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WEIGHTED NORM INEQUALITIES FOR SCHRODINGER
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Abstract. In this work we show that many operators from harmonic analysis associated with the
semigroup generated by the Schrodinger operator .2 = —A+V in R", where n > 2 and the
non—negative potential V belongs to the reverse Holder class RH, with g > n/2 — such as max-
imal operators, the Littlewood—Paley function, pseudo—differential operators, singular integrals,
and their commutators — are bounded on the weighted variable Lebesgue space L ) (w). We do
so by applying the theory of weighted norm inequalities and extrapolation.

1. Introduction

In this paper, we consider the Schrodinger differential operator in R” with n > 2,
defined by
ZL=—-A+V, (1)

where V > 0 and belongs to a reverse-Holder class RH, for some exponent g > n/2,
i.e., there exists a constant C such that

1 e ¢
(E/BV(x)qu> < H/BV()C)dx, ()

for every ball B C R". By Holder inequality we can get that RH, C RH,,,forg > p>1.
One remarkable feature about the RH,, class is that, if V € RH, for some g > 1, then
there exists € > 0, which depends only on n and the constant C in (2), such that
V € RH, ¢ . Therefore, it is equivalent consider ¢ > n/2 or g > n/2.

The fundamental results that laid the foundation for the development of the theory
of harmonic analysis related to the Schrodinger operator under the hypotheses men-
tioned above, are found in the work of Z. Shen [28]. There, basic tools are introduced,
such as the definition of the critical radius function p associated with the potential V,
its properties, estimates of the fundamental solution, and the study of the behavior of
operators such as the Riesz transform in this context, on Lebesgue spaces.

In recent years, a wide range of operators associated to . have been catching the
attention of several authors (see [1, 2, 3, 4, 5, 6, 7, 8,9, 22, 23, 25, 29, 30, 31, 32]).
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In these works, the authors have addressed the boundedness results of such operators
acting on different spaces, such as weighted L? spaces, appropriate Hardy spaces, as
well as regularity spaces like BMO. In this paper, we seek to extend these results to
the case of weighted variable Lebesgue spaces LP(") (w). These spaces were introduced
n [12, 14] as a natural generalization of the classical weighted Lebesgue spaces and
the variable Lebesgue spaces LP) | which have been extensively studied for the past 30
years since the publication of [24]-see [13, 21] and the references they contain.

Given the different nature of these operators, the boundedness of each of them
in classical L”(w) spaces has been approached in a different way. Here, rather than
considering estimates for individual operators, we apply techniques from the theory of
weighted normal inequalities and extrapolation to show that the boundedness of a wide
variety of such operators follows from the boundedness of certain maximal operators
on variable L? spaces, and from known estimates on weighted Lebesgue spaces. For
this purpose, we will use the natural bridge that exists between the spaces LP(w) and
L) (w) given by the theory of Rubio de Francia extrapolation. Building on the results
in [14], Cruz—Uribe and Wang proved (roughly) that if an operator 7 maps LP(w) to
itself whenever w is in the Muckenhoupt A, class, then T maps LPO)(w) to itself for
all weights in A,y (see [19]). In this paper, we explore a similar connection between
LP(w) and LP0)(w) with weights in the classes A and Ag (> respectively, which sa-
tisfy critical radius conditions and were originally introduced in [5] and [10].

The classical theory of extrapolation introduced by Rubio de Francia in [27] is a
powerful tool in harmonic analysis, for a detailed treatment, see [17]. Extrapolation
in the scale of the variable Lebesgue spaces was originally developed in [15] to prove
unweighted inequalities and in [19] for the weighted case.

On the other hand, weighted inequalities in the scale of weighted variable Lebesgue
spaces in the context of the Schrodinger operator using extrapolation techniques were
also developed in [1] and [11]. In the first one, boundedness results are obtained for
fractional operators associated with Schrédinger operator .. These operators include
fractional integrals and their respective commutators. Particularly, they obtain weighted
inequalities of the type LP0) —140) and estimates of the type LI’(')—LipschitZ variable
integral spaces. While in the second, the authors study the boundedness on weighted
variable Lebesgue spaces, U’(')(w), of operators that are singular integrals given by a
kernel K(x,y), which satisfies certain size and smoothness conditions with respect to
the critical radius function p. These results can also be obtained from ours as we will
see below (see Subsection 4.3).

The structure of this paper is as following. We start in Section 2 giving some
definitions and notations related to variable Lebesgue spaces L? () (w) and extrapolation
results in a general framework of weights governed by a family of operators. The
proofs are based on the techniques developed in [19]. In Section 3 we state and prove
the auxiliary results which are important tools in order to prove the theorems stated in
Section 2. Later, we deal with the proofs of the main results.

At the beginning of Section 4, we deal with the maximal operators and classes of
weights appearing in the aforementioned papers (see [5] and [10]) and prove that these
weights satisfy the hypotheses of the general theorems developed in Section 2. Finally,
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we show how to apply extrapolation to prove weighted norm inequalities for several
different kinds of operators. Our examples, while not exhaustive, allow us to illustrate
the applicability of extrapolation.

Throughout this paper, unless otherwise indicated, we will use C and ¢ to denote
constants, which are not necessarily the same at each occurrence. We will say that
A < B when there exists a constant ¢ > 0 such that A < ¢B and we will write A ~ B
whenever A < B and B<A.

2. A general setting of extrapolation

In this section we will state several general theorems on extrapolation in variable
Lebesgue spaces with weights associated to a family of sublinear operators. We begin
with some definitions and notations related to these spaces.

Let p(-) : R" — [1,00) be a measurable function. Given a measurable set A C R”
we define

p~(A) :=essinf p(x), pT(A) :=esssupp(x).
x€A XEA

For simplicity we let p~ denote p~ (R") and p™ denote p*(R").
Given p(-), the conjugate exponent p'(-) is defined pointwise

where we let p(x) = oo if p(x) =1.

By Z(R") we will designate the collection of all measurable functions p(-) :
R" — [1,0) and by 22*(R") the set of p(-) € Z(R") such that p™ < eo.

