1 =& - 11|29 (m)dn,
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where — + L — 1. Applying Cayley transformation and dilations on H", we get from
4.7 that

No.a.p;9j(¢(8(u))) Q+oc 2,4 ((1+|Az’\2)2+(12t’)2)’#w_,-(%(sx(v)))‘ff*‘
[ = )L f |u’lv|Q’O‘ dv7
(142222 +(A21)2 )T
No.a.p; V(€ (83 () Qe (( 1+|7Lz’\2)2+(/12r’)2)’%¢j(fg(ak(v)))"f*'

o = A% [ TR dv.
((1+|7LZ\2)2+(/1ZI)2)T

]

(4.8)
Take A = A; satisfying JL;X/ (@) 72)(1)1-((5(0)) =1 and denote
L&)
;(u) = - o= 0 (€(8y;())),
((1+]Az2)2+(A21)2) 3 49
28/ (4.9)
Vi) = - 7= Vi(€(8y; ().
(AP +@220)2) 4
Then, ®@;,\¥; satisfy the following renormalized equations
Q qj—1
o+ (ga—qj) ¥/ " (v)
No.a.p;®; (1) =2 (1 + PR+ (2rR) rady
a—Q qi—1
o+ 1 @e—gj) @7 ()
Nosap, ¥ (1) =2 (122 PP+a3?) rgredy,
(4.10)
Moreover, ®;(u) > ®;(0) =1 and
- . ming cqon+1 Y
Yi(u 2%9‘/(4’ 2 min ':L—)—'—w 4.11
./( ) j §€S2"+1 WJ (b,(y(o)) ( )
uniformly for any u as j — +oo.
Claim. There exist Cy,C, > 0 such that, for any u € H", when j — oo,
0<Ci(1+|ul*2) < ®;(u) < Co(1+ |u|*2) uniformly. (4.12)

Once the claim holds,

q;—1
0ra-2 00 (4—q;) P (V)
Noap¥i(0) =257 [ (14 IAPY+ (0 2) " S hmay

gC/ M* 2+ e 9 ulav < C,
Hn

which contradicts with (4.11). This shows that Case 2a does not appear.
Now, we give the proof of the claim (4.12). Noting that

a0 vy
e X Oy oot

O+a—2
NQ,OCJ’j =2 H» ((1 + M’jzl‘z)z + (A’Zt/)z) | |Q o
(4.13)

J
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uniformly as j — eo, we obtain from (4.11) that as j — e and |u| > 1,
((1 + M{ /‘2)2 + (A2t/)2) (XZ_Q(lIa—q_/)\Pq_,-—l(v)dv
Hr jZ J j

<[ COT APy + a3 T ay
S

w0, oy PY!
[ (AP AR F e ii_(v)dng<+oo 4.14)

>1 ’ [vje-e
and
—1,,|a—0 =0 .. o
= (1 P+ (1) T ™ ()ay
0w |ule@
_ M( o« ) 1
<C/Hn(1+|v|°‘ O) (14 A2 PR+ A2")?) = 4! (y)ay
<C < +oo0 (4.15)
uniformly. By dominated convergence theorem,
D) (u)
Jul—tee |ue]*~€
2Q+a—2 o ( )
= LHAZ P2+ A T i av<e. (@416
Nown, L (1227 4 (A1) i) (4.16)

On the other hand, if we can prove

-0

a—d;) i1 :
/Hn (L4 22 PR+ A2)2) gl ()ay > €' > 0 as j—eo,  (4.17)

then we have the claim (4.12). By contradiction, we assume that (4.17) does not hold.
Then, there exists a subsequence (still denoted as {'¥;}) such that

o0

a=4j) \gydj—1 .
/Hn((1+|ﬁtjz’\2)2+(7u}/)2) T4 ‘“)\ij (v)dv—0, as j— 4oo. (4.18)

For any u € B(0,1),

255 o LW )

%39 (gua))
<) = [ (122 2 P
Y Pj
O+a-2
2z - T2 (o —q5) a1
< 4aQ/ 14 42122 4+ (A2)2) 7 Dt N ay
Moy 07 [ (AP + (3 F) 7o)
a0 !

