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Abstract. One defines with K. B. Stolarsky in 1975 the generalized logarithmic mean of two
positive numbers. In 1986, H. Alzer posed a conjecture on the generalized logarithmic mean,
obtaining some partial results. Using properties of hyperbolic functions, two inequalities for the
generalized inverse harmonic means are established in this paper. Based on these inequalities, a
proof of Alzer’s conjecture is given.

1. Introduction

In 1975, Stolarsky defined in [7] the generalized logarithmic mean of two distinct
positive numbers a , b as

Lr(a,b) =
( br −ar

r(b−a)

) 1
r−1

,

where r ∈ [−,+] and L−(a,b) , L0(a,b) , L1(a,b) , L+(a,b) are looked at as the
corresponding limits:

L−(a,b) = lim
r→−Lr(a,b) = min(a,b),

L0(a,b) = lim
r→0

Lr(a,b) =
b−a

lnb− lna
,

L1(a,b) = lim
r→1

Lr(a,b) =
1
e

(bb

aa

) 1
b−a

,

L+(a,b) = lim
r→+

Lr(a,b) = max(a,b).

Similarly, in this paper, the value of a function on its contact discontinuity point
is always looked at as its corresponding limit. The generalized logarithmic mean has
been studied by many researchers (see [2, 4, 6], for examples). The aim of this paper is
to prove the following inequalities:

2L0(a,b) < Lr(a,b)+L−r(a,b) < a+b, ∀r ∈ (0,+); b > a > 0. (1.1)

Mathematics subject classification (2020): 26D07, 26E60.
Keywords and phrases: Generalized logarithmic mean, generalized inverse harmonic mean, Alzer’s

conjecture, hyperbolic functions.

c© � � , Zagreb
Paper MIA-27-62

929

http://dx.doi.org/10.7153/mia-2024-27-62


930 H. LOU

This is a conjecture posed by Alzer [1] in 1986. Alzer himself proved that

L1(a,b)+L−1(a,b) > 2L0(a,b), ∀b > a > 0

and the following result:

PROPOSITION 1.1. For any r ∈ (0,+) , b > a > 0 , it holds that

ab < Lr(a,b)L−r(a,b) < L2
0(a,b).

We showed that Alzer’s conjecture can be proved if a conjecture on the generalized
inverse harmonic mean holds (see [5] and the inequality (1.3) below). Based on this
observation, some special cases for Alzer’s conjecture were proved. In this paper, we
will prove Alzer’s conjecture for general cases.

The generalized inverse harmonic mean of two positive numbers a,b is defined by

Cr(a,b) =
(ar +br

a+b

) 1
r−1

,

where r ∈ [−,+] . One finds that the generalized inverse harmonic mean is a special
case of Gini mean [3]:

Gp,q(a,b) =
(ap +bp

aq +bq

) 1
p−q

.

We mention that

C0(a,b) = L2(a,b) =
a+b

2
, C−1(a,b) = L−1(a,b) =

√
ab, C2(a,b) =

a2 +b2

a+b

are the arithmetic mean, the geometric mean and the inverse harmonic mean, respec-
tively; and

C−(a,b) = min(a,b), C1(a,b) =
(
aabb

) 1
b+a

, C+(a,b) = max(a,b).

On the other hand, we have

Lr(a2,b2) = Lr(a,b)Cr(a,b), ∀r ∈ [−,+]; a,b > 0. (1.2)

The above equality is crucial in proving (1.1). By using (1.2), it is observed in [5] that
(1.1) can be proved if the following equalities hold (see the proofs of Alzer’s conjecture
in Section 5):{

Cr(a,b)+C−r(a,b) > a+b,

C2
r (a,b)+C2−r(a,b) < a2 +b2,

∀r ∈ (0,+); b > a > 0. (1.3)

To facilitate description, we rewrite (1.1) and (1.3) as



PROOFS FOR ALZER’S CONJECTURE 931

THEOREM 1.1. It holds that

Lr(a,b)+L−r(a,b) > 2L0(a,b), ∀r ∈ (0,+]; b > a > 0. (1.4)

THEOREM 1.2. It holds that

Lr(a,b)+L−r(a,b) < a+b, ∀r ∈ [0,+); b > a > 0. (1.5)

THEOREM 1.3. It holds that

Cr(a,b)+C−r(a,b) > a+b, ∀r ∈ (0,+); b > a > 0. (1.6)

THEOREM 1.4. It holds that

C2
r (a,b)+C2

−r(a,b) < a2 +b2, ∀r ∈ [0,+); b > a > 0. (1.7)

We showed in [5] that Theorem 1.3 implies Theorem 1.1 while Theorem 1.4 im-
plies Theorem 1.2. Unfortunately, theorems 1.3 and 1.4 are also difficult to prove,
though some special cases were verified in [5]. It was proved there that theorems
1.3 and 1.1 hold when r = 1,2, 1

2 ,3, 1
3 , 3

2 , 2
3 , while theorems 1.4 and 1.2 hold when

r ∈ [ 1
7 ,7] .
In this paper, we will give proofs for theorems 1.3 and 1.4 in sections 3 and 4. Sec-

tion 5 will be devoted to prove theorems 1.1 and 1.2. In Section 2, some preliminaries
are listed. In Section 6, some corollaries of the theorems 1.1–1.4 will be given.