Given p(-) € Z(R"), we say that a measurable function f belongs to LP()(IR")
if for some A > 0, the modular of f/A associated with p(-), that is,

P (f/2) Z/Rn <|f§:¢)>l’(") dx,

is finite. A Luxemburg type norm can be defined in L") (IR") by taking
£l zp0) gy = 11l py = inf{A >0 ppy (f/A) < 1}

These spaces are special cases of Musieliak-Orlicz spaces (see [26]), and genera-
lize the classical Lebesgue spaces. For more information see, for example [13, 21, 24].

b (')(]R") the space of functions f such that fyp €

loc

In addition, we denote by L
LPU)(R™) for every ball B C R”".

In the classical L (R") spaces, 1 < p < oo, the norm can be characterized using
the identity

171l =sup [ F@godx,

where the supremum is considered over all functions g such that g € LI’/(IR”) and
lgll,» < 1. Analogously, we have the following result for variable Lebesgue spaces.
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LEMMA 1. ([13, Theorem 2.34]) Let p(-) € Z(R"), f a measurable function
and

A o) = sup{/wf(x)g(x)dx: el ey < 1}.
Then,
Il Mpey < M lpey < AN pe)s

where the constants ¢ and C depend only on p(-).

On the other hand, analogously to the previous case, Holder’s inequality is also
valid for variable exponents but with a constant on the right-hand side of it.

LEMMA 2. ([21, Lema 3.2.20]) Given s(-),p(:),q(-) € Z(R"), be such that
1/s(:-)=1/p(-)+1/q(-). Then, for f € LP")(R") and g € L") (R")

1£gllsc) < 20N o llgllgc)-

Moreover, if s(-) = 1, the inequality above gives

L sl <2051 gl

Another elementary but useful property of the classical Lebesgue norm is that it
is homogeneous in the exponent, more precisely || f*[|, = Hf”i,, for 1 < s < e and
non-negative f. This property also extends to variable Lebesgue spaces as follows.

LEMMA 3. ([13, Proposition 2.18]) Let p(-) € 22*(R"), so forall s, 1/p~ <
§ < oo,

IF N ey = N lp)-

The following conditions on the exponent arise in connection with the bounded-
ness of the Hardy-Littlewood maximal operator M in Lp(')(]R") (see, for example,
[20], [13] or [21]). We will say that p(-) is log—Holder continuous, and we will write
p(-) € Z2(RM), if p(-) € 22*(R") and if there are constants p.. and C > 0 such that

C
p(x) = pO)| < — ——, Xy ER", |x—y| < 1/2, 3)
P& = PO < ~ o= =yl <1/
and
pl) — pu < — S rER" @)
PROZP=IS Yog(e 4 Ix])’ '

By a weight we will mean a locally integrable function w defined on R” such that
0 < w(x) < oo almost everywhere. Given a weight w and p(-) € Z(R"), we define the
weighted variable Lebesgue space LP(") (w) to be the set of all measurable functions f
such that fw € LP*)(IR"), and we write

1112200 ey = 1 py = 1FWllpcey-
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Thus, we say that an operator T is bounded on L") (w) if
”TfW”p() < CHfWHp(-)»

forall f € LPC)(w).

Suppose now that we have a family of positive, sublinear operators {7p}gc;,
where / is a certain set of indexes. Associated to a fixed 8 € I, we define the following
families of weights,

e for 1 < p < eo, the UI? family, as those weights w such that Ty maps L?(w)
onto itself, and we denote by [w], 9 = ||Tp||1»(,) the usual operator norm;

o for p=1, Ule is the family of weights w such that for some constant C > 0,
Tow < Cw a.e., and [w]; g is defined as the infimum of those C satisfying the
inequality;

e for p(-) € Z(R"), the Uy family, as those weights w such that Ty, maps
L) (w) onto itself.
We also call U, = [ J Uy, U= |J Up and U,y = |JUY -

el p>1 el
We will further assume that these families satisfy the following basic properties.

1. if wy € Ule1 and wy € Ul62 for some 6,,6, € I then for every p > 1 there exists
0 = 6(0,6,,p) such that wlwé_p € Ug;

2. ifwe UI?(.) , forsome p(-) € Z(R") and 6 €I then there exists 8’ = 0'(0, p(+)),
such that w™! € Uz?’/(~)'

Although our goal is to use extrapolation to prove the boundedness of some spe-
cific operators, we will state our results in a more abstract way. Following the approach
established in [16] (see also [17] and [15]) we will present our extrapolation theorems
for pairs of measurable, non-negative functions (f,g) belonging to some family .% .
Henceforth, if we write

Ifllx <Cllglly, (f,8) € 7,

where X and Y are spaces of functions (i.e., weighted Lebesgue spaces, classical or
variable), then we mean that this inequality is true for any pair (f,g) € .# such that the
left-hand side of this inequality is finite.

We are now in a position to state our first extrapolation results. The first is a di-
rect generalization of the classical Rubio de Francia extrapolation theorem to weighted
variable Lebesgue spaces.

THEOREM 1. Let 1 < pg < e and suppose that for all w € Uy, it is verified that

/]RnfpowdeC/Rngmwdx, (f,g) e &. 3)
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Then, if w € Uy and p(-) € Z(R") it follows that

Wl pe) < Cllgwllp(ys (f.g) € Z.
To state our next results we introduce a more general class of exponent functions.
We say p(-) € Z5(R") if p(-) : R" — (0,0) be a measurable function and p* < c.
For such p(-) we define the norm || - ||, (actually a quasi-norm, see [18]) exactly as
we do for p(-) € Z(R").

THEOREM 2. Let 0 < s < qo < o and suppose that inequality

fqowdng/ gPwdx, (f,g) € &,
R R
holds for every w € Uy /.
Then given p(-) € Z§(R"), such that p~ > s and w such that w* € U,,(.s, it
follows that

1wl pe) < Cllgwllp(ys (f.8) € Z.

We can also consider extrapolation theorems for weights in U} and U.. as follows.

THEOREM 3. Suppose that for some 0 < pg < eo and every w € Uy,

[ frwar<c [ gmwdx,  (f9)€ 7,

n ]Rn

Then, given p(-) € Z(R") such that p~ > po and wP® € U,,(.y/p, , it follows that
1wl p) < Cligwllp(ys (f.8) € Z.