4.\ ¢ 1232 212\ 7= (qa—q;) Tj )
+/|v|>3 <3Y> (L+ 142 1)+ (A57)%) e dv)
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-2
2Q+a a0

4a7Q/ L+ 222 4+ (A2)2) 7
NQ,a,pj(Y) Ivl<3(( 22 %) + (A71)7)

A

From (4.18), there exists Ny > 0 such that

<

(d0—4j) \y2j—1
"W (v)dy

1<®j(u) <1+ (%Y)a_g

for j > Ny. Then, for |u| > 3, if follows from (4.10) that

O+a—2 1

qj—
2 %0 (g—q) P; (V)
Yi(u) > 1+A‘Z/22+ A-2II2 T da—4q; Jj dv
J( ) NQﬂmj IVI<1(( | J 17)"+( g ) ) 7|u—1v|Q—0‘
=0, ..
>C g |u|°‘*Q ((1+|)sz/|2)2+(1,2/)2) 7 (qa qJ)dV
v|<1 J
>Clul %, 4.19)

for j > Ny. We used the fact in the last inequality: as j — oo,

-0

((1_|_ M{jzl‘2)2+(lj2t/)2) 7 (flor*Qj) 1

uniformly on B(0, 1).

Letting p; close to pg and choosing R > 3, it follows from (4.19) that
qi—1

¥ ()
[v]e-e

O+a—2 -0

Noap; =27 /Hn (L A2 P2+ (2r)2) T o)

dv

o0 g -
<CR* ¢ /|V|<R((l+|?sz’\2)2+(7Lft’)2) ) gt ) gy
+C [p|#=2 . |p|(@=Dla =gy,
[v|>R

o—

(e}

SCROLQ/ ((1 + sz/‘2)2_|_(k'2t/)2) (qa—q;) "P;{-jil(v)dv

V<R !
4 CR(OC*Q)LI]‘JFQ'

Taking firstly R large enough and then letting j — oo, we have Np ¢ p; — 0, which
is contradiction with Np o p;, — No,o - Hence, (4.17) holds.

Jp; (0

Case2b: limsup;_, ., =0. Then, there exists a subsequence of {p;}

MaXe g2n+18p;
. Jp; (0
(still denoted as {p;}) such that f, (M) — +eo and e a8

that maxg g2u+18p; — +oo. Similar to Case 2a, we can show that Case 2b does not
appear.

— 0, which implies
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fy ()

Case 2c: limsup; —
pJHJr‘X’ maX56S2n+1 8p;

=¢p € (0,4o0). Then, there exists a sub-

sequence of {p;} (still denoted as {p;}) such that f, (M) — +eo, maxg,, — +oo
max§€§2n+l 8pj

{®;,¥;} defined as (4.9), which satisfies (4.10), ®;(u) > ®;(0) =1 and

and — ¢o € (0,400). As Case 2a, choose a sequence of function pairs

o/(q;-2) . min S2n+1 l[/j 1—py

uniformly for any u as j — +eo. So, {¥;(«)} have uniformly lower bound C > 0.
Repeating the proof of (4.12), there exist two positive constants C; and C, such

that, as j — oo,

Co(1+[u|*9), (4.21)

Co(1+ |u|*9) (4.22)

0<Cr(1+|ul*9)
0<Cy(1+ul*9)

D (u)

<
Wj(u) <

<
<

uniformly for any u.
For any given constant Ry > 0 and any u € B(0,Ry), as j — oo, we have by
(4.22) that

_O+to-2

a.p;Pj(u) (4.23)
ag P ()
22472 (ga—a;) T
/ 1+|AJZ‘ ( jt)) md\/
5 222 (gu ;) WU (uv
/ (1 12+ )P+ AF e+ +2dm(z- 2))2) J‘)T(a)dv

/ [v|*~ QCq’ dv +/ MO‘_QC;”_I\uv\(a_Q)(q-f_l)dv
[v|<2R¢ [v[>2Ro

<C(2R))*+C / v|(@aigy < C, (4.24)
|v|>2R0

namely, ®;(u) is uniformly bounded on B(0,Ry). Similarly, ¥;(u) is also uniformly
bounded on B(0,Ry).
Noting o > Q > 4 and arguing as (4.23), we have that, as j — +oo,

a0 e ()
(ga—a)) )
L (AP a3 T v < €

and

qj—1
Qu—qy Y )
/Hn ((1 + |)szl‘2)2 + (;szt/)2) qa—qj |u—ljv7|Q_o‘+2 dv<C

\@
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uniformly for any u € B(0,Rp). So, forany u € B(0,Ro) and [,k=1,2,---,2n, a direct
computation yields