2. Preliminaries

First, we recall some basic properties of Lr(a,b) and Cr(a,b) .

PROPOSITION 2.1. Assume a,b > 0 , r ∈ [−,+] . Then

(i) Lr(a,b) is symmetric, that is, Lr(a,b) = Lr(b,a).

(ii) For any  > 0 , Lr(a,b) = Lr(a,b).

(iii) For any −< s < r < + , b > a > 0 , it holds that

min(a,b) < Ls(a,b) < Lr(a,b) < max(a,b). (2.1)

The proof of the above proposition can be found in [7]. One can establish similar
result for Cr easily as in the following.

PROPOSITION 2.2. Assume a,b > 0 , r ∈ [−,+] . Then

(i) Cr(a,b) is symmetric, that is, Cr(a,b) = Cr(b,a).

(ii) For any  > 0 , Cr(a,b) = Cr(a,b).
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(iii) For any −< s < r < + , b > a > 0 , it holds that

min(a,b) < Cs(a,b) < Cr(a,b) < max(a,b). (2.2)

Proof. We prove only the inequality Cs(a,b) < Cr(a,b) in (2.2). It suffices to
prove it in the case of b > a = 1. We have

lnCr(1,b) =
1

r−1

∫ r

1

bt lnb
bt +1

dt =
∫ 1

0

(
1− 1

b1+t(r−1) +1

)
lnbdt. (2.3)

This implies that Cr(1,b) is strictly increasing in r ∈ (−,+) and we get the con-
clusion. �

By the way, when r,s �= 1, it is not difficult to get (2.2) by Hölder’s inequality
and categorical discussions. In addition, we can deduce (2.1) from (2.2) by a similar
discussion in the proof of Theorem 6.2.

Unless said otherwise, in the rest of the paper we assume the hypothesis b > a > 0
and denote t = 1

2 ln b
a . Then b

a = e2t and

Cr(a,b) =
(ar +br

a+b

) 1
r−1 =

√
ab

((
a
b

) r
2 +
(

b
a

) r
2(

a
b

) 1
2 +
(

b
a

) 1
2

) 1
r−1

=
√

ab
(coshrt

cosht

) 1
r−1

, r ∈ (−,+).

Consequently, Theorem 1.3 is equivalent to

(coshrt
cosht

) 1
r−1 +

( cosht
coshrt

) 1
r+1

> 2cosht, ∀r ∈ (0,+); t > 0. (2.4)

While Theorem 1.4 is equivalent to

(coshrt
cosht

) 2
r−1 +

( cosht
coshrt

) 2
r+1

< 2cosh2t, ∀r ∈ [0,+); t > 0. (2.5)

Noting that 2cosh2 t = cosh2t +1, (2.5) is equivalent to

(coshrt +1
cosht +1

) 1
r−1 +

( cosht +1
coshrt +1

) 1
r+1

< 2cosht, ∀r ∈ [0,+); t > 0. (2.6)

Concerning the hyperbolic functions, we have

LEMMA 2.1. Assume r > 1 , t > 0 . Then

(i) sinht > t.

(ii) r tanht > tanhrt > tanht > 0.

(iii) cosh2 t
cosh2t is decreasing strictly on [0,+) .
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(iv) There exists a tr ∈ (0,+) such that rcosh t − coshrt is positive in (0,tr) and
negative in (tr,+) .

(v) There exists a t1 ∈ (0,+) such that cosht − t sinh t is positive in (0,t1) and
negative in (t1,+) .

Proof. The proof is easy. First, it is easy to see that both sinht and cosh t are
strictly increasing on [0,+) . In the following, let r > 1, t > 0.

(i) We have

sinh t− t =
∫ t

0
(coshs−1)ds > 0.

(ii) It holds that

r tanh t =
∫ t

0

r

cosh2 s
ds >

∫ t

0

r

cosh2 rs
ds

= tanhrt =
∫ rt

0

1

cosh2 s
ds >

∫ t

0

1

cosh2 s
ds

= tanht > 0.

(iii) One can get the conclusion from

cosh2 t
cosh2t

=
cosh2t +1
2cosh2t

=
1
2

+
1

2cosh2t
.

(iv) By the well known series cosht = 
k=0

t2k

(2k)! , we find that

rcosh t− coshrt = (r−1)+ r(1− r)
t2

2!
+ · · ·+ r(1− r2n−1)

t2n

(2n)!
+ · · · .

As r > 1, the first term is positive. All the other terms define functions which
evidently are strictly decreasing on [0,+) . The claim follows.

