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A WEIGHTED GENERALISATION OF CARLEMAN’S INEQUALITY

SERGI ARIAS ∗ AND SALVADOR RODRÍGUEZ-LÓPEZ

(Communicated by L. E. Persson)

Abstract. In this paper, we present a generalisation of the classical inequality of Carleman, which
we obtain by an elementary argument based on log-convexity and Hölder’s inequality. As a
consequence, we recover some other classical estimates such as the Pólya-Knopp inequality.

1. Introduction

The classical inequality by T. Carleman [4], known as Carleman’s inequality, as-
serts that given any non-negative sequence {an}n=0 , it holds that




n=1

(
n


k=1

ak

)1/n

� e



n=1

an.

Equality holds if, and only if, the sequence is identically zero and the constant e is the
best possible, in the sense that it cannot be replaced by any smaller constant.

Carleman’s renowned inequality, which he originally derived in the context of his
investigations on quasi-analytic functions, has garnered substantial attention over the
years. It has led to numerous extensions, supplementary results, and practical applica-
tions. As just one example of such, we can refer the reader to the recent paper of C.-P.
Chen and R. B. Paris [7] and all the references therein.

The summands on the left-hand side of Carleman’s inequality correspond to the
geometric mean of the first n terms in the sequence, which can be rewritten as(

n


k=1

ak

)1/n

= e
1
n 

n
k=1 logak .

Along this line, the continuous counterpart of Carleman’s inequality, known as the
Pólya-Knopp inequality states that

∫ 

0
exp

{
1
x

∫ x

0
log f (t)dt

}
dx < e

∫ 

0
f (x)dx (1)
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holds for all positive functions f . This inequality was initially attributed to K. Knopp
from his 1928 paper [16], but it was later revealed to have been hinted at by G. Pólya
in G. H. Hardy’s 1925 paper [12, §6], as a limiting case of Carleman’s inequality.

Some years later, L. Carleson [5] obtained a different extension of the inequality
of Carleman, showing that the estimate∫ 

0
xpe

−m(x)
x dx � ep+1

∫ 

0
xpe−m′(x)dx,

holds for all convex functions m on R+ = [0,) such that m(0)= 0, with −1< p < .
Weighted versions of the inequalities of Carleman and Pólya-Knopp have also been
studied by several authors. See, for instance, the works by R. P. Boas [3], H. P. Heinig
[13], J. A. Cochran and C. S. Lee [8], E. R. Love [17, 18], B. Opic and P. Gurka [21],
L. Pick and B. Opic [22], A. Čižmešija and J. Pečarić [9], S. Kaijser, L-E.Persson and
A. Öberg [15], A. Čižmešija, J. Pečarić and L.-E. Persson [11], D.-C. Luor [19, 20] or
A. Čižmešija, S. Hussain and J. Pečarič [10]. For a deeper exploration of historical
insights, early proofs, and broader generalisations, we refer the reader to the insightful
paper of M. Johansson, L.-E. Persson, and A. Wedestig [14].

In this paper, we obtain a generalisation of Carleman’s inequality, acting on de-
creasing functions, by using an elementary approach. Indeed, the argument used to
prove our main theorem is based on log-convexity and Hölder’s inequality. In this way,
we recover some of the classical estimates such as Carleman’s or the inequalities of
Pólya-Knopp and Cochran-Lee [8] (where we realise that, in fact, turn out to be equiv-
alent).

As a consequence of our main theorem, some applications are obtained. For in-
stance, we get in Corollary 3.7 an estimate for the harmonic mean operator in the cone
of positive decreasing functions on weighted Lebesgue spaces. In addition, we include
in Corollary 3.9 an estimate for the Laplace transform of an average operator, evaluated
on decreasing functions. Finally, we also obtain in Corollary 3.13 an equivalent norm
expression for rearrangement invariant spaces, in terms of a log-convex average of the
decreasing rearrangement function.

The paper is organised as follows. In Section 2 we state and prove the main theo-
rem of this article, while in Section 3 we describe its applications. Finally, in Section 4
we extend particular cases of our result to positive functions.

2. Main result

Let us start by introducing the following proposition, which states that a certain
average operator keeps the monotonicity.

PROPOSITION 2.1. Let  be a locally finite Borel measure on R+ such that for
all t > 0 ,  [0, t) > 0 and let f : R+ → R be an increasing (resp. decreasing) function.
Then the function

t �→ T f (t) :=
1

 [0,t)

∫
[0,t)

f (x)d(x),

is increasing (resp. decreasing) in R+ .
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Proof. We shall give the proof for f being an increasing function. The other case
is proved similarly with minor modifications on the argument.

Let 0 � s < t . Consider the integral of f (y)− f (x) over the rectangle R = [0,s)×
[s,t) with respect to the product measure × and observe that for 0 � x < s � y < t
it holds that f (y)− f (x) � 0. Hence,∫

R
( f (y)− f (x))d(x)d(y) � 0.

Then Tonelli’s theorem yields

 [0,s)
∫

[s,t)
f (y)d(y) =

∫
R

f (y)d(x)d(y) �
∫

R
f (x)d(x)d(y)

=  [s,t)
∫

[0,s)
f (x)d(x).

