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Abstract. Let d > 2 and u be a strong solution to the parabolic Schrodinger equation
w—Au+Vu=f in RE:=RYx(0,T].
‘We show that
2
H”tHLwM(Rg) +|ID ”HLW)(R!%) + HV“HLW-)(R% < CHme(-)(R%)

under suitable conditions on the Musielak-Orlicz function ¢ and the potential V.

1. Introduction
In this paper, we investigate the parabolic Schrodinger equation of the form
w—Au+Vu=f in RE:=R?x(0,T], (1)

where d > 2. Our main result states that an optimal estimate up to the second order
holds for any strong solution to (1) within an appropriate framework. The emphasis is
that this estimate takes place in Musielak-Orlicz spaces.

To make this precise, we need some preparation. First, we require the potential V
to be in the reverse Holder class RH.. = RH..(RY*!). This means V > 0 and

-1

D:= sup <][ de) sup V(z) | <eoo, 2)

Q,CRA+1 €0,

where
0, =B, x (—r*,r%).

We call D the reverse Holder constant of V.
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Next let ¢ be a Musielak-Orlicz function and define

2,1 . .
o RY) == {g € LOO(RE) : [Dgl, [D%], 8 € L0 R},
which is a Banach space endowed with the norm

2
”g”W;ih(WT’) = llgll o) ) + 1P& 1 o) gy + 1078 o0 )y + 18]l o) -

By a strong solution u to (1), we mean u € W;i.l) (R$) which satisfies (1) almost
everywhere. Then the optimal estimate has the form

2
el Lot gy + 107wl Lot may + Vet o)y < CIF Nl o0 (ma)» (3)
provided that f € L‘P(')(R‘%) and @ enjoys certain nice properties.

Prior to our consideration, it is known that an L? -version and an Orlicz version of
(3) holds. The details are as follows.

e [5, Theorems 1.1 and 4.1] assert that
HDzuHU,(Rg;) + ||Vu||LI’(R”TI) < C”fHLI’(R”Tl)

holds for a strong solution u € W,"'(R%) of (1) whenever f € LP(R%) and V
belongs to the reverse Holder class RHy(RY) with

d d
d>3, 1<p<o, — d 0 —
p<o G>2H an U<

By V e RHU(R‘I), it is understood that V > 0 and there exists a constant C =

C(0,V) > 0 such that
1/o
(k)"
|BV‘ r ‘Br| By

holds for every ball B, C R?. As such V is independent of the time variable.

A higher-order extension of [5] is done in [10]. The techniques in both [5] and
[10] are taken from harmonic analysis.

e Let d >2 and ¢ be an Orlicz function which is at the same time doubling (A;)
and reverse doubling (V). Then [12, Theorem 1.5] states that

lote]| o gy + ||D2”HL¢(RL;) + Vel o gy < CllA Lo may

holds for a strong solution u € W¢2 H(RZ) of (1), assuming f € L?(R%) and V €
RH..(RY*1) . The proof is based on a PDEs’ approach.
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e In [3], the authors consider a strong solution u to a slightly different equation
u—Au+Vu=f in RIH!
and show that
||ufHLI’(R”Tl) + HDzuHL,,(R,%) + HVI"HLP(R% < CHf”LI’(R?,)

whenever d > 1, 1 < p <o, f € LP(R%) and V € RH(RY"!), in the sense that
V > 0 and there exists a constant C = C(c,V) > 0 such that

1/o
(k)" <
|Qr| Or ‘QV‘ Or

holds for every cylinder Q, C R?*!. Their proof relies on harmonic analysis and
operator theory.

In the setting of Musielak-Orlicz spaces, we will prove (3) using a PDEs’ ap-
proach. Specifically, we make use of a covering lemma together with a comparison
argument. These tools were also employed in [12] in the setting of Orlicz spaces. How-
ever, the ideas therein are peculiar to Orlicz spaces, which can not be easily adapted to
Musielak-Orlicz spaces. Here we introduce new ideas to arrive at (3). Furthermore, our
proof is rather self-contained.