(v) Since, (cosht− t sinh t)′ = −t cosht < 0, the result holds obviously. �

The above properties will be mainly used in proving Theorem 1.3.
The proof of Theorem 1.4 for r ∈ (0,1) can be gotten from the case r > 1. When

1 � r � 3, the proof is easy. We assume r � 3 in the rest of this section. In this situation,
the proof of Theorem 1.4 is based on analysing some monotonicity properties related
to the following functions f ,u,v, , which will be defined in a table below (see Table:
Functions and Constants). A number of other functions and constants are introduced to
get these monotonicity properties. We list them also in the same table. All the functions
and constants are meant to be applied for x � 1, r � 1, often only for x > 1, and r � 3.
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f (x)=x
1

r−1 + x−
1

r+1 (x)=

⎧⎨
⎩

f (x)−2
1−x−1 if x > 1

2
r2−1

if x = 1

u(x)= r
r−1x

1
r−1 +1 u′(x)= r

(r−1)2 x
1

r−1−1

v(x)= r
r+1x−

1
r+1 +1 v′(x)=− r

(r+1)2 x−
1

r+1−1

u(1)= 2r−1
r−1 U(x)=x

1
r−1 +x−

1
r+1

v(1)= 2r+1
r+1 V (x)=(1−)x

r
r+1

0 = 1
r (x)= r−1

r u′(x)+ (1+B)v′(x)− ′(x)

B= (r+2)
2r − 1

2 = r2−2r−1
r(r−1)2 1(x)=

u2(x)
v(x)u′(x)(x)−1

 =− v′(1)
u′(1) = (r−1)2

(r+1)2 2(x)=
u(x)
v(x)

[
( 1

v(x)− r−1
r )u(x)+ u2(x)

v2(x) x
− 1

r−1− 1
r+1

]
0 = 1

v(1) (1+  u(1)
v(1) ) = 4r2+2

(2r+1)2 3(x)=
[

r(1+B)
r−1 x

1
r−1 +B

]
u(x)
v(x) x

− 1
r−1− 1

r+1

= (r−2)(r+1)2

(r+2)(r−1)2 = r3−3r−2
r3−3r+2

g(x)=x f (x)+2(x−1)

G(x)= r ln 1
2

(
f (x)+

√
f (x)2 −4

)− ln 1
2

(
g(x)+

√
g(x)2 −4

)
Table: Functions and Constants

First, it is very easy to get the following result.

LEMMA 2.2. Assume r � 3 . Then the function f is smooth and f ′ is positive on
[1,+) . Consequently, f is strictly increasing on [1,+) and the equation f (y) =
2cosht admits a unique solution y = y(t) � 1 for any t � 0 . Moreover, it holds that

t = ln
f (y)+

√
f 2(y)−4

2
.

The key point to prove Theorem 1.4 is that the function u
v + v

u −  is strictly
increasing on [1,+) . We state the corresponding results in the following lemmas.
First, obviously, we have

LEMMA 2.3. Assume r � 3 . Then functions u,v are both smooth on [1,+) .
Moreover, u′ is positive and v′ is negative on [1,+) .

The following lemma concerns some important inequalities for u and v .

LEMMA 2.4. Assume r � 3 . Then the following inequalities hold:

u(x)
v(x)

x−
1
2 ( 1

r−1 + 1
r+1 ) � u(1)

v(1)
, ∀x > 1; (2.7)
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(
x

1
r−1 +

)u(x)
v(x)

x−
1

r−1− 1
r+1 > (1+ )

u(1)
v(1)

, ∀x > 1; 0 �  � 0 ≡ 1
r
; (2.8)(( 1

v(x)
−
)
u(x)

)′
> 0, ∀x > 1; 0 �  � 0 ≡ 4r2 +2

(2r+1)2 . (2.9)

Proof. Calculating directly, we have

((
x

1
r−1 +

)
x−

1
2 ( 1

r−1 + 1
r+1 )
)′

=
1

r2 −1

(
x

1
r2−1

−1− rx
− r

r2−1
−1
)

> 0, ∀x > 1;  � 1
r
, (2.10)(

− v(x)+x−
1
2 ( 1

r−1 + 1
r+1 )
)′

=
r

r2 −1

( r−1
r+1

x−
1

r+1−1−x
− r

r2−1
−1
)

> 0, ∀x > 1;  � r−1
r+1

. (2.11)

Let

h(x) =
(
u(x)x−

1
2 ( 1

r−1 + 1
r+1 ) − u(1)

v(1)
v(x)

)

=
r

r−1

(
x

1
r−1 +

2r−2
r(2r+1)

)
x−

1
2 ( 1

r−1 + 1
r+1 )

+
u(1)
v(1)

(
− v(x)+

r−1
r+1

x−
1
2 ( 1

r−1 + 1
r+1 )
)
.

By (2.10) and (2.11), h is increasing strictly on [1,+) . Consequently, h(x)> h(1)= 0
for any x > 1, proving (2.7).

On the other hand, by (2.7) and (2.10), we get

(
x

1
r−1 +

)u(x)
v(x)

x−
1

r−1− 1
r+1 �

(
x

1
r−1 +

)u(1)
v(1)

x−
1
2 ( 1

r−1 + 1
r+1 )

> (1+ )
u(1)
v(1)

, ∀x > 1; 0 �  � 0.

That is, (2.8) holds.