Therefore, adding  [0,s)
∫
[0,s) f (y)d(y) to both sides and operating, this yields

T f (t) =
1

 [0, t)

∫
[0,t)

f (x)d(x) � 1
 [0,s)

∫
[0,s)

f (x)d(x) = T f (s). �

REMARK 2.2. Notice that if  is the Lebesgue measure in [0,) then T corre-
sponds to the classical Hardy operator

H f (t) =
1
t

∫ t

0
f (x)dx.

DEFINITION 2.3. We say that a positive function  defined on an interval I ⊆ R

is log-convex if ln is a convex function. That is, for all s ∈ [0,1] and all x,y ∈ I it
holds that

(sx+(1− s)y) � (x)s(y)1−s.

Examples

Here we have some examples of log-convex functions:

1. If a � 1, then the function exa
is log-convex on (0,) .

2. The function e−x is log-convex on R .

3. More generally, if  is convex on I ⊆ R , then the function (x) = e(x) is
log-convex on I .

4. If a � 0, then the function x−a is log-convex on (0,) .

DEFINITION 2.4. For every non-negative function v on R+ and all s > 1, we
define

p(v,s,x) :=
v(sx)
v(x)

, p−(v,s) := inf
x>0

p(v,s,x), p+(v,s) := sup
x>0

p(v,s,x).
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For all t > 0 we also set
p−(v,s,t) = inf

0<x<t
p(v,s,x).

REMARK 2.5. Observe that in the case where v is increasing and x < t , it follows
that

1 � p−(v,s) � p−(v,s,t) � p(v,s,x) � p+(v,s) � .

We present the main theorem of this paper.

THEOREM 2.6. Let  be a locally finite Borel measure on R+ and assume that
for all t > 0 ,  [0, t) > 0 . Let M(t) =  [0,t) and suppose that there exists s0(M) � 1
such that for all s > s0(M) and for all t > 0 ,

1 < p−(M,s,t). (2)

Let w : (0,) → R+ be such that for all s > s0(M) ,

p+(w,s) < +. (3)

Let I be an interval of R and let  : I →R+ be a log-convex and decreasing (resp.
increasing) function. Then, for all increasing (resp. decreasing) functions f : R+ → I
and for all t > 0 , it holds that

∫ t

0

(
T f (x)

)
w(x)dx � inf

s>s0(M)
(sp+(w,s))

p−(M,s)
p−(M,s)−1

∫ t

0
( f (x))w(x)dx, (4)

provided that the left-hand side is finite.

REMARK 2.7. By using Proposition 2.1 we notice that the term 
(
T f (x)

)
on

the left-hand side in (4) is well defined since T f (x) ∈ I for all x > 0 when f is a
monotone function.

Proof of Theorem 2.6. We shall only prove the case for which  is decreasing.
The other case can be shown with minor modifications, and thus we leave the details to
the reader.

Let s > s0(M) . Since f is increasing we have that

∫
[0,sx)

fd =
∫

[0,x)
fd+

∫
[x,sx)

fd �
∫

[0,x)
fd+(M(sx)−M(x)) f (x)

for all x > 0, from where

T f (sx) � M(x)
M(sx)

T( f )(x)+
M(sx)−M(x)

M(sx)
f (x)

=
1

p(M,s,x)
T( f )(x)+

(
1− 1

p(M,s,x)

)
f (x).
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Next, since  is decreasing and log-convex, it follows that


(
T( f )(sx)

)
� 

(
T( f )(x)

) 1
p(M,s,x) ( f (x))1− 1

p(M,s,x) . (5)

A change of variables, (3) and (5) yield that, for all t > 0 and s > s0(M) � 1,

I(t) :=
∫ t

0

(
T( f )(x)

)
w(x)dx = s

∫ t/s

0

(
T( f )(sx)

)
w(sx)dx

� sp+(w,s)
∫ t/s

0

(
T( f )(sx)

)
w(x)dx

� sp+(w,s)
∫ t

0

(
T( f )(x)

) 1
p(M,s,x) ( f (x))1− 1

p(M,s,x) w(x)dx.

(6)

Since the function f is increasing then T f (x) � f (x) for all x > 0. Therefore, as
 is decreasing, we have that

( f (x)) � 
(
T( f )(x)

)
, x > 0. (7)

Let us observe that plugging (7) directly in (6) one obtains that, for all s > s0(M) ,

I(t) � sp+(w,s)I(t).

In particular, if I(t) is finite and non-zero, this implies that sp+(w,s) � 1 for all s >
s0(M) .

Using (7) and the fact that 0 < p−(M,s,t) � p(M,s,x) for all 0 < x < t , we have
that (


(
T( f )(x)

)
( f (x))

) 1
p(M,s,x)

�
(

(
T( f )(x)

)
( f (x))

) 1
p−(M,s,t)

, 0 < x < t. (8)

Therefore, ∫ t

0

(
T( f )(x)

) 1
p(M,s,x) ( f (x))1− 1

p(M,s,x) w(x)dx

=
∫ t

0

(

(
T( f )(x)

)
( f (x))

) 1
p(M,s,x)

( f (x))w(x)dx

�
∫ t

0

(

(
T( f )(x)

)
( f (x))

) 1
p−(M,s,t)

( f (x))w(x)dx

� I(t)
1

p−(M,s,t)

(∫ t

0
( f (x))w(x)dx

)1− 1
p−(M,s,t)

,

where the last step follows by Hölder’s inequality (notice that p−(M,s,t) > 1 by (2)).
This last chain of inequalities and (6) yield

I(t) � (sp+(w,s))
p−(M,s,t)

p−(M,s,t)−1

∫ t

0
( f (x))w(x)dx, t > 0,
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as long as I(t) is finite.
Observe now that p−(M,s,t) is decreasing as a function of t and bounded below

by p−(M,s) . Therefore,

inf
t>0

p−(M,s,t) = lim
t→+

p−(M,s,t) = p−(M,s),

from where we get that

sup
t>0

p−(M,s,t)
p−(M,s,t)−1

= lim
t→+

p−(M,s,t)
p−(M,s,t)−1

=
p−(M,s)

p−(M,s)−1
.