Next we provide several basic definitions in Musielak-Orlicz spaces.

DEFINITION 1. Let L > 1 be a constant. A function f: R — R is called
L-almost increasing if

f(s1) <Lf(s2) for all 51 < s.
Likewise, f is called L-almost decreasing if

Sf(s2) <Lf(s1) for all 51 < s.

DEFINITION 2. A function ¢ = @(z,s) : R% x [0,00) — [0,00) is call a weak
®-function, denoted by ¢ € ®@,,(R$), if it has the following four properties:

@) ¢ is measurable in the z-variable.
(i) ¢ is non-decreasing and left-continuous in the s-variable.

(ili)  Forall z € R%, one has
0(z,0) = 1i1(1)1+ 0(z,5) =0 and lim ¢(z,s) = oo.

§—00

(iv)  There exists a constant L > 1 such that the mapping

(0,00) > 5 — ?(z9)

is L-almost increasing for all z € R‘% .
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The set ®,, is defined to consist of all weak ®-functions which are independent
of the z-variable.

To achieve our main result, further regularities are required on ®,, functions. The
following conditions are taken from [7].
Let ¢ € ®,,(R%). We denote

¢y (s):=supg(z,s)  and  @y(s) = inf o(z,s)

€U
for each s € [0,00) and U C R4.. If U = R% we simply write
o (5) 1= 0, (0)

for each s € [0,00).
The conditions to be imposed on ¢ are as follows.

(A0) There exists a constant 3 € (0,1) such that " (B) <1< o (B7}).
(Al-¢~) There exists a constant 3 € (0, 1) such that
05 (Bs) < 9y (s)
forall s € [1,(¢~)"'(]Q|™1)] and for every cylinder Q C R$.. Here (¢ )~}
is understood in the sense of [0, Definition 2.3.1]. To be specific, the function
(@)1 :]0,00) — [0,00) is the left inverse of @~ which is given by
(@) Nr):=inf{s >0: (s) > 7}. 4)

(aInc), There exist constants p > 1 and L > 1 such that the mapping

?(z,s)

(0,) 35— £

is L-almost increasing for all z € R%..

(aDec), There exist constants ¢ > 1 and L > 1 such that the mapping

?(z,5)
54

(0,00) 35—
is L-almost decreasing for all z € R%.

As a consequence of (alnc) , and (aDec),

a’ L' o(z,5) < @(z,as) < a?Lo(z,s) (5)
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for all (z,5) € R% x [0,00) and o > 1. This means that ¢(z,-) enjoys the A, and V,
properties for each z € R< ., in the sense of [6, Definitions 2.2.6 and 2.4.14]. Further-
more, in view of [6, Proposition 2.3.7], we know that ((p‘)_l also satisfies (alnc) | /a
and (aDec) /p- Similar to (5), one has

N
s
)
2
N
Q
==
h
=
N
s
S

o Li (97) (1) (©)

forall T € [0,00) and o > 1.
Next we introduce Musielak-Orlicz spaces.

DEFINITION 3. Let ¢ € ®,,(R%). We define
LOO(RE) = {u € L°(RY): )ILiLr})p(p(.)(/lu) = 0} ,

where L°(R$) is the set of all measurable functions on Rf. and pg. is the modular of
¢ given by

Py () (1) = /Rd (2, |ul) dz.

We equip L?()(R%.) with the (quasi-)norm

. u
lello = 1l o0 ::1nf{/l >0: Py, (I) < 1}.

If ¢ is independent of the z-variable, in the sense that ¢(z,s) = ¢(s), then we
write L?(R%) in place of L?()(R.).
Our main result is the following.