Finally, it holds that

r+1
r−1


0

u(1)
v(1)

=
4r2−1
4r2 +2

< 1.
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Therefore 
0

u(1)
v(1) < r−1

r+1 . By (2.7) and (2.11), we have

(( 1
v(x)

−
)
u(x)

)′

=
( 1

v(x)
−
)
u′(x)− u(x)

v2(x)
v′(x)

=
u′(x)
v(x)

(
1−v(x)− u(x)

v(x)
· v′(x)
u′(x)

)

=
u′(x)
v(x)

(
1−v(x)+ 

u(x)
v(x)

x−
1

r−1− 1
r+1

)

>
u′(x)
v(x)

(
1−0v(x)+ 

u(1)
v(1)

x−
1
2 ( 1

r−1 + 1
r+1 )
)

>
u′(x)
v(x)

(
1−0v(1)+ 

u(1)
v(1)

)
= 0, ∀x > 1; 0 �  � 0.

Therefore, (2.9) holds. This proves Lemma 2.4. �
The following lemma is crucial in proving Theorem 1.4.

LEMMA 2.5. Assume r � 3 . Then(
u(x)
v(x)

+
v(x)
u(x)

−(x)
)′

> 0, ∀x > 1. (2.12)

Proof. We prove the lemma in two steps.
I. Rewrite  as

(x) =
xU(x)+V(x)−2

x−1
−2

=U(x)+
U(x)−U(1)

x−1
+

V (x)−V(1)
x−1

−2

=U(x)+
∫ 1

0
U ′(1+(x−1)s)ds+

∫ 1

0
V ′(1+(x−1)s)ds−2, ∀x > 1.

We have

 ′(x) =U ′(x)+
∫ 1

0
sU ′′(1+(x−1)s)ds+

∫ 1

0
sV ′′(1+(x−1)s)ds

=U ′(x)+
∫ 1

0
sU ′′(1+(x−1)s)ds+

V ′′(x)
2

−
∫ 1

0

s2(x−1)
2

V ′′′(1+(x−1)s)ds.

Noting that  ∈ (0,1) , we have

V ′′′(x) = (1−)
r

r+1

( r
r+1

−1
)( r

r+1
−2
)
x

r
r+1−3 > 0, ∀x > 1.
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On the othe hand,  is in fact chosen to satisfy U ′′(1) = 0. We have

U ′′(x) =
1

r−1

( 1
r−1

−1
)
x

1
r−1−2− 1

r+1

(
− 1

r+1
−1
)
x−

1
r+1−2

=− (r−2)
(r−1)2

(
x

1
r−1−2− x−

1
r+1−2

)
< 0, ∀x > 1.

Consequently,

(x) ≡r−1
r

u′(x)+ (1+B)v′(x)− ′(x)

=U ′(x)+
V ′′(x)

2
− ′(x)

=−
∫ 1

0
sU ′′(1+(x−1)s)ds+

∫ 1

0

s2(x−1)
2

V ′′′(1+(x−1)s)ds

>0 = −1
2
U ′′(1) = (1), ∀x > 1. (2.13)

II. The proof of (2.12) is very sensitive to the estimates (2.7)–(2.9) and (2.13). We
have (u(x)

v(x)
+

v(x)
u(x)

−(x)
)′

=
( 1

v(x)
− v(x)

u2(x)

)
u′(x)+

( 1
u(x)

− u(x)
v2(x)

)
v′(x)− ′(x)

=
( 1

v(x)
− r−1

r
− v(x)

u2(x)

)
u′(x)

+
( 1

u(x)
− u(x)

v2(x)
− (1+B)

)
v′(x)+(x)

=
v(x)u′(x)

u2(x)

[u2(x)
v(x)

( 1
v(x)

− r−1
r

)
−1

+ 
(
− u(x)

v(x)
+

u3(x)
v3(x)

+ (1+B)
u2(x)
v(x)

)
x−

1
r−1− 1

r+1 +
u2(x)

v(x)u′(x)
(x)

]

≡ v(x)u′(x)
u2(x)

(x), x � 1.

We have

(x) =
u2(x)

v(x)u′(x)
(x)−1

+
u(x)
v(x)

(( 1
v(x)

− r−1
r

)
u(x)+ 

u2(x)
v2(x)

x−
1

r−1− 1
r+1

)

+ 
(r(1+B)

r−1
x

1
r−1 +B

)u(x)
v(x)

x−
1

r−1− 1
r+1

≡1(x)+2(x)+3(x), x � 1.
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By (2.13),

1(x) � −1 =1(1), x > 1. (2.14)

We have

r
r−1

0 =
r

r−1
4r2 +2

(2r+1)2 =
4r3 +2r

4r3−3r−1
> 1.

Thus, r−1
r < 0 . By (2.9) and (2.7) of Lemma 2.4,

( 1
v(x)

− r−1
r

)
u(x)+ 

u2(x)
v2(x)

x−
1

r−1− 1
r+1

>
( 1

v(1)
− r−1

r

)
u(1)+ 

u2(1)
v2(1)

=
(r+1

r−1
− 2r+1

r
+

2r−1
2r+1

)2r−1
2r+1

=
( 2

r−1
− 1

r
− 2

2r+1

)2r−1
2r+1

> 0, ∀x > 1.

This implies

2(x) >
u(x)
v(x)

(( 1
v(1)

− r−1
r

)
u(1)+ 

u2(1)
v2(1)

)

>
u(1)
v(1)

(( 1
v(1)

− r−1
r

)
u(1)+ 

u2(1)
v2(1)

)
= 2(1), ∀x > 1. (2.15)

Now, consider the last term 3 . We have

1
0

r−1
r

B
1+B

= r
r−1

r
r2 −2r−1

r3− r2− r−1

=
r3 −3r2 + r+1
r3− r2− r−1

< 1.