Hence, using the fact sp+(w,s) � 1 shown above for all s > s0(M) , we see that

I(t) � (sp+(w,s))
p−(M,s)

p−(M,s)−1

∫ t

0
( f (x))w(x)dx

for all t > 0 and s > s0(M) , which yields

I(t) � inf
s>s0(M)

(sp+(w,s))
p−(M,s)

p−(M,s)−1

∫ t

0
( f (x))w(x)dx, t > 0,

which means that (4) holds and the proof is complete. �

REMARK 2.8. Notice that the weight w in Theorem 2.6 is not required to be
locally integrable on [0,) so that, for instance, we are allowed to set w(x) = 1/x .

If w is supposed to be locally integrable on [0,) , then one can replace the con-
stant sp+(w,s) by

q+(w,s,t) := sup
0<r<t/s

W (sr)
W (r)

in (4), where W (x) =
∫ x
0 w(u)du . This comes from the fact that (see [6, Corollary 2.7])

for all non-negative locally integrable functions F,G it holds that

sup
h↓, h�0

∫ 
0 h(x)F(x)dx∫ 
0 h(x)G(x)dx

= sup
r>0

∫ r
0 F(x)dx∫ r
0 G(x)dx

. (9)

To show this observe that since F is increasing, (TF) is decreasing and positive.
Thus, taking F(x) = w(sx)[0,t/s)(x) and G(x) = w(x)[0,t)(x) , the identity in (9) yields
that we can substitute sp+(w,s) in (6) by q+(w,s,t) .

Next, let us give some examples of the measures and weights satisfying the hy-
potheses of the main theorem.

EXAMPLES 2.9. We present some examples of functions M satisfying condition
(2).
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1. If M(x) = x(1+ |logx|) with  > 0 and  � 0, then

p−(M,s,t) � p−(M,s) = s(1+ logs)−

for all t > 0. Since x > 1+ log(x) when x > 1 we see that p−(M,s) > 1 for all
s > 1 in the case  �  , so we can pick s0(M) = 1. In the case where  <  ,
s0(M) is the unique s > 1 that solves the equation s/ = 1+ logs .

In particular, notice that the function M(x) = x , related to the Lebesgue measure
on (0,) , is within that group.

2. If M(x) = 1− e−x , and hence d(x) = e−xdx , then by monotonicity

p−(M,s,t) = inf
0<x<t

1− e−sx

1− e−x =
1− e−st

1− e−t > 1

for all s > 1. So we can pick s0(M) = 1.

EXAMPLES 2.10. We present some examples of weights w satisfying condition
(3).

1. If w(x) = x (1+ |logx|) with  � 0 and  � 0, then for all s > 1

p+(w,s) = sup
x>0

w(sx)
w(x)

= s(1+ logs) < .

In addition, we notice that if we pick M(x) = x , then p−(M,s) = s , as seen in the
previous set of examples. Hence, under those choices of w and M the constant
in (4) becomes

inf
s>1

(
s1+(1+ logs)

) s
s−1 = inf

s>1
e

s
s−1 ((1+) logs+ log(1+logs)) = e1++ . (10)

2. If w(x) = e− x for some  > 0, then

p+(w,s) = sup
x>0

e− sx+ x =
(

sup
x>0

e− x
)s−1

= 1

for all s > 1.

Under the extra hypothesis that the log-convex function  is strictly monotone
(and hence invertible), we obtain the following corollary from Theorem 2.6, where the
estimate is now in terms of the weighted integral of f .

COROLLARY 2.11. Let w,  , I and  be as in Theorem 2.6. Assume in addition
that  : I →R+ is strictly monotonic and take p > 0 . Then, for all t > 0 , the inequality∫ t

0

(
T(−1 f )(x)

)p
w(x)dx � inf

s>s0(M)
(sp+(w,s))

p−(M,s)
p−(M,s)−1

∫ t

0
f (x)pw(x)dx (11)

holds for all decreasing functions f : R+ → (I) , provided that the left-hand side is
finite.
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Proof. Applying Theorem 2.6 to the function −1 ◦ f we get (11) for p = 1.
To obtain (11) for the remaining values of p we apply the case p = 1 for the

function  = p , which satisfies the same conditions as  , and apply the change of
variables g = f 1/p . �

3. Applications

3.1. Integral inequalities

By taking  to be the Lebesgue measure on R+ , (x) = ex with I = R and
w(x) = 1 in Corollary 2.11, we recover (1) for every positive and decreasing function f
such that f ∈ L1(R+) . This can be extended to hold for all positive integrable functions
f (see Section 4), recovering the Pólya-Knopp inequality.