THEOREM 1. Let d > 2 and ¢ € ®,, (R‘%) satisfy (AO), (Al-¢™), (alnc), and
(aDec) for some constants 1 < p < q < e. Suppose V € RH.. is symmetric in the
time variable, i.e., V(x,t) =V (x,~t) for a.e. (x,t) € R, Let f € LPV)(RE). Let
ue sz("l) (R%) be a strong solution to

w—Au+Vu=f inR‘%.
Then there exists a constant C = C(d, ¢, p,q,L,D) > 0 such that
el o) gy + 1D%ull ot ety + 1Vl oty y < CIF N ot ey -

A remark is immediate.

REMARK 1. Some examples of V € RH..(R?*1) which is symmetric in the time
variable are as follows.

o V(x,t)=V(x) forae. (x,r) € R, where V(x) € RH.(R?).
This type of potential was considered in [5]. Also see [9] and [4].
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o V(x,t) = |(x,2)|* forae. (x,) € R¥! and for some a > 0.
See [8, (0.12)] for more details.

The symmetric assumption on V is due to a reflection principle that we apply later in
the course of the proof. The assumption can be removed in particular situations. See
Remark 2 below.

The paper is planned as follows. We summarize a sufficient background in Section
2. Theorem 1 is proved in Section 3.

Throughout assumption We always assume d > 2.

Notation In the whole paper, we employ the following set of notation:
e Q, =B, x (—r?r?) forevery r > 0.

Q,(v,8) = B,(y) x (s —r*,s+7r?) forevery y € R?, r >0 and s > 0.

KQr(v,8) = Qxr(y,5) = Bier(y) X (s — (Kr)27s—|— (Kr)z) for every y € R4, r>0,
s>0and x> 0.

For each A C R%., we write

1
Ja 3:£f(2)d12 Tl /Af(z)dz.

e V(Q)= /QV(Z) dz for each cylinder Q C R‘%.

¢ is used to denote an Orlicz function, whereas ¢ is used for a Musielak-Orlicz
function. In notation, we write ¢ € ®,, and @ € ®,,(R%).

2. Preliminaries

We collect the required background for proving the main theorem in this section.

2.1. Properties of ®,,-functions

The following Jensen-type inequality will be useful in the sequel.

LEMMA 1. ([7, Lemma 2.3]) Let ¢ € ®,, satisfy (alnc), for some p > 1. Then
there exists a constant C = C(p,L) > 0 such that

0 (c (][Q f”dZ> ) < f ol

for all cylinders Q C ]R‘}.
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2.2. Background estimates

We report an local uniform boundedness for a weak solution to a Schrodinger
equation.

LEMMA 2. ([12, Lemma 2.5]) Let p >0 and V € RH. Let h be a weak solution
to
hy —Ah+Vh=0 in Q.

Then there exists a constant C = C(d) > 0 such that

C
Bl <7/ VIhl.
|| ||L (Qp) V(sz) 0 ‘ |

2p

Also recall the Hessian estimate in Orlicz space.

PROPOSITION 1. Let ¢ € ®,, satisfy (alnc), and (aDec), for some constants
l<p<g<oo. LetV€RHs. and f € LY (R}). Let u € W9 (R%) be a strong solution
to

uy—Au+Vu=f inR‘%.

Then there exists a constant C =C(d, ¢,p,q,L,D) > 0 such that
H”tHM(RL;) + HD2”||L¢(R@ + ||V”||L¢(Rc;) < C||fHL¢(Rf%)~

Proof. We observe that ¢ € A, NV, in view of (5), in the sense of [6, Definitions
2.2.6 and 2.4.14]. Hence the claim follows at once from [12, Theorem 1.5]. [

The following comparison estimate is a combination of [2, Lemma 4.4, Corollary
4.5 and (4.29)] together.

LEMMA 3. Let v > 1 and g € LY(Q4). Then for each € € (0,1) there exists a
constant § = 8(n,y,€) > 0 such that if £ € W*Y(Qy) is a solution to

b—NM=g in Qq4

with
][ \€,|ydz+][ D['dz<1  and ][ |7 dz < 5,
04 04 [

then there exists a solution v € W>7(Qy) to
w—Av=0 in Q4
with the following properties:

Q) ][ |€,—v,|ydz+][ D2 — D[ dz <,
01 01

(ii) ][ |vt|ydz+][ DY dz < 1 and
04 Oy

(i) |vellz=(0,) + ID*VIlz=(0,) < C. where C=C(d,y) > 0.
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3. Proof of main result

In this section, we prove Theorem 1. We adopt the assumptions of Theorem 1
hereafter.