Ota—2 i—1

295 o v (v)
————— | TTi(Juv|*%)
N(Q, o, pj) Jun

LT®;(u) = oo

(122 P2+ (Ar2)
where T} = X;, Ty, =Y, for [ =1,2,--- 'n and

d d d d
Yl_a_yl-_ZXiE7 l—l,Z,---,n

*(qa—4q;)

are the left invariant vector fields on the Heisenberg group. Moreover, we know that
®; € C'(B(0,Ry)) by Theorem 20.1 of [22]. Since the arbitrariness of Ry, we know
that ®;(u) € C'(H") and |D;llc1((0,ry)) is uniformly bounded. Similarly, we can

obtain that W;(u) € C'(H") and H‘P llc1 (B(0,R,)) is uniformly bounded.
By Arzela—Ascoh theorem, there ex1st two subsequences of {®;} and {¥;} (still
denoted as {®;} and {¥;}) and two functions U,V € C'(H") such that

®; —U and ¥;—V uniformlyon B(0,Ro). (4.25)
Moreover, by (4.21) and (4.22), it holds

0<Cr(1+u/*9)

U(u) < Cy(1+ [u]*9), (4.26)
0<Ci(1+u*?) <V

<
<V () < Co(1+[u*9). (4.27)

By the arbitrariness of Ry, we prove that U(u) and V(u) satisfy

No oU(u) = -1 “1Wdv in H”
{NZ:ZV((M))Z e u_lvo‘_QUq“_IEv;dv in H"j (*+:28)
Since
S R (3
0 [ @ (0 A 030 T
<2071 [ @)1+ AP+ (W)
and

) w0,
d);jf(u) ((1+|AJ'Z/‘2)2+(AJ-2I/)2) 7 (qe—q;) —>Uq"‘(u)

uniformly on any compact domain, it follows from (4.21) that

Q
/ Utedu = tim [ @ () (14 A2 22+ (A202) F 9 qu > 2170,

/4»+oc Hn
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Similarly, by (4.22) it also holds

. . LQ( o—q;) B
/an“du:jETm Hn\lfj.f(u) (T4 122+ @A) P du =21 ¢,

Let F(u) =U% ! (u) and G(u) = V9~ (u), wehave [y, FPedu>2'"2, [, GPedu >
21-C and F,G satisfy

No.oFPe V(1) = 2957 [ [u=W|*CG(v)dy in ",
No.oGP* (1) =255 [ |u~ W% CF(v)dv in H".

Combining 2 > p, wtih Cayley transformation, it holds

O+o—-2

2
S Jopn F (u) \u‘lv\o“QG(v)dvdu)
fH" FPaduan GPedu
O+a—2 2
(2T Ju S F(u)\uflvwaG(v)dvdu)
= 22—2Q (2Q—1 an Fpadu)2/17a (2Q_1 an Gpadu)z/p”‘

2
O+oa—2 _nQ-a) _
(2_2_+ 270 fount Jomn f(E)1 —é-nl(“‘@”g(n)dndé)

,
Noo =

40-1)
222007 ([ frad€)PIP ([ gPadg)?/ P

(ferot s ST =& )« OPg(m)anag )
(Jeanor Sred )" (far gPed &)

b

where
F(u) = f(6 ) ()/Pe,  G(u) = g(€ () Jg ()" /72

Hence, {f(§),g(&)} is a pair of minimizer of sharp constant Ny . Furthermore, they
satisfy the Euler-Lagrange equations (4.5).
By (4.26) and (4.27), there exists a positive constant C such that

1
0<=<fg<C.
c 18

Since o > Q > 4, we know by (4.5) that f,g € C'(S*"*1). O

Acknowledgements. The author would like to thank Professor Meijun Zhu for
valuable discussions and suggestions. The project is supported by the National Natural
Science Foundation of China (Grant No. 12071269) and Natural Science Foundation
of Zhejiang Province (Grant No. LY18A010013). The author would like to thank the
referee for his/her careful reading of the manuscript and many good suggestions.



(1
2]
(3]
[4]
(5]
[6]
(7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]

REVERSED HLS INEQUALITY ON H" AND S§?t1 855

REFERENCES

W. BECKNER, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of
Math., 138 (1993), 213-242.

W. BECKNER, Functionals for Multilinear Fractional Embedding, Acta Math. Sinica, English Series,
31 (2015), 1-28.

T. P. BRANSON, L. FONTANA, C. MORPURGO, Moser-Trudinger and Beckner-Onofri’s inequalities
on the CR sphere, Ann. of Math., 177 (2013), 1-52.

I. BIRINDELLI, J. PRAJAPAT, Nonlinear Liouville theorems in the Heisenberg group via the moving
plane method, Comm. PDE., 24 (9&10) (1999), 1875-1890.