Actually, it happens that the inequality of Pólya-Knopp is equivalent to an inequal-
ity of Cochran and Lee [8, Theorem 1], which is given by

∫ 

0
exp

(
p
xp

∫ x

0
t p−1 log f (t)dt

)
xdx � e

+1
p

∫ 

0
f (x)xdx,

where p > 0,  ∈ R and f is a positive function in L1(R+,xdx) .
Indeed, (1) follows from the Cochran-Lee inequality as it corresponds to the spe-

cial case  = 0 and p = 1.
To see the converse, we fix  ∈R , p > 0 and a positive function f in L1(R+,xdx) .

Applying (1) to the function f (x1/p)x/pp−1x1/p−1 we get that

∫ 

0
exp

(
1
x

∫ x

0
log f (t1/p)dt

)
exp

(
1
x

∫ x

0
log t/pdt

)
exp

(
1
x

∫ x

0
log

t1/p−1

p
dt

)
dx

� e
∫ 

0
f (x1/p)x/p x1/p−1

p
dx. (12)

By changing variables we notice that the right-hand side in (12) satisfies

e
∫ 

0
f (x1/p)x/p x1/p−1

p
dx = e

∫ 

0
f (x)xdx. (13)

Regarding the left-hand side in (12), we study the three factors appearing in the inte-
grand. On the one hand, a change of variables yields

exp

(
1
x

∫ x

0
log f (t1/p)dt

)
= exp

(
p
x

∫ x1/p

0
t p−1 log f (t)dt

)
, (14)

while direct computation gives

exp

(
1
x

∫ x

0
logt/pdt

)
= x/pe−/p (15)
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and

exp

(
1
x

∫ x

0
log

t1/p−1

p

)
=

x1/p−1

p
e−(1/p−1). (16)

Plugging (13), (14), (15) and (16) into (12) we obtain that

∫ 

0
exp

(
p
x

∫ x1/p

0
t p−1 log f (t)dt

)
x/p x1/p−1

p
e−(1/p−1−/p)dx � e

∫ 

0
f (x)xdx.

A last change of variables yields

∫ 

0
exp

(
p
xp

∫ x

0
t p−1 log f (t)dt

)
xdx � e

+1
p

∫ 

0
f (x)xdx.

Note that the constant in the inequality of Cochran and Lee is the same that we
would get by taking w(x) = x from the main theorem when  � −1, albeit only for
decreasing and positive functions.

3.2. The discrete case: Carleman’s inequality

Let us start by introducing some notation. For all non-negative functions M on
R+ and all k ∈ N we define

k(M) := M(k)−M(k−1),

while for all locally integrable weight w on [0,) we will write W (x) :=
∫ x
0 w(u)du .

We get the following discrete version of Theorem 2.6.

COROLLARY 3.1. Let w,  , M , I and  be as in Theorem 2.6 (the case where
 is decreasing). Assume in addition that the weight w is locally integrable on [0,) .
Then, for each decreasing sequence {an}n of positive numbers such that 1/ai ∈ I for
all i � 1 , and all integers N � 1 , it holds that

N


k=1



(
k

n=1
n(M)

an

M(k)

)
k(W ) � inf

s>s0(M)
(sp+(w,s))

p−(M,s)
p−(M,s)−1

N


k=1

(1/ak)k(W ). (17)

Furthermore, if  is strictly monotone, then for each decreasing sequence {an}n

of positive numbers such that {an}n ⊆(I) and all integers N � 1 , it holds that

N


k=1


(
k

n=1−1(an)n(M)
M(k)

)
k(W ) � inf

s>s0(M)
(sp+(w,s))

p−(M,s)
p−(M,s)−1

N


k=1

akk(W ).

(18)

Proof. We notice that the function

f (x) = 
n�1

[n−1,n)(x)
1
an
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is increasing in R+ and for all integers k � 1 it holds that

T f (k) =
k

n=1
n(M)

an

M(k)
.

We know from Proposition 2.1 that if x ∈ [k−1,k) , then T f (x) � T f (k) . Using this
property jointly with the fact that  is decreasing, we obtain that the inequality

N


k=1

(T f (k))kW �
∫ N

0
(T f (x))w(x)dx

holds for all integers N � 1. The last inequality and Theorem 2.6 yield that, for each
integer N � 1, it holds that

N


k=1



(
k

n=1
n(M)

an

M(k)

)
k(W ) � inf

s>s0(M)
(sp+(w,s))

p−(M,s)
p−(M,s)−1

N


k=1

(1/ak)k(W ),

so the inequality (17) is proved.
The inequality in (18) is obtained from (17) by the change of variables bn =

(1/an) . �
By taking particular choices of  we obtain more concrete estimates.

COROLLARY 3.2. Let w,  and M be as in Theorem 2.6 and assume in addition
that w is locally integrable on [0,) . Then the following estimates are valid for all
decreasing sequences {an}n of positive numbers.