THEOREM 4. Let 0 < gg < oo and suppose that inequality
fowdr<C [ ghwdx,  (fg)€ 7,
]Rn ]Rn
holds for every w € Us.

Then, given p(-) € Z§(R"), 0 <s <min{qo,p~} and w such that w* € Uy, s,
it follows that

1wl p) < Cllgwllp()s (f.8) € 7.
3. Proof of main results

In this section we give the proofs of our main theorems. We will first consider the
following variable version of the Rubio de Francia’s extrapolation algorithm.

LEMMA 4. Let r(-) € Z(R") and suppose that w is a weight in Ur?') Sor some
0 € I. For a non-negative function h € L, (R") such that Toh(x) < = a.e. we define

loc

,%’h(x) _ i (TG)kh(x)

B .
k=0 2k||Te H ) (w)

Then,
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1. h(x) < Zh(x), a.e.xeR".
2. H%hHU(-)(W) <2HhHLr(-)(W)-

3. %he U, with [g@h]hg < ZHTGHU(')(W)'

Proof. The proof is essentially the same as in the constant exponent case. Property
1. for Zh is immediate, property 2. is deduced from the assumption that Ty is bounded
in L'0)(w), and finally, the property 3. follows from the fact that Ty is sublinear and A
is non-negative. [

As a consequence of the previous result we will prove the following corollary
which will be used in the proof of several of our theorems.

COROLLARY 1. Let r(-) € Z(R") and suppose that w is a weight in Ure(.) for

some O € 1. Then, for each ¢ >0 and every weights v, the operator Hh = % (hv° )v~°
verifies that

1. h(x) <Hh(x), aexeR";
2. if u=vow, H is bounded on L'") (), with HHHL,(.)(M) < 2HhHU(-)(u);

3. Hh® e U.

Proof. Clearly, 1. and 3. are a consequence of 1. and 3. from the previous lemma.
Finally,

[HR ) ) = [HR W]y = |12 () iy < 200wy = 201l 0 ) O

We begin with the proof of Theorem 1. The following argument extends the proof
of Theorem 3.28 in [17] to the variable exponent setting.

Proof of Theorem 1. Let (f,g) € F and w € U,y such that || fwl| .y < eo. With-
out loss of generality, we can also assume that || fwl|,.) > 0 and [|gw||,.) < e, since
otherwise there is nothing to prove. We can also assume that [g[,,() (w) > 0, since
otherwise g(x) = 0 at almost every point and then, from the hypothesis we would also
have f(x) =0 at almost every point.

Let us consider

__f s
1 wllpey  lgwllp)
Clearly iy € LPU)(w) and A1 wllpey < 2.

Since f € LPU)(w), by duality, there exists hy € LV ()(R"), A2l < 1, such
that

hy

9l S [ Frohad.

Let us consider the functions Hy = H(hy) = %(h;) and Hy = H (hy) = Z(hy w)w™!.
Thus, by Corollary 1, being that w € U),(.y and wle Uy it follows that
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1. hi(x) <H(x), aexeR"
2. (1H o0y < 2001l 1000 o) -
3. HeU,.
4. hy(x) < Hy(x), aexeR".
5. N Hall ey < 22l ey -
6. HhweU,.

Therefore, accounting for 4. and Holder’s inequality for pg > 1 with respect to
the measure H, wdx we have

wlpy < [ PO PO wax
Rn

- 1/po 1/pg
< (/"JCPOHl Po pOszdx) (/]1{"H1H2de>

2111/170121/1?0.

Let us now verify that the factor I, is uniformly bounded. On the one hand,
considering the variable Holder’s inequality, 2. and 5. we have that

L <2\ Hiwl po)l[Hall iy < 8llAawll o 12l ) < 16.

In order to use the hypothesis, we must jointly prove that /; is finite. Considering
the definition of 4, the properties of H; and H, and the variable Holder’s inequality
it follows that

L< | fron PPy wdx
]R)'l

f I=po
< po| __J Howd
Jo! (nfwnp(.)) e

=||fw po*l/ Hywdx
vl [ rm

< 20|25 wll o 1l
<4l <o,

To estimate I; we will apply the hypothesis with the weight wyg = H 11 “POH,w the
one that belongs to Up, because Hy,Hyw € U;. With the same considerations as in the
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previous case, it follows that,
17
I = / fPOH,; " Hy wdx
Rn

<C [ gMH| "Hywdx
]Rn

I=po
gC/ gro 8 Hywdx
" lewll .y

- Cng||£‘()31 /]Rngszdx

-1
Cllgwl”; gwl o1 Ea1l

and the proof is finished for the case pg > 1.
The po =1 case follows more directly. In fact, as How € U;, we get

[fwllpey < /]Ranzwdx

<C/ gHywdx
Rn

Cllgwll o) 152l 1.y

<
< Cllgwllp)- O

Proof of Theorem 2. We consider the family %y, of those pairs (f*,g*) such that
(f,8) € F . By the hypothesis, if wo € U/, and (f,g) € .7, we have

/n(fs)qO/Swodxz/]Rnfqowodng/Rngqowodsz Rn(gs)q(’/swodx.

Therefore, we have proved inequality (5) with py = go/s for the family .%, and
weights in Uy /. In this way, applying Theorem 1, it follows

£ Wllge) < Clig*wllgey,

forevery g(-) € Z(R") and w € Uy.).
Letnow p(-) € Z;(R") such that p~ > s and w such that w* € U, s, it follows
then, from Lemma 3,

1 1
1wl = 1wl < Cllgw’ IS = Cllgwllpe- O

Proof of Theorem 3. Fix p(-) € Z(R"), with p~ > po and w0 € Uy, - AS
before, we may assume without loss of generality that || fw|| () > 0 and [[gw/| () < eo.
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Thus, by dilation and duality, there exists iy € LPC/PV (R™), |52 () /poy < 1.
such that
w158y = 17w )y SC [ F0 by

We will consider the Corollary 1 to define an operator H, = H (hy) = 22 (hyw?0)w™P0 .,
Thus, by Corollary 1, being that w™70 € U(.)/p,) it follows that

1. hg(x)gHz(x), ae.xeR".