To begin with, let u be a strong solution to (1). Since u € W;&}) (R‘}), [6, Lemma
6.1.6] and the Sobolev embeddings together yield

uecC ([07T};W2’1’(Rd)> .

Consequently,
u(x,0) := lim u(x,t) @)

1—0t

exists in R for a.e. x € R?. Define @: R? x [-T,T] — R by

o) u(x,t) if (x,1) € R x [0, 7],
A= L) if (x,1) € RY x [T, 0).

That is, # is an extension of u to RY x [~T,T]. Similarly, let f: R? x [-T,T] — R
be defined by

flx,)  if (x,1) € RY x (0,T],
flx,0) =1 flx,—t) if (x,t) € R x [-T,0),

0 otherwise.
It follows that # € W;&_l) (R? x [~T,T]) and f € L) (R x [~T,T]). Moreover, the
assumption that V' is symmetric in the time variable assures that # is a strong solution
to

W —Ai+Vi=f in RYx[-T,T]. (8)
For an ease of notation, we will identify u and f with @ and f respectively in what

follows.

REMARK 2. We use the symmetry of V in (8) above. However, if either
u(x,0)=0 fora.e. x € R

in (7) or R is replaced by R4*! in (1), then the symmetry assumption on V can be
removed. The former case was employed in [2, p. 2294] to enable the zero extension
of u in the time variable. In the latter case, our main result is in agreement with [3,
Theorem 3.6].

Let
I<vi=,p<p<gq
and 0 € (0,1) be a sufficiently small constant to be specified later. We set

<|=

V(z,) = 0(z,5)7, vi(s):=sup y(z,s) and  y (s):= inf y(z,s)

d
z€RY ERT
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for each s € [0,00).
For each { € RY., define G : (0,00) — [0,20) by

Ge(e):= [ [wie o) + v ID%ul) + W Vi) + 5 v 1F))] d

E(A):={ze RS y(z|u|)+w(z |D?u|) + yw(z,V|u]) > A}

foreach A > 0.
The next fundamental lemma provides a covering of E(A) by cylinders of suitable
sizes. For an ease of notation, therein we write

[w> k] :={z € R% :w(z) > k}

for each measurable function w on R4 and k € R. Also denote
o:= [, [ lul) +v D) + v Vi) + 5 Swlf)]de

LEMMA 4. For all A > 0 there exists a disjoint family {Qz, (z) }ken With zx €
E(A) and T, > 0 such that

G, () =427 and G, () <A foralt> 1. 9)
Moreover,
E(A) C U Osq, (2x) U negligible set (10)
keN
and

2
100 (20)] < = / Wiz, ) + w(z|D2ul)
* A Qrk(zm[w(n\ul\)+w(~,\D2u|)+v(~,Vlu|)>%]{ '

vV fdz

1
+ 5 w <, f dZ (11)
S/ka(zk)”[w(nfbéﬂ (= 171) )

forall k€ N.

Proof. We perform the exit time argument on the functional G; which was first
introduced in [1].
Let A >0and { € E(A). Let 79 > 0 be such that

A Q4 (9)] = 2.
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Then for all T > 1y, one has

2 1
G vz u|) + wiz, |D*ul) + w(z,Vi|u +— 2, dz
(1)< |Qf<c>| [y (V@ )+ v D)+ vz Vi + 5 e 1)
i Ly [y b+ v @D - e Vi) + 5wz )]
|QTO |
_ %k,
10,1~
On the other hand, Lebesgue’s differentiation theorem implies
1
BT 2 1
Jim Ge(e)= Jim | [wlelul) + ¥ [D%ul) + i Vial) + 5 wie )] de > 2.