Therefore, (r−1)B
r(1+B) < 0 . Then, it follows from (2.8) of Lemma 2.4 that

3(x) >3(1), ∀x > 1. (2.16)

Combining (2.14)–(2.16) and noting that

 ′(1) =
1
2

(
(x−1)(x)

)′′∣∣
x=1 =

1
2

(
x

r
r−1 + x

r
r+1 −2x

)′′∣∣
x=1

=
2r2

(r+1)2(r−1)2 ,
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we finally get

(x) >(1) =
u2(x)

v(x)u′(x)

(u(x)
v(x)

+
v(x)
u(x)

−(x)
)′∣∣∣

x=1

=
u2(1)

v(1)u′(1)

( 2r(2r2 +1)
(2r+1)2(r−1)2 −

2r(2r2 +1)
(2r−1)2(r+1)2 −

2r2

(r+1)2(r−1)2

)

=
u2(1)

v(1)u′(1)

( 8r2(2r2−1)(2r2 +1)
(2r−1)2(2r+1)2(r−1)2(r+1)2 − 2r2

(r+1)2(r−1)2

)

=
u2(1)

v(1)u′(1)
· 2r2(8r2−5)
(2r−1)2(2r+1)2(r−1)2(r+1)2 > 0, ∀x > 1.

And (2.12) follows. �

3. Proof of Theorem 1.3

For clarity, we denote X Y if sgn(X) = sgn(Y ) in the following.
First, we have

LEMMA 3.1. Theorem 1.3 holds for r > 0 if and only if it holds for r � 1 .

Proof. By the formulation of Theorem 1.3 with hyperbolic cosine, assume in-
equality (2.4) to hold for r = r0 with r0 > 1. Then we have

(coshr0t
cosh t

) 1
r0−1 +

( cosh t
coshr0t

) 1
r0+1

> 2cosht, ∀t > 0.

This is equivalent to

( cosht
cosh t

r0

) 1
r0−1 +

(cosh t
r0

cosht

) 1
r0+1

> 2cosh
t
r0

, ∀t > 0.

Then

[(cosh t
r0

cosht

) 1
1
r0

−1 +
( cosht

cosh t
r0

) 1
1
r0

+1 −2cosht
]

=
[(cosh t

r0

cosht

)−1− 1
r0−1

+
( cosh t

cosh t
r0

)1− 1
r0+1 −2cosht

]

=
cosh t
cosh t

r0

[( cosh t
cosh t

r0

) 1
r0−1 +

(cosh t
r0

cosh t

) 1
r0+1 −2cosh

t
r0

]
> 0, ∀t > 0.

This shows (2.4) holds for r = 1
r0

. This proves Lemma 3.1. �
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Proof of Theorem 1.3. By Lemma 3.1, we can suppose that r � 1 without loss of
generality. Define

F0(t) =
(coshrt

cosht

) 1
r+1
[(coshrt

cosh t

) 1
r−1 +

( cosht
coshrt

) 1
r+1 −2cosht

]

=
cosh

2r
r2−1 rt

cosh
2r

r2−1 t
+1−2cosh

1
r+1 rt cosh

r
r+1 t, t � 0.

Noting that X −Y  ln X
Y for positive numbers X and Y , we have

F ′
0(t) =

2r
r2 −1

cosh
2r

r2−1 rt

cosh
2r

r2−1 t

(
r tanhrt− tanht

)
− 2r

r+1
cosh

1
r+1 rt cosh

r
r+1 t

(
tanhrt + tanht

)
F(t), t > 0,

where

F(t) = ln
[ 1
r−1

cosh
1

r−1 rt

cosh
r

r−1 t

(
r tanhrt− tanht

)(
tanhrt + tanht

) ], t > 0.

We have

F ′(t) =
r

r−1
(tanhrt− tanht)−

r
cosh2 rt

+ 1
cosh2 t

tanhrt + tanht
+

r2

cosh2 rt
− 1

cosh2 t

r tanhrt− tanht

=
1

r−1

1
cosh2 t

− r2

cosh2 rt

tanhrt + tanht
+

r2

cosh2 rt
− 1

cosh2 t

r tanhrt− tanht

=
(r tanh t− tanhrt)

(
r2

cosh2 rt
− 1

cosh2 t

)
(r−1)(r tanhrt− tanht)(tanhrt + tanht)

, t > 0. (3.1)

It is lucky to have (3.1) which by Lemma 2.1(ii) implies that

F ′(t) 
rcosh t− coshrt

r−1
, t > 0.

Then, by Lemma 2.1(iv), there exists a tr > 0 such that F ′(t) is positive in (0,tr) and
negative in (tr,+) . Combining this fact with F(0+) = F(+) = 0, we get that F(t)
is positive in (0,+) . Consequently F ′

0(t) is positive in (0,+) . Then (2.4) follows
from F0(0) = 0. Therefore, Theorem 1.3 holds. �

REMARK 1. In the above proof, r can be equal to 1. That is, we need only to
look at the corresponding limits of the functions that appeared in the above proof. More
precisely, for r = 1, it holds that

F0(t) = et tanh t +1−2cosht, ∀t � 0.
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F ′
0(t) =et tanh t( tanht + t cosh−2 t

)−2sinht, ∀t > 0,

F(t) = ln
(
et tanht( tanh t + t cosh−2 t

))− ln
(
2sinh t

)
, ∀t > 0.