E. A. CARLEN, M. LoSS, Extremals of functionals with competing symmmetries, J. Funct. Anal. 88
(2) (1990), 437-456.

L. CHEN, Z. L1U, G. Lu, C. TAO, Reverse Stein-Weiss inequalities and existence of their extremal
functions, Trans. Amer. Math. Soc., 370 (12) (2018), 8429-8450.

L. CHEN, G. Lu, C. TA0, Existence of extremal functions for the Stein-Weiss inequalities on the
Heisenberg group, J. Func. Anal., 277 (2019), 1112-1138.

L. CHEN, G. Lu, C. TA0, Hardy-Littlewood-Sobolev inequalities with fractional Poisson kernel and
their applications in PDEs, Acta Math. Sin. (Engl. Ser.), 35 (6) (2019), 853-875.

L. CHEN, G. LU, C. TAO, Reverse Stein-Weiss inequalities on the upper half space and the existence
of their extremals, Adv. Nonlinear Stud., 19 (2019), 475-494.

L. CHEN, Z. L1U, G. LU, C. TAO, Stein-Weiss inequalities with fractional Poisson kernel, Rev. Mat.
Iberoam., 36 (5) (2020), 1289-1308.

S. CHEN, A new family of sharp conformally invariant integral inequalities, Int. Math. Res. Not., §
(2014), 1205-1220.

W. CHEN, C. L1, B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl.
Math., 59 (2006), 330-343.

W. COHN, G. LU, Best constants for Moser-Trudinger inequalities on the Heisenberg group, Indiana
Univ. Math. J., 50 (4) (2001), 1567-1591.

W. COHN, G. LU, Sharp constants for Moser-Trudinger inequalities on spheres in complex space C",
Comm. Pure Appl. Math., 57 (2004), 1458-1493.

J. Dou, Weighted Hardy-Littlewood-Sobolev inequalities on the upper half space, Commun. Contemp.
Math., 18 (5) (2016), 1550067.

J.Dou, Q. GUuo, M. ZHU, Negative power nonlinear integral equations on bounded domains, J. Diff.
Equ., 269 (2020), 10527-10557.

J.Dou, Q. Guo, M. ZHU, Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities
on the upper half space, Adv. Math. 312 (2017), 1-45, 2017; Corrigendum to “Subcritical approach
to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space” [Adv. Math. 312: 145,
2017], Adv. Math. 317 (2017), 640-644.

J. Dou, M. ZHU, Nonlinear integral equations on bounded domains, J. Funct. Anal., 277 (2019),
111-134.

J. Dou, M. ZHU, Reversed Hardy-Littewood-Sobolev inequality, Int. Math. Res. Not., 19 (2015),
9696-9726.

J. Dou, M. ZHU, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res.
Not., 3 (2015), 651-687.

S. DRAGOMIR, G. TOMASSINI, Differential geometry and analysis on CR manifolds, Birkhéuser,
Boston, 2006. _

G. B. FOLLAND, E. M. STEIN, Estimates for the d;, complex and analysis on the Heisenberg group,
Comm. Pure Appl. Math., 27 (1974), 429-522.

G. B. FOLLAND, Subelliptic estimates and function spaces on nilpotent Lie groups, Arkiv for Matem-
atik, 13 (1975), 161-207.

G. B. FOLLAND, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc., 79 (1973),
373-376.

R. L. FRANK, E. H. LIEB, Sharp constants in several inequalities on the Heisenberg group, Ann. of
Math., 176 (2012), 349-381.

N. GAROFALO, E. LANCONELLI, Frequency functions on the Heisenberg group, the uncertainty prin-
ciple and unique continuation, Ann. Inst. Fourier (Grenoble), 40 (1990), 313-356.



856

[27]

[28]
[29]

[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]

[42]
[43]

[44]
[45]

[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]

[55]

Y. HAN AND S. ZHANG

M. GLUCK, Subcritical approach to conformally invariant extension operators on the upper half
space, J. Funct. Anal., 278 (1) (2020), 1-46.

L. GROSS, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1976), 1061-1083.

Q. GUO, Blowup analysis for integral equations on bounded domains, J. Diff. Equ., 266 (2019), 8258—
8280.

X. HAN, Existence of maximizers for Hardy-Littlewood-Sobolev inequalities on the Heisenberg group,
Indiana Univ. Math. J., 62 (3) (2013), 737-751.

X.HAN, G. Lu, J. ZHU, Hardy-Lilttlewood-Sobolev and Stein-Weiss inequalities and integral systems
on the Heisenberg group, Nonl. Anal., 75 (2012), 4296-4314.