Therefore, the continuity of G yields that there exists a 7, > 0 such that
Ge(tg) =4 and Ge(t) <A forall 7> 1¢.

This in combination with Vitali’s covering lemma asserts the existence of a disjoint
family {Qx, (zx) }ren With zx € E(A) and 7, > 0 such that (9) and (10) hold.
Next since G, (7¢) = A by (9), we may conclude that

1
@l <5| [
* A\ o zon [wiJul+w D2l +y (- Via) >4 ]

W (z lur]) + w(z,[D?u)
+y(z,Vlu|)dz
l

A
d .
8 Joaon[vin2] vzt 710 (Zk)>

from which (11) follows at once. [
We are ready to prove Theorem 1.

Proof of Theorem 1. We divide the proof into five steps as follows.

Step 1: We perform a scaling argument.

Set
i=——"  and f=
171 o) (e

_
||fHL<o(-)(RL;)
Then
1A 1 o0 ey = 1 (12)
and 7 is a solution to
—Ai+Vi=f  inR{.

The claim is then equivalent to showing that

18l o) (g ) + 10?0t ) + 1Vl o gy < € (13)



OPTIMAL ESTIMATES IN MUSIELAK-ORLICZ SPACES 919

since || - || 190 (RY) is a quasi-norm in view of [6, Lemma 3.2.2] and the quasi-norm is
understood in the sense of [6, p. 7].
Observe that Proposition 1 gives

”ﬁlHL(p’ (Rt%) + HD211||L¢—(R,%) + ”VIZHL(V (R‘;) < C. (14)

Step 2: Let A >0 and {Qz, (zk) }ken be given by Lemma 4 with u and f being
replaced by i and f respectively. For short, we will write Oy = O, (z;) foreach k € N.
Let k € N. We will estimate the sizes of Vi and f in LY(20Qy), where v = /p.

Recall that we set W = (pé . Since ¢ € CDW(R‘%) satisfies (alnc), and (aDec),,
we deduce that y € (I)W(R‘%) satisfies (alnc)y and (aDec),/, . Then it follows from (9)
that

v(z i) +w(z D) +w(zVa)dz <A and w(z |f)dz < 8 A.
2004 200
15)

Define

¢ (s):= inf @(zs) and @ (s):= sup @(z,s)
2€200 26200y

and likewise

v, (s)==_inf w(zs) and  y'(s):= sup y(zs)
2€200 2€200;

for each s € [0,00).
Observe that v, satisfies (alnc),. Therefore, in view of Lemma 1 and (5) we

deduce that
1
w,:<[][ |D%szz} )<cf v (D)) dz
200 200

< c][ w(x, |D2a|)dz < CA.
200

By the same token,

[]gogk |Dzﬁde} PR ( [ ¢<D2ﬁ|>dz)
<cto) (o [, o (%aa:)
<Golo) (™)

for some Co > B!, where (¢~)~! is the left inverse of @~ given by (4), the constant
B is given by (A1-¢~) and we used (14) together with (6) in the last step.
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Using (Al-¢~ ), we have

1 1
v 1 v
o ([][ D211de] ) <Cof (— [][ D211|Vd2} )
200, Co [/200,
1
<C<pk‘<{][ |D2ﬁVdZ} )
200

<CAY.

This coupled with (5) yields that

i e <)) <) ), a6

where C; = Ci(d,p,q,L) >0 and (y;")"! is the left inverse of ;" defined as in (4).
Analogously we also have

[][ mwz} T <) A <G w) @), (17)
200

MOQ |va|wz} <) ) <G v Y (18)
and

el <wen <ast o) 1)

Step 3: We estimate the sizes of upper-level sets involving the potential term.
We infer from (19) that f € LV(20Qy). In the sequel, for each Q € R¥*! set

wil(Q) =WV (0,T;Wiv(Q),  je{l,2}.
Let W € W' (R¢) be a strong solution to

W, —AW +VW = flyg,  in R

where
1 ifz€ 200,
1 7) =
200,(2) {O otherwise.
Also set
H=i-W.