B2l poy < 2Rzl (o

()/po) ()/po)’

3. HywPo e Uy.

From the above inequality and the item 1. it then follows that
lfwl|?0. <C [ fPowPhydx < C | fPowPOHydx.
p() R” R~

To apply the hypothesis let us verify that the term on the right is finite. Given that
hy € LP0)/Po) (R™), by Holder inequality, dilation and item 2. we have that

/R FrowP Hy dx || fPWP oy o 12l () 1oy < IR0 2l oy oy < -
Finally, using wP°H, € Uy, it follows from the hypothesis that
SPOWPOH, dx < C/ gPOWPOH, dx
]R)l Rn
< Cngopr”p /p0HH2H (-)/po)

< Cligwllne 121l (p(/p0y
Po
<CH8WHP(.)~ U

Proof of Theorem 4. Let r > 1 and consider the family .%,, of those pairs
(fa0/7 g9/7) such that (f,g) € .Z. By the hypothesis, if wy € U, and (f,g) € .7,
we have

/ (qu/’)rwodx:/ fqowodx<C/ gqowodx:C/ (877" wq dx.
]Rn R’l R’l ]Rn

Therefore, we have proved inequality (5) with py = r for the family .%; and
weights in U,. In this way, applying Theorem 1, it follows
1797 wlly0) < Cllg® ™ wlly(s

forevery g(-) € Z(R") and w € Uy.).
Let now p(-) € Z(R"), 0 < s < min{qo,p~} and w such that w* € U,;.
Taking r = qo/s, it follows from Lemma 3

r 1/s 1/s
Wl = w1 = LW 45 < Clig™ w5 = Cllgwlyy O
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4. Applications: norm inequalities for operators

In this section we use extrapolation to prove norm inequalities for a great variety
of operators on the weighted variable Lebesgue spaces in the Schrodinger context.

First, we will deal with maximal operators and classes of weights that have re-
cently arised in conection to the Schrodinger operators (see [2] and [10]). These classes
fit the general context above and allow us to obtain the applications we seek.

We call a critical radius function to any positive function p with the property that
there exist constants ¢y, Ny > 1 such that

-N NN+
c;1p<x>(1+"‘y) p<p<y><cpp<x>(1+'x y') S

p(x) p(x)

for every x,y € R". In particular, according to [28, Lemma 1.4], if V € RH,, with
q > n/2, the associated function py defined by

pv(x):sup{r>0 nlz/ Vgl}, (7
B(x,r)
verifies (6).

Given a critical radius function p, for each 8 > 0 we define the maximal operator
MY, for f € Li, (R") and x € R", as

0 o r
gt = (155) iy, 0 (8)

We say that the weight w belongs to the A,‘Z’e class ,for 1 <p<e and 0 >0, if
there exists a constant C > 0 such that the inequality

1 1/p 1 L 1/p r 0
(i frer) (G frmm) “c(ienfg) @

holds for every ball B = B(x,r) C R". For the case p = 1, we will say that w belongs
to the class A’l) 9 if there exists a constant C > 0 such that the inequality

& /wdy (infw() <1+$)97

holds for every ball B = B(x,r) C R". We denote A = Ug>0AB® and A2 = U,>,1AD.

Also, given p(-) € Z(RR") and 6 > 0, we will say that AZ (6) if the inequality

0
_ r
sl o v ey < CIBI (1 +m) , (10)

holds for all balls B = B(x,r) C R". We denote Ag(_) — U9>0A1€f)'
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REMARK 1. It follows from the above definition that if w & Aﬁ ) then w! €

p
AP’(-)'

The following results shows the connection between the weights A,’;’e and AZ (6)

and the boundedness of the operators Mg in L (w) and L") (w) respectively.

THEOREM 5. ([2, Proposition 3]) Let 1 < p < eo. Then, a weight w belongs to
Ab if and only if there exists @ > 0 such that Mg is bounded on LP(w).

THEOREM 6. ([10, Theorem 5]) Let p € Z2'"°8(R") with p~ > 1. Then, a weight
w belongs to Ap lf and only if there exists 6 > 0 such that Me is bounded on

LPO) (w).

If for each 6 > 0 we denote Mg Ty , we see from the above results, that Ap co-
incides with the U), class of Section 2, for every 1 < p < oo, as well as the c01nc1dence
between classes AZ O and U,y whenever p(-) € @lOg(]R") with p~ > 1. However,

it may not be true that for a fixed 6 the Ul? class associated with Mg coincides with
AI';’O. The same is true for the classes Uz?(~)' However, it is straightforward to verify
APE — P (see [2]).

On the other hand, it is straightforward to check, from their definition, that classes
A,’; and Ag ) satisfy properties 1 and 2 requested to the classes U, and U,y (see for
example [2] and [10]).

From the above, we are able to apply the theorems stated in Section 2 for classes
A,’; and Ai O First we will see how to prove that an operator 7 is bounded in LP(')(W)
using Theorem 1. These same ideas can be used to apply the other theorems.

The key point in applying Theorem 1 is to consider an appropriate .% family. This
usually requires a density argument, since we need pairs of functions (f,g) such that
f lies both the appropriate weighted space to apply the hypothesis and in the weighted
variable Lebesgue space in which we want to obtain the thesis.

The dense subsets of LP(w) are well known, for example, smooth functions and
bounded functions of compact support. These sets are also dense in Lt )(IR”) and in
248 ( ) (see, for example, [13] and [19]). More specifically, in [19] it is proved that if

p(-) € Z(R") with p* < oo and w € Lﬁ)(c)(]R"), then L7, the set of bounded functions
of compact support, and C7°, the smooth functions of compact support, are dense in
LPO) ().