Y. HAN, An integral type Brezis-Nirenberg problem on the Heisenberg group, J. Diff. Equ., 269 (2020),
4544-4565.

Y. HAN, Integral equations on compact CR manifold, Discrete Contin. Dyn. Syst-A, 41 (5) (2021),
2187-2204.

Y. HAN, P. N1U, Hardy-Sobolev type inequalities on the H-type group, Manuscripta Math., 118
(2005), 235-252.

Y. HAN, X. WANG, M. ZHU, Characterization by symmetry of solutions of a nonlinear subelliptic
equation on the Heisenberg group, J. Math. Study, 50 (1) (2017), 17-27.

Y. HAN, S. ZHANG, Sharp Sobolev inequalities on the complex sphere, Math. Ineq. Appl., 23 (2020),
149-159.

Y. HAN, M. ZHU, Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and
applications, J. Diff. Equ., 260 (2016), 1-25.

F. HANG, X. WANG, X. YAN, An integral equation in conformal geometry, Ann. Inst. H. Poincaré
Analyse Non Linéaire 26 (2009), 1-21.

F. HANG, X. WANG, X. YAN, Sharp integral inequalities for harmonic functions, Comm. Pure Appl.
Math., 61 (2008), 0054-0095.

G. H. HARDY, J. E. LITTLEWOOD, Some properties of fractional integrals (1), Math. Zeitschr. 27
(1928), 565-606.

G. H.HARDY, J. E. LITTLEWOOD, On certain inequalities connected with the calculus of variantions,
J. London Math. Soc., 5 (1930), 34-39.

D. JERISON, J. M. LEE, The Yamabe problem on CR manifolds, J. Diff. Geom. 25 (1987), 167-197.
D. JERISON, J. M. LEE, Extremals for the Sobolev inequality on the Heisenberg group and the CR
Yamabe problem, J. Amer. Math. Soc., 1 (1988), 1-13.

J. M. LEE, T. H. PARKER, The Yamabe problem, Bull. Amer. Math. Soc., 17 (1987), 37-91.

Y. Y. L1, Remark on some conformally invariant integral equations: the method of moving spheres, J.
Eur. Math. Soc., 6 (2004), 153-180.

E. H. LIEB, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math.,
118 (1983), 349-374.

E. H. LIEB, M. LOSS, Analysis, vol. 14 of Graduate Studies in Mathematics, American Mathemaical
Society, Providentce, RI, second edition, 2001.

J. MOSER, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077—
1092.

Q. A.NGO, V. NGUYEN, Sharp reversed Hardy-Littlewood-Sobolev inequality on R" , Israel J. Math.,
220 (2017), 189-223.

Q. A. NGO, V. NGUYEN, Sharp reversed Hardy-Littlewood-Sobolev inequality: The case of half
space R, Int. Math. Res. Not., 20 (2017), 6187-6230.

P. N1U, H. ZHANG, Y. WANG, Hardy type and Rellich type inequalities on the Heisenberg group,
Proc. Amer. Math. Soc., 129 (2001), 3623-3630.

M. OBATA, The conjuctures on conformal transformations of Riemannian manifolds, J. Diff. Geom.,
6 (1971), 247-258.

S. L. SOBOLEV, On a theorem of functional analysis, Mat. Sb. (N.S.) 4 (1938), 471-479, A. M. S.
Transl. Ser. 2, 34 (1963), 39-68.

E. M. STEIN, G. WEISS, Fractional integrals on n-dimensional Euclidean spaces, J. Math. Mech., 7
(1958), 503-514.

C. TAO, Reversed Stein-Weiss inequalities with Poisson-type kernel and qualitative analysis of ex-
tremal functions, Adv. Nonlinear Stud., 21 (1) (2021), 167-187.



REVERSED HLS INEQUALITY ON H" AND S§?t1 857

[56] C. TAo, Y. WANG, Integral inequalities with an extended Poisson kernel and the existence of the
extremals, Adv. Nonlinear Stud. 23 (2023), 20230104.

[57] N. S. TRUDINGER, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17
(1967), 473-483.

[58] S.ZHANG AND Y. HAN, Rearrangement free method for Hardy-Littlewood-Sobolev inequalities on
S", Anal. Theory Appl. 38 (2) (2022), 178-203.

(Received November 23, 2023) Yazhou Han
Department of Mathematics

College of Science, China Jiliang University

Hangzhou, 310018, China

e-mail: yazhou han@msn.com

Shutao Zhang

Department of Mathematics

College of Science, China Jiliang University
Hangzhou, 310018, China

e-mail: zhangst@cjlu.edu.cn

Mathematical Inequalities & Applications
w ele-math.com

mia@ele-math.com