Then H satisfies
H, —AH+VH=0 in 200.

We aim to estimate ||VH||;=(100,)-
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As such [3, Theorem 3.6] asserts that
viw de</ vIw degc/ F1 de:c/ 7Y dz.
Lo VWD < [ Vi) [ Lo oo 7

Hence
Fovwpraz<cl \fra<icast v @), 20)
200 200

where we used (19) in the last step.
As a consequence,

(ﬁoQk(V|H)de>%<(/20Q(V|W| ) ( Vu|dz>
(

<CC87 (y) A +G (v ')
<CC1(W§)71(?L)+C1(WJ) ‘) =Gy

in view of (18) and (20). Consequently, Lemma 2 and Holder’s inequality give

1

100y 100y
-1
<@ W) 'R <supv) ( de)
100y 200

<CA)C (v A)D < (w) (G A), @1

where D is the reverse Holder constant of V' given by (2) and we used (5) for an
appropriate constant C3 > 0 in the last step.

Set .
K := (2C3) v

Then
(W) (KA) = () H(KYA) = 2G5 (v ) (A).
With (21) in mind, we have

[{x €100k : w(z,V]i|) > KA }|
< [{z €100 : V]| > (yi) ' (KA) };
< [{z €100 : V]| > 2 (y) 1 (CA) }
< Hze 100 : VW] > (y1)~ (Cak)}|+ {z€ 100k : VIH| > (y;") ' (C34)} ]
=|{z€ 100 : VIW| > (v;)) 1 (CG3A)}|
1
< TG Joo, ")

1 5w o0 I
<G G187 (W) A 1100 < €87 [0
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C V2
<so7 ([ (- ul) + (=, | Dul)
A ( QN W)+ w (- [ D2ul)+y (- V|ul)> 4 | [ '
+w(z,V|u|)|dz
- vz lf)d
= 2, -
8 Joun[wilrn>2]

Step 4: We estimate the sizes of upper-level sets involving the principal term.
Let w € We'' (200,) NW,1! (200,) be the strong solution to

wi—Aw+Vw=f in 200,
w=0 ond,(200),
where d,,(20Qx) denotes the parabolic boundary of 200y given by
9p(200%) := (9(20By) x [~ 1, ]) U (20B; x {0})
and W, (200y) is the closure of C((200¢)°) in W,'' (200;) with
(2004)? := 2004 \ (20By x {0}).

Also set
h=W —w,

where W is defined in Step 3. Then h € W2 (200, satisfies

hy —Ah+Vh=0 in 200,
h=W on d,(200).
We aim to estimate HhtHLm(ka) + ||D2h||L°°(10Qk) .
Observe that
1 1 1
(o, tvas) + (f, o2wrae) < (f, 1)
200, 200 200

<CCi 89 (wh) ' (), (22)

where we used [1 1, Theorem 9.2.1 and Remark 9.2.2] in the first step and (19) in the
second step. This in turn yields

1
<][ (V|w|)vdz> :<][ f—l—Aw—wﬂ’dz)
200 200y
1 1 1
g(f f|de> +<][ D2W|de) +<][ w,de>
200, 200, 200y

<CCI87 (w7 ). (23)
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At the same time, it follows from [3, Theorem 3.6] that

Lo DWWz < [ D (VW)Y dz
200 Rd+1

7 v _ Flv
<C [ gl de=c [ 1f"az

whence

1 1
(J[ |W,|de) +<][ D2W|de) +<][ (VIW)"dz>
200y 200 200k

<c (]éogk i dz)

<CC 87 (wh) N (A). (24)

As a by-product,

1 1
<][ Ht"dz) +<][ |D2H|"dz)
200 200
1 1 1
<<][ ﬁt"dz) +<][ |D2ﬁ|"dz) +<][ |m|de)
200 200y 200
1
+<][ D2W|de>
200

<G A +CCi8T (w7 A
<CC(yi) ' ).