Suppose now that for all wy € Ap; it is verified that

”TfWOHpo C”fWOHpo (11)

We want to show that given a w € AZ(,), T is bounded on LP()(w). Since w €

lo(c)(]R") by a standard density argument (see [13], Theorem 5.39) it is sufficient to

show that
ITfwllpey <CIfWpes
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forall f € L. Although intuitively, it can be thought to define .Z as

F ={(TfLIfD) - feLt,

it is not known a priori that 7 f is in Ll’(')(w). To overcome this, we again proceed
by approximation and define (7 f), = min{|T f|,n} (). Given that w € Y it

loc

follows that (T'f), € LP")(w). On the other hand, it is clear that (11) is verified with
|T f| replaced by (T f), . Therefore, if we define

={(T)n; 1FD = f LT n =15,

we can apply Theorem 1 and Fatou’s Lemma in this context (see [13], Theorem 2.61)
and conclude that for any f € L

ITFwllpe) < Tmint[[(TF)nwllpe) < CILF Wl p)-

For some of the applications we will consider the space BMO? , defined in [6], as
the set of locally integrable functions b such that for 6 > 0,

0
r
< N
xr|/xr ber|dy C<1+p(x)) ) (12)

for all x € R” and r > 0. The infimum of the constant in (12) gives a norm for b €
BMOg, denoted by HbHBMog . We write BMOy = U9>OBMOg.

From the above definition (12), it is clear that BMO C BM Og C BM Og for 0 <
0 < o, and hence BMO C BMO3. Moreover, it is in general a larger class. For
instance, when p is constant the functions b;(x) = [x;[, 1 < j <n, belong to BMOg,

but not to BMO. Also, when p(x) ~

~ ﬁle’ we may take b(x) = |x|2.

4.1. Maximal operator of the diffusion semi-group

The maximal operator of the diffusion semi-group is defined by

/ ki (x, ) f

T*f(x) = suple™"“ f(x)| = sup
>0 >0

and its commutator

Ty f(x) = sup

t>0

ke (x.3) (b(x) — b)) £ () dy' ,

]Rn

where k; is the kernel of the operator e 1 >0.
By combining Theorem 2 in [5], Theorem 1.2 in [32] and Theorem 1 together, we
obtain the following result.
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THEOREM 7. Let b € BMOy; and p(-) € PV(R") with p~ > 1. Then, for every
we AZ(-) there exists C > 0 such that

1T fwllpey < CIUf W peys

and
Ty fwllpey < CllblBmog [ Fwllp(.)-

4.2. The Littlewood-Paley function and the area function

We first introduce some notations. For (x,7) € R” x (0,00), let

f) ().

In [23] the authors introduce a Littlewood—Paley function associated to £ which

can be written as /
dr\ /2
0= ([ leswrd) .

On the other hand, in [32] they introduce the area function Sy related to Schrodinger

operators as
1/2
SQf ( / / |Qt n+1> :
Pe—yl<t i

For these operators, we have the following result, taking into account Theorem 5
in [5], Theorem 1.1 in [32] and Theorem 1.

O f(x) = 1 (%e—sfi

THEOREM 8. Let p(-) € 2¢(R") with p~ > 1. Then, if w EAﬁ(,) there exists
C > 0 such that
HngW”p(') < CHfW||p(')7

and
[Sof Wil py < Clfwllpe-

The commutator of go and So with b € BM O} is defined by

ot = ( [0 <>>f><x>2?)1/27

sour= ([ [ 10 -sonmra )"

The following theorem is a consequence of Theorem 1.1 in [31] and Theorem 1.2
in [32].

and
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THEOREM 9. Let b € BMOS and p(-) € P'°¢(R") with p~ > 1. Then, if w €
AI’; B there exists C > 0 such that

1806/ Wllp) < ClibllBmoz | f Wl p()

and
1S0.6f Wil p(y < ClibllBMOZ | f Wl -

4.3. Schrodinger type singular integrals

In our next application, instead of considering a specific operator, we will contem-
plate families of operators and then take into account particular cases.

In [2] a class of operators resembling those of Calderén—-Zygmund theory, but
adapted to the Schrodinger context, is introduced (see also [3] and [4]). This type of
operators were also considered in [7] and [25], where conditions are given to obtain
their boundedness in regularity spaces in the context of Schrodinger with and without
weights, respectively.

In [11] it was shown that the so-called Schrodinger—Calderén—Zygmund operators
are bounded on LF(')(W) using also extrapolation techniques but different from those
studied here. These results can also be obtained from ours as we will see below.

We will consider two different types of operator families that will allow us to cate-
gorize several types of operators that appear in the Schrodinger context according to
the regularity of the potential V.

We shall call Schrodinger—Calder6n—Zygmund operator of type (e, 8) for 0 <
0 < 1 to an operator T such that

1. T is bounded in L? for some 1 < p < eo.

2. T has an associated kernel K : R" x R" — IR, in the sense that

Tf(x):/RnK(x7y)f(y)dy7 feL? and ae.x ¢ suppf.

Further, for each N > 0O there exists a constant Cy > 0 such that

1 Ix—ﬂ>N
K(x,y)| <C 1+ , 13
sl < o (1453 1

for any x # y, and there exists C > 0 such that

\x—x0|5

K (x,y) = K(x0,y)| < Cm’

(14)

for every x,y € R", whenever |x — x| < ‘x;yl :

On the other hand, we will say that a linear operator 7 is a Schrodinger—Calderén—
Zygmund operator of type (s,0), for 1 <s <eoand 0< 0 < I, if
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1. T is bounded from L* into L.

2. T has an associated kernel K : R” x R" — R, in the sense that

Tf0) = [ K@x)fO)dy, f LT and ae.x ¢ suppf.

Further, for each N > 0O there exists a constant Cy > 0 such that

1 1/.\' R —N
— Key)'dy) <CyR"[14+——) 15
(R” /,e<\x0,y\<2R' (.9)] y) v ( p(x)) ()

for any |x — x| < R/2, and there exists C > 0 such that

- K d " C ’ 16
— K(xo,y)|" <CR™ (%),
(Rn /R<‘x07y‘<2R| (%) = K(x0,)] y) (R> (16)

for every |x —xo| <r < p(xp) and r < R/2.

REMARK 2. We also get that if T is a Schrodinger—Calderén—Zygmund operator
of type (e0,0), then T is a Schrodinger—Calderén—Zygmund operator of type (s,0),
forany 1 <s < oo,

From the results of [2] and [4] we have the following theorem concerning strong
weighted inequalities for Schrodinger—Calder6n—Zygmund operator of type (s,0) for
1 <5< eo.

THEOREM 10. ([11], Theorem 20) Let 0< 8 <1, 1 <s< o and T be an Schri-
dinger—Calderén—Zygmund operator of type (s,8). Then T is bounded on LP(w) for
every s’ < p < oo and any weAg/

s

From the previous theorem and Theorems | and 2, the following fundamental
results follows.