F ′(t) =
2(1− t tanht)(sinh2t−2t)

sinh2t(sinh2t +2t)
 cosht− t sinh t, ∀t > 0.

4. Proof of Theorem 1.4

We turn to prove Theorem 1.4. If we use the approach used to prove Theorem 1.3,
it will be very complex since we do not have luck to establish an equality like (3.1) in
this case. Thus, we seek for another approach.

Similar to Lemma 3.1, we have

LEMMA 4.1. Theorem 1.4 holds for r > 0 if and only if it holds for r � 1 .

Proof. By the formulation of Theorem 1.4 with hyperbolic cosine, assume in-
equality (2.5) to hold for r = r0 with r0 > 1. Then

(coshr0t
cosht

) 2
r0−1 +

( cosh t
coshr0t

) 2
r0+1

< 2cosh2t, ∀t > 0.

This is equivalent to

( cosht
cosh t

r0

) 2
r0−1 +

(cosh t
r0

cosht

) 2
r0+1

< 2cosh
2t
r0

, ∀t > 0.

By Lemma 2.1(iii), cosh2 t
cosh2t is decreasing strictly on [0,+) . Thus,

cosh2 t
r0

cosh2t

cosh 2t
r0

cosh2 t
> 1, ∀t > 1.

Consequently,

[(cosh t
r0

cosht

) 2
1
r0

−1 +
( cosht

cosh t
r0

) 2
1
r0

+1 −2cosh2t
]

=
[(cosh t

r0

cosh t

)−2− 2
r0−1 +

( cosh t
cosh t

r0

)2− 2
r0+1 −2cosh2t

]

=
cosh2 t

cosh2 t
r0

[( cosh t
cosh t

r0

) 2
r0−1 +

(cosh t
r0

cosh t

) 2
r0+1 −

cosh2 t
r0

cosh2t

cosh 2t
r0

cosh2 t
·2cosh

2t
r0

]

<
cosh2 t

cosh2 t
r0

[( cosh t
cosh t

r0

) 2
r0−1 +

(cosh t
r0

cosh t

) 2
r0+1 −2cosh

2t
r0

]
< 0, ∀t > 0.
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This shows (2.5) holds for r = 1
r0

. This proves Lemma 4.1. �

Proof of Theorem 1.4. Obviously, the theorem holds for r = 0. Then, to prove the
theorem, by Lemma 4.1, it suffices to prove it for the cases of r � 1. We mention that
the proof for Case 1 below was given in [5]. For the cases of 3 < r � 7, Theorem 1.4
was also established there.

Case 1. 1 � r � 3.
We have

C2
3(a,b)+C2

−1(a,b) =
a3 +b3

a+b
+
(a−1 +b−1

a+b

)−1

= a2−ab+b2+ab = a2 +b2, a,b > 0.

Thus, by Proposition 2.2(iii),

C2
r (a,b)+C2

−r(a,b) < C2
3(a,b)+C2

−1(a,b) = a2 +b2, b > a > 0.

This means that Theorem 1.4 holds in this case.

Case 2. r ∈ (3,+) .
We have shown that Theorem 1.4 is equivalent to (2.6), that is

f
(coshrt +1

cosht +1

)
< f (y), ∀t > 0, (4.1)

where y = y(t) is the implicit function of

f (y) = 2cosht, t � 0.

By Lemma 2.2, f is strictly increasing. Therefore, (4.1) is equivalent to

coshrt +1
cosht +1

< y, ∀t > 0.

That is,

2coshrt < y(2cosht +2)−2 = y( f (y)+2)−2 = g(y), ∀t > 0. (4.2)

Recalling from Lemma 2.2 that

t = ln
f (y)+

√
f 2(y)−4

2
, t � 0,

we see that (4.2) is equivalent to

r ln
f (y)+

√
f 2(y)−4

2
< ln

g(y)+
√

g2(y)−4
2

, ∀t > 0.
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Since {y(t)∣∣t > 0} = (1,+) , what we need to prove is that G(x) < 0 for any
x > 1 with

G(x) ≡G(x;r) = r ln
f (x)+

√
f 2(x)−4

2
− ln

g(x)+
√

g2(x)−4
2

, x � 1.

For positive numbers X ,X1,Y,Y1 , we have Y
X − Y1

X1
 X2

1
X2 − Y 2

1
Y 2 and X −Y  1

Y − 1
X .

Thus, noting that f ′,g′ > 0 and

g2(x)−4

x2
(
f 2(x)−4

) =
f (x)+2−4x−1

f (x)−2
= 1+

4
(x)

,

we have

G′(x) =
r f ′(x)√
f 2(x)−4

− g′(x)√
g2(x)−4


g2(x)−4

x2
(
f 2(x)−4

) −
(
g′(x)

)2(
rx f ′(x)

)2
=1+

4
(x)

−
(
u(x)+ v(x)

)2(
u(x)− v(x)

)2
=4

(
1

(x)
− u(x)v(x)(

u(x)− v(x)
)2
)


(
u(x)− v(x)

)2
u(x)v(x)

−(x)

=
u(x)
v(x)

+
v(x)
u(x)

−(x)−2.