(i) For all integers N � 1 ,

N


k=1

(
k


n=1

a
n(M)
M(k)

n

)
k(W ) � inf

s>s0(M)
(sp+(w,s))

p−(M,s)
p−(M,s)−1

N


k=1

akk(W ). (19)

(ii) For all integers N � 1 and  � 0 ,

N


k=1

(
M(k)

k
n=1

n(M)
an

)

k(W ) � inf
s>s0(M)

(sp+(w,s))
p−(M,s)

p−(M,s)−1
N


k=1

ak k(W ). (20)

Proof. The first inequality is obtained from (18) by taking (x) = e−x and I = R .
The second statement follows by applying (17) with (x) = x− and I = (0,) . �

REMARK 3.3. We notice that Carleman’s inequality can be derived from (19).
Indeed, if we pick  to be the Lebesgue measure in [0,) and w to be identically 1,
then (19) and (20) yield the inequality

N


k=1

(
k


n=1

an

)1/k

� e
N


k=1

ak
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for all integers N � 1 and all decreasing sequences {an}n of positive numbers. Letting
N →  we obtain the desired inequality, that is,




k=1

(
k


n=1

an

)1/k

� e



k=1

ak

for each positive sequence {an}n . Here we should notice that the left-hand side in
Carleman’s inequality attains its maximum when the terms in the sequence are arranged
in decreasing order (see Section 4).

REMARK 3.4. Some variations of Carleman’s inequality can also be obtained
from Corollary 3.2. For instance, let us consider the measure d(t) := t−1dt , with
 � 1, so that M(t) = t and p−(M,s) = s (see the first example in Examples 2.9).
Then, given  > 0, we can apply (19) for the weight function

w(x) :=



k=1

k (k−1,k](x)

to obtain that the inequality




k=1

(
k


n=1

a
n−(n−1)

k
n

)
k � inf

s>1
(sp+(w,s))

s
s−1




k=1

akk
 (21)

holds for each positive decreasing sequence {ak}k . Here we notice that (3) is satisfied,
since

p+(w,s) = sup
k�1

(
sup

k−1<x�k

w(sx)
w(x)

)
= sup

k�1

1

k

(
sup

k−1<x�k
w(sx)

)

� sup
k�1

(sk+1)

k
= (s+1)

for all s > 1. This recovers an inequality by E.R. Love for decreasing sequences [18,
Theorem 1] (see also [1, p. 40]), albeit with a larger constant.

REMARK 3.5. If we pick  to be the Lebesgue measure in [0,) , w to be iden-
tically 1 and  > 0, then (20) yields

N


k=1

(
k

k
n=1

1
an

)

� e
N


k=1

an ,

for all integers N � 1 and all positive decreasing sequences (an)n .
For instance, by choosing an = 1/(n+ q) for fixed real numbers q, > 0 and

letting N →  we obtain the inequality



k=1

(
k

k
n=1(n+q)

)
� e




k=1

1
(k+q)

,

where the series appearing in the right-hand side is the so-called Hurwitz zeta function
 (,q) .
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3.3. The harmonic mean operator

For a collection of positive numbers a1, . . . ,ak we define its harmonic mean by the
quantity

k

k
n=1

1
an

.

Let us now generalize the concept of the harmonic mean for a collection of positive
numbers to functions defined on (0,) .

DEFINITION 3.6. Let  be as in Theorem 2.6. For every function f : (0,) → R

such that 1/ f ∈ L1
loc(d) , we define the harmonic mean operator as

H f (x) :=
 [0,x)∫ x

0
1

f (s)d(s)
, x > 0.

As a consequence of our study, we get the following boundedness property on the
cone of decreasing functions in Lp(w) , the weighted Lebesgue space.

COROLLARY 3.7. Let w and  be as in Theorem 2.6 and p > 0 . Then, for all
t > 0 , the inequality

∫ t

0
(H f (x))pw(x)dx � inf

s>1
(sp+(w,s))

s
s−1

∫ t

0
f (x)pw(x)dx

holds for every positive decreasing function f such that 1/ f ∈ L1
loc(d) , provided that

the left-hand side is finite.

Proof. The statement follows by applying Corollary 2.11 with (x) = 1/x . �

REMARK 3.8. We observe that H f � f for all positive decreasing functions f
in (0,) such that 1/ f ∈ L1

loc(d) . Hence, we deduce from the previous Corollary
that, given w and  as in Theorem 2.6, it holds that∥∥H f

∥∥
Lp(w) ≈ ‖ f‖Lp(w)

for all p > 0 and every positive decreasing function f in (0,) .

3.4. The Laplace transform

Let s be a complex number and let f be a function defined on R+ . We define the
Laplace transform of f by

L [ f ]( ) :=
∫ 

0
f (t)e− tdt,  > 0.
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COROLLARY 3.9. Let  , I and  be as in Theorem 2.6 and set p > 0 . Then it
holds that

L [(T(−1 ◦ f ))p]( ) �
(

inf
s>s0(M)

s
p−(M,s)

p−(M,s)−1

)
L [ f p]( ),

for all decreasing functions f : R+ →(I) and all  > 0 , provided that the left-hand
side is finite.

Proof. The statement follows by applying Corollary 2.11 for the weight w(x) =
e− x (look at the second example in Examples 2.10) and letting t →  in (11). �

3.5. Rearrangement invariant spaces

In this section we will denote by (R,) a totally  -finite measure space which is
non-atomic and (R) =  .

Let us start by recalling some basic definitions related to rearrangement invariant
function spaces. We follow mainly the exposition in [2].