THEOREM 11. Let p(-) € P"8(R") with p~ > 1. If T is a Schridinger—Calde-
rén—Zygmund operator of type (e=,0), then

ITfwllpey < CIFWI ey

holds for every weight w € AI’; )" Moreover, its adjoint operator T* is also bounded on

LPO)(w) for every w e Ag(,).

Proof. The first statement follows directly from Theorems 1 and 10.



WEIGHTED NORM INEQUALITIES FOR SCHRODINGER OPERATORS... 875

Regarding the second statement, by Lemma | and Lemma 2 we obtain that

17wl S sup | [ T Fx) glxwin)dx
H&'Hp/(.)<1 R
= sup | [T (gw) () dx
llgll )<t R

< osup o [ wlpo IT(ew)w™

llgll <1

<Ifwlpey  sup (1T (gw)w™ )
HgH,,/(.)<1

Since that for p(-) € 2'°¢(R"), itis pT < o, it follows that (p/)~ = (pT)’ > 1.
Also, condition w € AZ “ implies that w™! € AZ 0 According to what has already
been proven in the first part, it follows that

IT* fwllpey S Wlpey  sup [IT(gw)w™"[|,(y
llgll <1

S wlpey  sup gl

lgll <1

<N wllpey- O

Let us now see the corresponding result for Schrodinger—Calder6n—Zygmund op-
erator of type (s,9).

THEOREM 12. Let 1 < s < oo and p(-) € Z"8(R") with p~ >s'. If T isa
Schrédinger—Calderén—Zygmund operator of type (s,0), then

ITfwlpey < CIFWI s

holds for every weight w such that w' e AZ(')/S,. Moreover, its adjoint operator T™ is

bounded on LPU)(w) for every p(-) € 2'¢(R") with 1 < p* < s and any w such that
W € AL

The proof of this theorem follows the same steps as in the previous case and will
be omitted.

Hereafter, for shortness we will use the notation SCZ to mean a Schrodinger—
Calder6n—Zygmund operator when p is the critical radius function derived from the
potential V.

4.3.1. Schrodinger—Riesz transforms

In this subsection we consider the singular integral operators known as the first and
second order Riesz—Schrédinger transforms, givenby Ry = V.2~ 1/2 and R, = V2.2 !
respectively, together with their adjoints R} = .2~ '/?V and R} = £~ 'V>.
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Let V € RH, with ¢ > n/2. We will analyze the operators Ry, R}, R, and R}
according to the regularity of the potential V.

Considering what was proved in [1 1] (Theorems 26, 27, and 28) and in [8] (Propo-
sition 3), the following result follows.

PROPOSITION 1. Let V € RH,. Then, we have

1. If g > n, the operators Ry and R} are SCZ operators of type (e=,0) with § =
1l —n/q and 6 =1 respectively.

2. If n/2 < q < n, the operator R} is a SCZ operator of type (s,8) with s such that
l/s=1/q—1/nand 6 =2—n/q.

3. If g>n/2, the operator R is a SCZ operator of type (q,0) with 6 =min{1,2 —
n/q}.

4. If ¢ > n/2 and p verifies a local smoothness condition

N x—y[“
V(x) =Vl < )T

for every x,y € R such that |x —y| < p(x) and some 0 < o0 < 1, then R, is a
SCZ operator of type (oo, 0t).

a7)

Now, as a consequence of the last results, Theorem 11 and Theorem 12, we estab-
lish the following result concerning the bounding of Riesz—Schrodinger transforms of
order 1 and 2.

THEOREM 13. Let V € RH, and p(-) € P'°¢(R"), it follows then that

1. If g > n and p~ > 1, the operators Ry and R} are bounded on Lpt ( ) for
every w € Ap(.)

2. If n/2 < g<n, sissuchthat 1/s=1/q—1/n and p_ > §', the operator R}

is bounded on LP' ( ) for every weight w such that w* € AP( 7 while the if

1 < p* <s, the operator Ry is bounded on L) (w) for every weight w such
—s p

that w=* € AP,(.) /s

3. Ifg>n/2 and p > ¢/, the operator R is bounded on LPY)(w) for every weight

w such that w! € AP () while the if 1 < pt < g, the operators Ry is bounded

g .

on LPU)(w) for every weight w such that w4 € A®, V)

4. Ifqg>n/2, p~>1andV satzsﬁes (17) for some 0 < o0 < 1, the operators R»
and R are bounded on LPU)(w) for every w € AP( )
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4.3.2. Schrodinger—Riesz transforms involving V

We now consider the operators My = .Z~YVY for 0 < y < n/2 and Ny =

LYVVT12 for 1/2 < y < 1. In [7] the authors prove the following results directly
related to the operators in question.

PROPOSITION 2. Let V € RH, with q > n/2. Then,

1. The operator Ny is a SCZ operator of type (s,8) for 1/2<vy< 1, with § =
L_(1_1 2)/ 1 11\t 1
{1,2—n/q} and s suchthat§—<5—2> + =5, where (5_Z> _max{a—
w0}

2. The operator My is a SCZ operator of type (s,0) for 0 <y <n/2, with § <
{1,2=n/q} and s =q7.

As an application of Theorem 12 and the above proposition we get boundedness
properties for these operators on L) (w).

THEOREM 14. Let V € RH, with ¢ >n/2, 1/2<y< 1 and s such that 1 =

+
(}I - %) + %. Then, the operator Ny is bounded on LP")(w) for every p(-) €

PR with p~ > s' and every weight w such that w' € Ap( /s Moreover, its

ad]oznt operator VY~12V £~V is boundedon LPO)(w) forevery p(-) € 2'°¢(R") with
—s p

1 < p™ < s and any w such that w EAp,(,)/S,.

THEOREM 15. Let V € RH, with ¢ >n/2, 0 <y <n/2 and s = q/y. Then,

the operator My is bounded on LPO)(w) for every p(-) € P4(R") with p~ > s and

every weight w such that w' € AP ()5 Moreover, its adjoint operator VY.L~V is

bounded on L") (w) for every p(-) € Z¢(R") with 1 < p* < s and any w such that

—5 p
€Ay

We can now apply these general results to some of the operators considered by
Shen in [28].