By Lemma 2.5,

(u(x)
v(x)

+
v(x)
u(x)

−(x)−2
)′

> 0, ∀x > 1.

While (u(x)
v(x)

+
v(x)
u(x)

−(x)−2
)∣∣∣

x=1

=

(
u(1)− v(1))

)2
u(1)v(1)

−(1)

=
4r2

(4r2−1)(r2−1)
− 2

r2 −1

= − 2(2r2−1)
(4r2−1)(r2−1)

< 0.
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On the other hand, it is easy to see that

lim
x→+

x−
1

r−1

(u(x)
v(x)

+
v(x)
u(x)

− ((x)+2
))

=
r

r−1
+0−1 =

1
r−1

.

Thus

lim
x→+

(u(x)
v(x)

+
v(x)
u(x)

−(x)−2
)

= +.

Therefore, there is an xr in (1,+) , such that u
v + v

u −(x)− 2 is negative in (1,xr)
and positive in (xr,+) . Consequently, G′ is negative in (1,xr) and positive in (xr,+) .
Since G(1) = 0 and

lim
x→+

G(x) = lim
x→+

(
r ln

1
2

(
f (x)+

√
f (x)2 −4

)− ln
1
2

(
g(x)+

√
g(x)2−4

))
= lim

x→+

(
r lnx

1
r−1 − lnx

r
r−1

)
= 0,

we get that G is negative in (1,+) . Therefore, Theorem 1.4 holds in this case.
We get the proof. �

5. Proofs of Theorems 1.1 and 1.2

It was proved in [5] that Theorem 1.3 implies Theorem 1.1, while Theorem 1.4
implies Theorem 1.2. More precisely, for fixed r , there is a r > 1 such that

Lr(1,b)+L−r(1,b) > 2L0(1,b), ∀b ∈ (1,r); r ∈ (0,+], (5.1)

Lr(1,b)+L−r(1,b) < b+1, ∀b ∈ (1,r); r ∈ [0,+). (5.2)

Then, using (1.2), theorems 1.3 and 1.4, one can easily extend the inequalities (5.1) and
(5.2) valid for all b∈ (1,r) to those valid for all b∈ (1, 2

r ) . By induction, we can get
(1.4) and (1.5), getting theorems 1.1 and 1.2.

It is easy to verify that

lim
b→1

Lr(1,b)+L−r(1,b)−2L0(1,b)
(b−1)4 =

r2

960
, (5.3)

lim
b→1

Lr(1,b)+L−r(1,b)−1−b
(b−1)2 = −1

6
. (5.4)

Then, (5.1) and (5.2) hold. Nevertheless, it is a little complex to get (5.3). In order to
avoid using (5.3), we will give a proof of Theorem 1.1 different from that in [5].

First, for real number r �= 0, we have

br −1
r(b−1)

=1+
r−1

2
(b−1)+

(r−1)(r−2)
6

(b−1)2 +o
(
(b−1)2), b → 1.
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Thus, for real number r �= 0,1, we have

Lr(1,b) =1+
1

r−1

(r−1
2

(b−1)+
(r−1)(r−2)

6
(b−1)2

)
+

1
2

1
r−1

( 1
r−1

−1
)( r−1

2
(b−1)

)2
+o
(
(b−1)2)

=1+
b−1

2
+

r−2
24

(b−1)2 +o
(
(b−1)2), b → 1. (5.5)

Actually, it is easy to verify that (5.5) holds also for r = 0 and 1.
By (1.2), it is easy to get that

Lr(a,b) = lim
n→+

(
Lr
(
a2−n

,b2−n) n


k=1

Cr
(
a2−k

,b2−k))

=



k=1

Cr
(
a2−k

,b2−k)
, ∀a,b > 0; −� r � +. (5.6)

Proof of Theorem 1.1. Let r ∈ (0,+] . We suppose that b > a = 1 without loss
of generality.

By (2.1), (2.2), and Theorem 1.3,

Lr(1,b)
(
Cr(1,b)−C0(1,b)

)
> L−r(1,b)

(
C0(1,b)−C−r(1,b)

)
, ∀b > 1.

Therefore, by (1.2), we have that,

Lr(1,b)+L−r(1,b)

= Lr(1,
√

b)Cr(1,
√

b)+L−r(1,
√

b)C−r(1,
√

b)

>
(
Lr(1,

√
b)+L−r(1,

√
b)
)
C0(1,

√
b) > · · ·

>
(
Lr(1,b2−n

)+L−r(1,b2−n
)
) n


k=1

C0
(
1,b2−k)

, ∀n � 1.

Passing to the limit as n → + , and using (5.6), we get that

Lr(1,b)+L−r(1,b) > 2



k=1

C0
(
1,b2−k)

= 2L0(1,b).