DEFINITION 3.10. Let f : R → C be a measurable function and (X ,‖·‖X ) be a
Banach function space over (R,) .

• We define the distribution function of f by

d f (s) := {x ∈ R : | f (x)| > s}, s � 0.

• The decreasing rearrangement of f , denoted by f ∗ , is the function defined on
[0,) as

f ∗(t) := inf{s � 0 : d f (s) � t}.

• We say that X is a rearrangement-invariant function space if whenever f belongs
to X and g is a measurable function in (R,) such that d f = dg , then g belongs
to X and ‖ f‖X = ‖g‖X .

• Consider on X the norm given by

‖ f‖X ′ := sup
‖g‖X �1

∫
R
| f (x)g(x)|d(x).

We call X ′ = (X ,‖·‖X ′) the associate space of X .

Let us first recall some properties satisfied by the decreasing rearrangement func-
tion f ∗ .

PROPOSITION 3.11. ( [2, Propositions 1.7 and 1.8 in Chapter 2]) Let  be a
measure in R+ such that (R+,) is a totally  -finite measure space and set f for a
measurable function.
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P.1 The function f ∗ is a non-negative, decreasing and right continuous function on
[0,) .

P.2 The functions f and its decreasing rearrangement f ∗ are equimeasurable, in the
sense that their distribution functions coincide.

P.3 We have that ∫
R+

| f (x)|d(x) =
∫ 

0
f ∗(x)dx.

We shall also state, without proof, some important properties of rearrangement
invariant spaces that will be helpful for our study. The proof can be found in [2, Chapter
2, Section 4].

PROPOSITION 3.12. Assume that X is a rearrangement-invariant space over (R,) .

1. It holds that

‖ f‖X = sup
‖g‖X ′�1

∫ 

0
f ∗(x)g∗(x)dx. (22)

2. (Hölder’s inequality) If f ∈ X and g ∈ X ′ , then∫ 

0
f ∗(x)g∗(x)dx � ‖ f‖X ‖g‖X ′ . (23)

3. (Luxemburg representation theorem) There exists a rearrangement-invariant space
(X ,‖·‖X ) over (R+, |·|) , where |·| denotes the Lebesgue measure on R+ , such
that for all f ∈ X

‖ f‖X = ‖ f ∗‖X . (24)

4. For every function f in X , its decreasing rearrangement f ∗ is the unique non-
negative, decreasing and right continuous function on [0,) which satisfies (24).

The following corollary is a consequence of our main theorem.

COROLLARY 3.13. Let  , I and  be as in Theorem 2.6. Assume in addition
that  : I →R+ is strictly monotonic, and let f : R+ →(I) be a decreasing function.
Then, for every non-negative decreasing function g, it holds that

∫ 

0

(
T
(
−1 f

)
(x)
)
g(x)dx � inf

s>s0(M)
s

p−(M,s)
p−(M,s)−1

∫ 

0
f (x)g(x)dx. (25)

In particular, for all rearrangement-invariant Banach function spaces X it holds that

‖ f‖X �
∥∥(T (−1 f ∗

))∥∥
X � inf

s>s0(M)
s

p−(M,s)
p−(M,s)−1 ‖ f‖X (26)

for all f ∈ X such that f ∗ : R+ →(I) , provided that the middle term is finite.
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Proof. We apply (9) with F = (T(−1 ◦ f )) , G = f and h = g to get that

∫ 

0

(
T
(
−1 f

)
(x)
)
g(x)dx �

(
sup
r>0

∫ r
0 
(
T
(
−1 f

)
(x)
)
dx∫ r

0 f (x)dx

)∫ 

0
f (x)g(x)dx.

Next we know by Corollary 2.11 that

sup
r>0

∫ r
0 
(
T
(
−1 f

)
(x)
)
dx∫ r

0 f (x)dx
� inf

s>s0(M)
s

p−(M,s)
p−(M,s)−1 ,

from where (25) is deduced.
To prove (26) let us start by proving that the right-hand side of the inequality holds.

Indeed, we use (22), (25), (23) and (24) to get that

∥∥(T (−1 f ∗
)
(x)
)∥∥

X = sup
‖g‖

X ′�1

∫ 

0

(
T
(
−1 f ∗

)
(x)
)
g∗(x)dx

�
(

inf
s>s0(M)

s
p−(M,s)

p−(M,s)−1

)
sup

‖g‖
X ′�1

∫ 

0
f ∗(x)g∗(x)dx

=
(

inf
s>s0(M)

s
p−(M,s)

p−(M,s)−1

)
‖ f‖X .

To show that the left-hand side of (26) holds we notice that

[T(−1 f ∗)] � f ∗. (27)

Hence we use (22), (27), (23) and (24) to get that

‖ f‖X = sup
‖g‖

X ′�1

∫ 

0
f ∗(x)g∗(x)dx

� sup
‖g‖

X ′�1

∫ 

0
(T(−1 f ∗)(x))g∗(x)dx

�
∥∥(T(−1 f ∗))

∥∥
X sup
‖g‖

X ′�1
‖g∗‖X ′

�
∥∥(T(−1 f ∗))

∥∥
X . �

REMARK 3.14. In the proof of the corollary we have implicitly used the identity

[
(
T
(
−1 ◦ f ∗

))
]∗ = 

(
T
(
−1 ◦ f ∗

))
,

although the function 
(
T
(
−1 ◦ f ∗

))
might not be right continuous. However,

the identity is still satisfied. Indeed, we notice that the function 
(
T
(
−1 ◦ f ∗

))
is monotone and, therefore, it has at most a countable amount of discontinuities. More
precisely, it is continuous in R+ \E , where E is a set of measure zero. Then we can
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construct a non-negative, decreasing and right continuous function  which equals

(
T
(
−1 f ∗

))
almost everywhere. For instance, we set

(x) :=

{

(
T
(
−1 f ∗

)
(x)
)

if x /∈ E,

limy→x+ 
(
T
(
−1 f ∗

)
(y)
)

if x ∈ E.