THEOREM 16. Let V € RH, with g > n/2 and s such that s = 2q lfq >n or
L=3 —Lirn/2 < q<n. Then, the operator £~'VV'/? is bounded on LPV)(w) for

every p( ) € P°(R") with p~ > s’ and every weight w such that w* "eAP ()5

Moreover, the operator V'/*V.£~' is bounded on L')(w) for every p(-) €
gzlog(]R”) with 1 < p* < s and any w such that ws GAI’;,(_)/S,.
THEOREM 17. Let V € RH, with q > n/2. Then, the operator LV2yl/2 g
bounded on L) (w) for every p( ) € PY(RM) with p~ > (2q)' and every weight w

(29) p
such that w\=4" € Ap(~)/(2q)/'
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Moreover, the operator V2.2 =12 is bounded on LPY)(w) for every p(-) €
PR with 1 < p* < 2q and any w such that w~ (29 EAﬁ,(')/(zq),.

THEOREM 18. Let V € RH, with g >n/2. Then, the operator L~V is bounded
on L) (w) for every p(-) € Z2¢(R") with p~ > ¢' and every weight w such that
d e AP
W EAL ) g+
Moreover, the operator V.Z~' is bounded on LPU)(w) for every p(-) €
PYR") with 1 < p* < q and any w such that wd GAZ,(_)/[],.

4.3.3. Operators of the type .2/

In this subsection we consider the power operators % for ¥ € R. From what
has been done in [28] it is easy to verify that the following theorem holds.

THEOREM 19. Let V € RH, with q > n/2. Then, the operator £V with y € R

is a SCZ operator of type (e0,8). Moreover, £ is bounded on LP")(w) for every
p(-) € 2(R") with p~ > 1 and any w EAZ(.).

4.4. Commutators of Schrodinger type singular integrals

We will now consider the commutator 7, for a Schrédinger—Calder6n—Zygmund
operators T of type (s,8) for 1 < s < e and 0 < 6 < 1. Let us remind that by
commutator of a linear operator 7 with multiplication by a function b € L], called
symbol, means

Tpf(x) = [T,blf (x) = T (bf)(x) = b(x)T f (x).

In Theorem 1 of [9], the following result regarding the boundedness of the com-
mutator of an SCZ operator of type (s,o0) for 1 < s < oo is established.

PROPOSITION 3. Let T be a SCZ operators of type (s,8) for 1 < s< oo, 0< 8 <
1 and let b € BMO. Then the commutators [T, b] is bounded operator on LP(w) for

any p > and every w EAZ/

s

Therefore, from what we have seen in the previous subsection we obtain the fol-
lowing consequences.

THEOREM 20. Let V € RHy, b € BMOj, and p(-) € Z'(R"), it follows then
that

1. If g=n and p~ > 1, the operators [Ry,b] and [R},b] are bounded on L") (w)
for every w € Aﬁ(')'

2. Ifn/2<qg<n, sissuchthat 1/s=1/q—1/n and p~ > s, the operator [R},b]
is bounded on LPV)(w) for every weight w such that w' e Aﬁ(_)/

s
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3. If g>n/2 and p~ > ¢, the operator [R5,b] is bounded on LPO)(w) for every

weight w such that wi € Ap(.)/q,.

4 If g>n/2, p->1and V sansﬁes (17) for some 0 < o0 < 1, the operators
[Ry,b] and [R},b) are bounded on LPV)(w) for every w EAP()

THEOREM 21. Let V € RH,, b € BMO}, and p(-) € @bg(w), it follows that

1. If g>n/2 and s such that either s =2q when q > n or ~ 2371 % when n/2 <
q < n, and denote by Ty = £ ~'VV1/2, then the operator [T1 ,b] is bounded on

Lt ( ) for every weight w such that w' € AP ()5 provided that p~ > s'.

2. Ifqg>n/2, p~ > (Zq)’ and denote by Ts = £~ '/12V1/2 | then the operator [Ty, b]
is bounded on LPV)(w) for every weight w such that w2 e Ap( /(29"

3. If ¢ >n/2, p’ > ¢ and denote by Ty = £~V then the operator [T3,b] is

bounded on L") (w) for every weight w such that wl e Ap( N

THEOREM 22. Let V € RH; with q >n/2 and b € BMO};. Then, the operator

[.L b], with y € R, is bounded on LP')(w) for every p(-) € P¢(R") with p~ > 1
and any w € AZ(.).

4.5. Pseudo—differential operators

Let m be real number. Following [33], a symbol in S I's is a smooth function

o(x,&) defined on R” x R" such that for all multi-indices o and f the following
estimate holds

IDEDL 6 (x,E)| < Cop(1+[E[)" P01, (18)
where C;, g > 0 is independent of x and & . The operator T given by

TS0 = [ ol ) f(E) de,

is called a pseudo—differential operator with symbol o(x,&) € S 15 where f is a

Schwartz function and f denotes the Fourier transform of f. Denote by L 5 the class
of pseudo—differential operators with symbols in S}’ 5.

In this case, if we consider V = ¢ with ¢ >0, i)ve have that p = py = 1, and then
from Theorem 1.1 and Theorem 1.2 in [30], together with Theorem 1, we have

THEOREM 23. Let b€ BMO, T € Lj ; and p(-) € 2'°¢(R") with p~ > 1. Then,
ifwe AZ(.) there exists C > 0 such that
ITfwllpey <CIFW pes

and
1 Tofwllpe) < ClIDlsmoll f Wil pe-
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4.6. Coifman-Fefferman type inequalities

As in [3] we consider classes of local weights associated to a critical radius func-
tion p. Given p > 1 the class AD" is defined as the set of weights w such that

1/p L\ WP
(/w) (/W—,,—l) <], (19)
B B

for every ball B € %p, where %p denote the family of subcritical balls of R", i.e., the
set of balls B(x,r) with x € R" and r < p(x).

For the case p = 1, the class A’l) 1°¢ i< defined as those weights w satisfying
! / < Cinf (20)
— < Cinfw,
B[ g S

for every ball B € %, , where the infimum should be understood as an essential infimum
with respect to the Lebesgue measure. Notice that A C Ag’loc forany p > 1. We
denote AL = UF>1A,€’IOC.