Completing the proof. �

Proof of Theorem 1.2. Let r ∈ [0,+) . By (5.5), we have (5.4). Thus there exists
a r > 1 such that,

Lr(1,b)+L−r(1,b) < b+1, ∀b ∈ (1,r). (5.7)

Thus, by (2.1) and (2.2),(
b−Lr(1,b)

)
Cr(1,b) >

(
L−r(1,b)−1

)
C−r(1,b), ∀b ∈ (1,r).
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Consequently, by (1.2), Theorem 1.4, and the inequality st � 1
2

(
s2 + t2

)
for reals s, t in

the penultimate line, we have

Lr(1,b2)+L−r(1,b2)
= Lr(1,b)Cr(1,b)+L−r(1,b)C−r(1,b)
< bCr(1,b)+C−r(1,b)

� 1
2

(
b2 +C2

r (1,b)+1+C2
−r(1,b)

)
< b2 +1, ∀b ∈ (1,r).

Thus,

Lr(1,b)+L−r(1,b) < b+1, ∀b ∈ (1, 2
r ).

Therefore, we have extended the inequality (5.7) valid for all b ∈ (1,r) to one valid
for all b ∈ (1, 2

r ) . By induction, we can get (1.5), completing the proof. �

6. Further results

In this section, we will give some corollaries. From observations on the first two
pages of the present paper we have

ab =C+(a,b)C−(a,b) = C2
−1(a,b)

=L+(a,b)L−(a,b) = L2
−1(a,b).

Similar to Proposition 1.1, we have

THEOREM 6.1. Let 0 < s < r < + , b > a > 0 . Then

ab < Cr(a,b)C−r(a,b) < Cs(a,b)C−s(a,b) <
(a+b

2

)2
. (6.1)

Proof. We can suppose that b > a = 1. By (2.3),


 r

[
ln
(
Cr(1,b)C−r(1,b)

)]

=
∫ 1

0

( b1+t(r−1)

(b1+t(r−1) +1)2
− b1−t(r+1)

(b1−t(r+1) +1)2

)
t ln2 bdt

=
∫ 1

0

(
1

(b
1+t(r−1)

2 +b−
1+t(r−1)

2 )2
− 1

(b
1−t(r+1)

2 +b−
1−t(r+1)

2 )2

)
t ln2 bdt

< 0, ∀r > 0.

Therefore, ln
(
Cr(1,b)C−r(1,b)

)
is strictly decreasing on r ∈ [0,+) . This implies

(6.1). �
Proposition 1.1 can be generalized as the following theorem.
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THEOREM 6.2. Let 0 < s < r < + , b > a > 0 . Then

ab < Lr(a,b)L−r(a,b) < Ls(a,b)L−s(a,b) < L2
0(a,b). (6.2)

Proof. We need only to prove the middle inequality. Let 0 < s < r < + , b >
a = 1. By (5.6) and (6.1), we have

Lr(1,b)L−r(1,b) =



k=1

(
Cr
(
1,b2−k)

C−r
(
1,b2−k))

<



k=1

(
Cs
(
1,b2−k)

C−s
(
1,b2−k))

= Ls(1,b)L−s(1,b).

Completing the proof. �
Concerning Lr +L−r and C

r +C−r for other cases of  , we have

THEOREM 6.3. Let 0 < r < + , 0 <  � 1 �  < + and b > a > 0 . Then

a +b < C
r (a,b)+C

−r(a,b) < 2
(3a2 +2ab+3b2

8

) 
2
, (6.3)

2C
0 (a,b) < C

r (a,b)+C
−r(a,b), (6.4)

C2
r (a,b)+C2

−r(a,b) < a2 +b2 , (6.5)

2L0 (a,b) < Lr (a,b)+L−r(a,b) < a +b . (6.6)

Proof. By properties of convex/concave functions, we have

a +(x+ y−a) � x + y � 2
(x+ y

2

)
, ∀a � x � y, (6.7)

a +(x+ y−a) � x + y � 2
(x+ y

2

)
, ∀a � x � y. (6.8)

Thus, using (1.6), (1.7), (6.1), (6.7) and (6.8), we get

a +b < a +(Cr(a,b)+C−r(a,b)−a) (by (1.6))

� C
r (a,b)+C

−r(a,b) (by (6.7))

� 2
(Cr(a,b)+C−r(a,b)

2

)
(by (6.7))

= 2
(C2

r (a,b)+C2−r(a,b)+2Cr(a,b)C−r(a,b)
4

) 
2

< 2
(a2 +b2 +2

(
a+b
2

)2
4

) 
2
, (by (1.7), (6.1))

= 2
(3a2 +2ab+3b2

8

) 
2
,
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2C
0 (a,b) < 2

(Cr(a,b)+C−r(a,b)
2

)
(by (1.6))

� C
r (a,b)+C

−r(a,b) (by (6.8))

and

C2
r (a,b)+C2

−r(a,b)

< a2 +
(
C2

r (a,b)+C2
−r(a,b)−a2

)
(by (6.8))

� a2 +b2 . (by (1.7))

Using (1.4), (1.5) and (6.8), we have

2L0 (a,b) < 2
(Lr(a,b)+L−r(a,b)

2

)
(by (1.4))

� Lr (a,b)+L−r(a,b) (by (6.8))

< a +
(
Lr(a,b)+L−r(a,b)−a

)
(by (6.8))

< a +b . (by (1.5))

The proof is completed. �
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