Combining (22), (23) and (24) together, we arrive at

1
(f (V|h|)"dz> :(f (V|W—w)"dz>
200 200
1 1
<<][ (V|W|)"dz) +<][ (VW)de)
200 200
<CC 8 (y) (A,
1 1
(ubre)' - ()
200k 200
1 1
<<][ W,"dz) +<][ |w,|de)
208y, 200

<cas () ') <cwH ()
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and

1 1
(f |D2h|vdz) :<][ |D2W—D2w|vdz>
200 200

1 1
(f |D2W"dz) +<][ |D2w"dz>
200 200

<Casi () M <) ).

N

Consequently, we may apply Lemma 3 with

B h(zx+572)
&= ce o)

and
() = —(Vh)(zx + 57 2)
—ca(yh) A

to see that for each € > 0 there exists a sequence {v; }ren verifying

F b= on et DDyl dz < elCC () (A
50 50k

and
1v0)ell =50, + 1D vell=(50,) < Ca (W) ' (A),

where 0 = §(d, p,€) > 0 is sufficiently small and C4y = C4(d,p) > 0.
Next we set

K = (4Cy)¥ L¥.
Then
(W) KA = () ((K')A) = 4Cs (wi!) ™ (A).

Furthermore,

{z €50k Wz li]) + w(z D) > K'A}|

<[{z €50k y(z |@|) + D%l > (w!)~H(K'A)}|

[{z € 50k : [i] + D] > 2 (v )~ (Cah) } |

{z €50k : |H|+ D’H| > (y;") " (Cah)} |
+ {z € 100y : [wi| + |D*w| > (w7) ' (Ca2)}]
+ {2 €50k : |h — (vi)e| + [D*h — D*vi| > (w) 1 (CaA)}
+{z€50c: [(vo)e |+ D%k > (w") 7' (CaA)}]

<
<
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=[{z €50 : [Hi|+ |D°H| > (y7) " (Cah)}|
+{z €50 : wi|+D%w| > (w!) " (Cad)}]
+{z €50k [l — ()] + [D*h — DPvi| > (wd)H(CA) Y|
1
g—/ H,|V + |D*H|" + |w,|¥ + |D*w|" dz
R

1

i [(w)H(Car)]Y /SQk

|y — (vi)e |V + |D2h - D2vk|vdz

1 .
< @ a8 W) @) Ise

1 - A%
e S Ca )T I Ised

v2
SC(67 +e) |0l

C
—6q+e / v(z, |D?i|) + w(z, |D%i
<2t )< 0N [w (i) +y (D) +y (- Via)>4 D7)+ vl |D7a)

+y(z, Vl]il|)dz

1 3
- AFDdz ).
"5 o[ \71)>22 ] vialfl) Z)

Step 5: We derive the Hessian estimates.
Set K" = max{K,K’}. Then

L, 0 lal)+ o D) + o |Vil) dz

T
v(K”)V/w/lV‘l\E(K”/lﬂd/l
0
=v(K")" Y (/wxv—l SQkOE(K”/l)|d/l)
keN \/0

v2
<Cv(K") (87 +e¢)

x Ay Wz i) + iz, D)
,g&(/ l 0 [ )+ w102l +y (Vi) > ] ’

+y(z, Vlil|)dz

L] _
w5 0N [wI7)> %] (Z’m)dZ]dA)
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v2
coT o) ( [, ol + oD+ o Vihdt g [ ot I7)d:
T

1
C5 (57 +¢) / 0z, |in]) + 9 (2, [D%]) + 9 (2. Vil dz+ = |,

where we used (10) in the third step as well as the identity
/ |h|*dz=(s—1) / As72 / |h|dzd A for each s > 1
Rf 0 [11>2]

and (12) in the last two steps respectively.
At this point, we choose €,8 > 0 to be sufficiently small such that

vz 1
Gs(8°% +¢)=3

to arrive at
/Rd 0z |ai|) + @ (z,[D%a) + ¢z [Vil) dz < C,
T

which is (13) as required. [J
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