To give the precise statement of our following results we need to introduce the
following maximal operator. Given a critical radius function p, 1 <s <o, 0 < 0t <n
and 6 > 0 we define

-0 1/s
1
Mf"efx = sup (14—#) B(xg,r a/"<7/ f‘) .
) B(xg,r)3x p(xo) 1Bo,1)] |B(x0,7)] B(XOJ)‘ |

We shall drop the parameter o in the above notation when o = 0 and the para-
meter s when s = 1. With these definitions we will consider the following results,
which were proved in [3] (see Theorems 5 and 6 there).

PROPOSITION 4. Let 1 < s < oo and T be a weak type (s',s') operator with
kernel K satisfying,

1. Foreach N > O there exists Cy such that

1 (pxo)\Y
( / K (x,y)‘“dy> < CyR ™ ( ) , 21
R<|y—x0|<2R R
for every x € B= B(xp,p(x0)), and R > 2p(xp).
2. There exists a constant C such that
, 1/s
PACAGES ( / K (x,y) — K(xo,y)sdy) <C, (22)
k=1 B 1 \By

for every ball B = B(xo,r) and every x € B, with r < p(xo) and By = 2*B,
keN.
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Then, if 0 < p < o and 0 > 0, there exists a constant C such that
LT r@Pwds<c [ MEfeorwxd
1
forevery we AL and f € LIOC(IE{").

PROPOSITION 5. Let Ty, be a weak type (1,n/(n— o)) operator with 0 < @ < n
and kernel Ky satisfying,

1. Foreach N > O there exists C such that

¢ A
o) < g (1+55) >

for every x,y € R".
2. There exist constants C and A > 0 such that

\x—xo|7L

B ! 24
et Y

|K06(x7y) _Ka(x()vy)‘ < C

forevery x,y € R", whenever |x — xo| < lx A

Then, if 0 < p < o and 0 > 0, there exists a constant C such that
| Taf@lrwiar < [ w0 polrwxdx
R R

for every w € AR ¢ and feLl (RY).

In order to state the following results of this subsection, we introduce the following
notations. Given a Young function ¢ and a locally integrable function f we consider
the ¢-average over a ball B defined as

. o1 fl
fllqw—mf{/l>0. E/B(p<7) <1}.

For 0 < o < n, o > 0 and Young function ¢, we define

—0
)
MECF(x) = sup (1+—) BI | fll s

XEB=B(z,r) p(Z)

Observe that when ¢(r) =*, with s > 1, the maximal function My coincides
with M defined previously.
It follows then, as a consequence of Theorems 7 and 8 in [3] the following.
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PROPOSITION 6. Let 1 < s < o and suppose T is an integral operator of weak
type (s',s") with associated kernel K satisfying (21) and that for every N > 0 there
exists Cy such that

/ 2kr N Ve
Sren (14 20) ([ Ko -KGalay) <cn @9)
2k+1B\2kB

1 p(xo)

a.e. x € B, for every ball B € %,.

Then, if 0 < p < oo, w€E AP and b e BMOy, for any 6 >0 there exists a
constant C such that

LT BLE Qw0 < Clblauos [ MG wix)ds
for every f bounded and with compact support, where y(1) =t* log(1 +1) .

PROPOSITION 7. Let 0 < o < n and suppose Ty, is an integral operator of weak
type (1,n/(n— o)) with associated kernel K, satisfying (23) and that for each M > 0
and 0 < A <1 there exist a constant C such that

ly —x[* ( Iy—ZI)_M
Ko (9,2) — Kg(x,2)| < C 1+ , (26)
| Ot(y ) OC( )| |y_z|n,a+l p(y)

whenever |x—y| < 3y —z].
Then, if 0 < p < oo, w€E AP and b € BMOy, for any 6 >0 there exists a
constant C such that

[ Tl 1w < Clpllawog [ 1M )P,
Sorevery f bounded and with compact support, where y(t) = tlog(1l +1).

As a consequence of the above propositions, Theorems 9, 10 and 11 in [3] (and
their proofs) and Theorem 4, we have the following results.

THEOREM 24. Let V € RH, with ¢>n, b€ BMO3, 6 >0 and p(-) € Z"°¢(R").
Then, for every weight w such that w* € A,y with p~ > s,

IR W) + IR Wil < CIME fwll g,

and
[[R1, b1 f Wil oy + I RT, DL wll iy < ClIMy fwl| ()
where y(t) =tlog(1+1).

THEOREM 25. Let V € RH, with ¢>n/2, b€ BMO3, 6 >0 and p(-) € Z1°¢(R").
IfTT =R}, h= L7V2VY2 gnd Ty = L7V, then for every weight w such that
wSi EAp(')/s,- with p~ > Sj,

| Tifwllp) < CHMf;fWHp(.y j=1.2,3;
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and
T35 Wl < CIME, oy, = 1.2,3:

where y;(t) =1’ log(1 +t)“§', with 1/s1 =1/q—1/n, s, =2q and s3 =q.

THEOREM 26. Let V € RH, with ¢ >n, b€ BMO%, 0 >0 and p(-) € Z°¢(R").
Then, if T = £~ with y € R, for every weight w such that w* EAp()s With p~ > s,

ITfwllpy < CIIME fwl ),

and
17,61 f wllpiy < ClIMyfwllpe,

where y(t) =tlog(1+1).

Finally, as the last application of this subsection we will consider the fractional
integral associated to . defined for 0 < o < n as

laf () = 27 9P 5 = [ @i S = [ Kalwns)a
0 t R”

where Ky (x,y) = [y ki (x,y)t%/? %, and e, t > 0 is the heat semigroup associated
to 2.

As a consequence of Propositions 5 and 7, the Proposition 8 and the Theorem 12
in [3] and Theorem 4, we have the following result.

THEOREM 27. Let V € RH, with ¢ >n/2, 0 <o <n, b€ BMO3;, ¢ >0 and
p(-) € P(R"). Then, for every weight w such that w* € Ap(yys wWith p~ > s,

e wllpey < CIMEE fwllp),

and
||[10hb]wap(~) < C||M$7O-fw||p(')7

where y(t) =tlog(1+7).
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