Then ∗ =  since  is decreasing and right continuous, and we deduce that∫ 

0
[
(
T
(
−1 ◦ f ∗

))
]∗(x)g∗(x)dx =

∫ 

0
∗(x)g∗(x)dx

=
∫ 

0

(
T
(
−1 f ∗

)
(x)
)
g∗(x)dx.

REMARK 3.15. Note that, in the previous result, no extra assumption on the space
X is needed. This contrast with the boundedness of the maximal function

f ∗∗(t) = t−1
∫ t

0
f ∗(s)ds,

which requires the upper Boyd index of X to be strictly smaller than 1 (See e.g. [2,
Theorem 5.15].

4. Some extensions to positive functions

In this section we want to illustrate how the main result of our paper can be ex-
tended to some families of non-negative functions, and in particular, how we can re-
cover the well known inequality of Pólya and Knopp.

The following result gives some equivalent formulations of the main theorem of
this paper when (x) = ex , w is identically one and  is the Lebesgue measure in R+ .
We write T instead of T for the Lebesgue measure.

PROPOSITION 4.1. The following two statements are equivalent.

I) The inequality ∫ 

0
exp(T [log f ](x))dx � e

∫ 

0
f (x)dx

holds for every decreasing function f : R+ → (0,) .

II) The inequality ∫ 

0
exp(T [log f ](x))dx � e

∫ 

0
f (x)dx

holds for all functions f : R+ → (0,) .

Proof. Let us prove the equivalence by showing that I) ⇒ II), since the other
implication is trivial.

Firstly, we notice that it is enough to show II) for all positive bounded functions.
Indeed, if f is a positive function and II) is satisfied for all bounded functions, from the
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increasing sequence ( fn)n�1 = ( f {| f (x)|�n})n�1 , then the inequality would be deduced
for f by using the Monotone Convergence Theorem.

Furthermore, we can show II) by reducing the study to positive bounded functions
of the form f : R+ → (0,1] . Indeed, we notice that the inequality in II) is homogeneous,
in the sense that for a given  > 0, the inequality holds for a positive function f if, and
only if, it is satisfied for  f . Therefore, if f is a positive and bounded function and
II) is satisfied for f/‖ f‖ , then the homogeneity of the inequality yields the desired
result for f .

So let us check that II) is satisfied for all positive bounded functions of the form
f : R+ → (0,1] , assuming that I) is valid. To do so, we show first that the inequality

∫ x

0
log f (y)dy �

∫ x

0
log f ∗(y)dy (28)

holds for all x > 0.
By applying Tonelli’s Theorem, we notice that

−
∫ x

0
log f (y)dy =

∫ x

0

∫ 1

f (y)

ds
s

dy =
∫ 1

0
|{0 < y < x, f (y) � s}| ds

s
(29)

is satisfied for all x > 0. Next we observe that for all x > 0 and all 0 < s < 1 we have
that

|{0 < y < x, f (y) � s}| = x− ∣∣{y : [0,x] f (y) > s
}∣∣

and applying Proposition 3.11 P.2 we get that∣∣{y > 0 : [0,x] f (y) > s
}∣∣= ∣∣{y > 0 : ([0,x] f )

∗(y) > s
}∣∣� |{x > y > 0 : f ∗(y) > s}| .

(30)
Combining them we obtain that

|{0 < y < x, f (y) � s}| � |{0 < y < x, f ∗(y) � s}| . (31)

By plugging this last estimate in (29) we deduce that

−
∫ x

0
log f (y)dy �

∫ 1

0
|{0 < y < x, f ∗(y) � s}| ds

s
= −

∫ x

0
log f ∗(y)dy,

where in the last identity one should notice that f ∗ � 1 when ‖ f‖ � 1. Thus, (28)
follows.

Using (28) jointly with the monotonicity of the exponential function and the inte-
gral, applying I) to f ∗ and Proposition 3.11 P.3 we deduce that∫ 

0
exp(T [log f ](x))dx �

∫ 

0
exp(T [log f ∗](x))dx

� e
∫ 

0
f ∗(x)dx = e

∫ 

0
f (x)dx,

which yields that II) holds, so the proof is complete. �
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REMARK 4.2. We notice that Theorem 4.1 I) follows from Theorem 2.6 by let-
ting t →  (notice that the constant in (4) does not depend on t ). Hence, using the
formulation in Theorem 4.1 II) we obtain (1) for all positive functions f .

REMARK 4.3. (Changing the measure) By slightly modifying the argument above,
changing the Lebesgue measure by d(t) = u(t)dt with u strictly positive, locally in-
tegrable on [0,) and continuous on (0,) , one can show that for all x > 0 and for all
f : R+ → (0,) such that ‖ f‖ � 1 it holds that

∫ x

0
(log f (y))u(y)dy �

∫ U(x)

0
log( f )∗u(y)dy.

Here ( f )∗u denotes the non-increasing rearrangement of f with respect to the measure
 and U(x) :=

∫ x
0 u(s)ds . Thus, applying Corollary 2.11, the previous observation and

P.3 in Proposition 3.11 yield

∫ 

0
exp

(
1
x

∫ U−1(x)

0
(log f (y))u(y)dy

)
dx � e

∫ 

0
f (x)u(x)dx,

where U−1(x) denotes the inverse of the strictly increasing function U . A change of
variables, and the homogeneity of the expression yields

∫ U−1()

0
exp

(
1

U(x)

(∫ x

0
(log f (y))u(y)dy

))
u(x)dx � e

∫ 

0
f (x)u(x)dx,

for all f : R+ → (0,) .
This, in particular, recovers Cochran-Lee’s inequality with u(x) = pxp−1 .

REMARK 4.4. (Changing the function ) Assume that  : R → R+ is a strictly
increasing, continuous and log-convex function, such that (0) > 0, limt→−(t) =
0. Then, for all positive f : R+ → (0,) such that ‖ f‖ � (0) , it holds that


(

1
x

∫ x

0
−1( f (y))dy

)
� 

(
1
x

∫ x

0
−1( f ∗(y))dy

)
. (32)

Indeed, for all x > 0, by (31), it holds that

−
∫ x

0
−1( f (y))dy =

∫ x

0

∫ (0)

f (y)
d−1(t)dy =

∫ (0)

0
|{0 < y < x, f (y) � t}|d−1(t)

� −
∫ x

0
−1( f ∗(y))dy

So, multiplying by −1/x both sides, and using the monotonicity of  , (32) follows.
Therefore, we can deduce that

S f (x) = 
(

1
x

∫ x

0
−1(| f (y)|)dy

)
(33)
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satisfies, for all f : R+ → C with ‖ f‖ � (0)

S f (x) � S f ∗(x), x > 0.

Moreover, given any weight w ∈ L1
loc([0,)) satisfying the hypotheses in Theorem 2.6,

we can apply Corollary 2.11 to get that for all f ∈ 1(w) with ‖ f‖ � (0) it holds
that

‖S f‖L1(w) � inf
s>1

(
ssup

x>0

w(sx)
w(x)

) s
s−1

‖ f‖1(w) ,

where 1(w) denotes the weighted Lorentz space given by

1(w) :=
{

f : R+ → C : f is measurable and ‖ f‖1(w) :=
∫ 

0
f ∗(s)w(s)ds < +

}
.

We can apply this argument to functions of the type

(t) = et2k+1
, k ∈ N.

In the case of (x) = ex , the homogeneity on the expression, allows one to remove the
assumption ‖ f‖ � 1.

REMARK 4.5. One can obtain a similar result for power functions of the type
(t) = t− with  > 0. Let us start by considering the case  = 1. Note that, in this
case, for a given function f > 0 we have that

∫ x

0

1
f (s)

ds =
∫ x

0

∫ f (s)

f (s)/2

dt
t2

ds =
∫ 

0
|{0 < s < x :

f (s)
2

� t < f (s)}|dt
t2

=
∫ 

0
(dg(t)−dg(2t))

dt
t2

=
∫ 

0
(dg∗(t)−dg∗(2t))

dt
t2

=
∫ 

0
|{0 < s < x :

g∗(s)
2

� t < g∗(s)}|dt
t2

=
∫ x

0

1
g∗(s)

ds,

where g = (0,x) f . Therefore, since g∗(t) � f ∗(t) it follows that

∫ x

0

1
f (s)

ds =
∫ x

0

1
g∗(s)

ds �
∫ x

0

1
f ∗(s)

ds,

from where inequality (32) holds for (t) = t−1 .
For the general case  > 0, note first that if we write r = (1+)1/ , then one

has that for all s > 0

s− =
∫ s

s/r
t−−1dt.

So arguing as the case for  = 1 we deduce that inequality (32) holds for (t) = t− .
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Then Corollary 2.11 yields that the average operator

S f (x) =
(
H1(| f |1/)

)
(34)

where H1 denotes the harmonic mean operator of Definition 3.6 associated to the
Lebesgue measure of (0,) , satisfies that, for all non-negative function f

S f (x) � S f ∗(x), x > 0.

Therefore, for every weight w as in Theorem 2.6 and for any f ∈ 1(w) it holds that

‖S f‖L1(w) � inf
s>1

(
ssup

x>0

w(sx)
w(x)

) s
s−1

‖ f‖1(w) .
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equalities, J. Approx. Theory 125 (2003), no. 1, 74–84.
[12] G. H. HARDY, Notes on some points in the integral calculus LX, Messenger of Math. 54 (1925),

150–156.
[13] H. P. HEINIG, Some extensions of Hardy’s inequality, SIAM J. Math. Anal. 6 (1975), 698–713.
[14] M. JOHANSSON, L.-E. PERSSON AND A. WEDESTIG, Carleman’s inequality-history, proofs and

some new generalizations, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 3, Article 53, 19.
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