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ABSTRACT HARDY INEQUALITIES: THE CASE p = 1

ALEJANDRO SANTACRUZ HIDALGO

(Communicated by J. Soria)

Abstract. The Boundedness of an abstract formulation of Hardy operators between Lebesgue
spaces over general measure spaces is studied and, when the domain is L1 , shown to be equiva-
lent to the existence of a Hardy inequality on the half line with general Borel measures. This is
done by extending the greatest decreasing minorant construction to general measure spaces de-
pending on a totally ordered collection of measurable sets, called an ordered core. A functional
description of the greatest decreasing minorant is given, and for a large class of ordered cores, a
pointwise description is provided. As an application, characterizations of Hardy inequalities for
metric measure spaces are given, we note that the metric measure space is not required to admit
a polar decomposition.

1. Introduction: Abstract Hardy inequalities

Given three Borel measures on [0,) , simple necessary and sufficient conditions
for which the inequality( ∫

[0,)

( ∫
[0,x]

f d
)q

d(x)

)1/q

� C
( ∫

[0,)

f p d
)1/p

(1)

holds for all positive measurable functions have been given by several authors. Letting
p = q > 1,  and  as the Lebesgue measure and d = 1/xd yields the classical
Hardy inequality proved in the 1925 paper [4], which holds with best constant p/(p−
1) . Muckenhoupt, in [8], showed that letting  and  be absolutely continuous with
respect to the Lebesgue measure, the inequality holds if and only if a one-parameter
supremum is finite. Bradley, in [3], extended the result for indices 1 < p � q <  .
Maz’ya, in [7] and Sinnamon, in [13], showed that for 0 < q < p and 1 < p <  , the
characterization is given by the finiteness of a single integral. In the case p > 1, simple
characterizations for inequality (1) can be found in [16].

Extensions have been made in several directions; results for more general mea-
sures, higher dimensions, and restrictions on the domain are available, see [6].

The case p = 1 must be treated differently. In [5, Theorem 3.1] the following
characterization is shown:
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THEOREM 1.1. If 0 < q < 1 = p, then the inequality (1) holds if and only if( ∫
[0,)

( ∫
[0,x]

1
w

d
) q

1−q

d(x)

)1/q

< , (2)

with w(x) = ess inf{w(t) : t ∈ [0,x]} , where d = d⊥ +wd and ⊥ ⊥  .

In this paper we are concerned with a large class of Hardy inequalities introduced
in [17], which require the following definition.

DEFINITION 1. Let (U,,) and (Y,T ,) be two  -finite measure spaces, a
map B : Y →  is called a core map provided it satisfies:

1. (Total order) The range of B is totally ordered by inclusion.

2. (Measurability) For each E ∈  the map y �→ (E ∩B(y)) is T -measurable.

3. ( -boundedness) There is a countable subset Y0 ⊆ Y such that
⋃

y∈Y B(y) =⋃
y∈Y0

B(y) .

4. (Finite measure) For all y ∈Y , (B(y)) <  .

Given a core map, an inequality of the form(∫
Y

( ∫
B(y)

f d
)q

d(y)

)1/q

� C
(∫

U

f p d
)1/p

, (3)

for all positive measurable functions f is called an Abstract Hardy inequality. Notice
that setting Y = U = [0,) and B(y) = [0,y] recovers inequality (1). In the case that
 =  , [17, Theorem 2.4] shows that the best constant C in (3) is the same as the best
constant in the inequality(∫ 

0

(∫ b(x)

0
f (t)dt

)q

dx

)1/q

� C
( ∫

0

f (t)p dt
)1/p

, for all f ∈ L+,

for an appropriate non-increasing function b : (0,) → [0,] . For p > 1, any abstract
Hardy inequality (3) can be reduced to the case where  and  coincide (see [17,
Theorem 5.1]), however, the reduction is not available for the case p = 1, as the for-
mula involves a power of the form 1

p−1 . Our main result is the following extension of
Theorem 1.1 to the abstract setting.

THEOREM A. For  -finite measure spaces (Y,T ,),(U,,),(U,,) and a
core map B : Y →  , let  = a +s , where da = ud and s ⊥  . Then the best
constant C in the inequality(∫

Y

( ∫
B(y)

f d
)q

d(y)

)1/q

� C
∫
U

f d , (4)



ABSTRACT HARDY INEQUALITIES: THE CASE p = 1 957

satisfies

C ≈
(∫

Y

( ∫
(B(z))�(B(y))

R

(
1
u

)
◦  ◦B(y)d(y)

) q
1−q

d(z)

) 1−q
q

,

for q ∈ (0,1) and

C = sup
s∈U

(
1
u
(s)
)
 ({y ∈ Y : s ∈ B(y)})1/q , for q ∈ [1,).

Here the least core decreasing majorant u is taken with respect to the core A =
{ /0}∪{B(y) : y ∈ Y} R is the transition map from Definition 3.

Our approach is to show that, for p = 1, an abstract Hardy inequality is equivalent
to a Hardy inequality with measures and give necessary and sufficient conditions for
such an inequality to hold.

In Section 2 we introduce the tools necessary to state our main result. The key
construction is the greatest core decreasing minorant of a function, which extends the
construction w of Theorem 1.1 to general measure spaces. This construction allows us
to reduce inequality (3) to a suitable inequality of the form (1). This is done in Section
3. In Section 4 we give explicit examples of the greatest core decreasing minorant and
apply the main result in Section 3 for Hardy inequalities in metric measure spaces. We
leave Section 5 for the proof of a functional description of the least core decreasing
minorant, which is the key step in proving our main result.

We finish this introduction by setting up notation and some basic results. For a
 -finite measure space (U,,) and a set A ⊆  we denote the  -ring generated
by A by (A ) . By L(A ) we mean the collection of all (equivalence classes of)
[−,]-valued (A )-measurable functions on U . The collection of non-negative
functions in L(A ) is written as L+(A ) . We reserve the notation L0

 for the collection
of -measurable functions and L+

 for the non-negative ones.
We write 0 � n ↑  to indicate the limit of a non-decreasing sequence in [0,]

and use n ↓  when the sequence is non-increasing. In the case of sets, we write
An ↑ A or An ↓ A if their characteristic functions converge increasingly or decreasingly
almost everywhere. We adopt the convention that expressions that evaluate to 0/0 will
be taken to be zero. For p∈ (0,] the expression Lp

 denotes the usual Lebesgue space
of  -measurable functions. For two positive constants C and D we write C ≈ D if
d1D � C � d2D for positive numbers d1,d2 .

For a function f ∈ L() , its distribution function,  f is given by

 f () =  ({s ∈U : | f (s)| > }) .
Following [1], if  f = g then for any p ∈ (0,) we have

∫
U
| f |p d =

∫
Y
|g|p d .

We consider a metric measure space to be the triple (X,d,) where d is a distance
function and  is a Borel measure with respect to the topology induced by the metric
d and for every a ∈ X and r > 0, the closed ball of radius r centered at a has finite
measure.
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2. Ordered cores

In this section, we set up our tools and notation to work with monotone functions
in general measure spaces without an order relation on the elements. First, we recall
some key definitions in [12, Definition 1.1]:

DEFINITION 2. Let (U,,) be a  -finite measure space. A family of sets A ⊆
 is a full  -bounded ordered core provided:

1. The family A is totally ordered by inclusion.

2. Every set E ∈ A has finite  -measure.

3. The space U can be realized as the union U =
⋃

E∈A0
E for some countable

subfamily A0 of A .

We will also need the following related concepts

• For a full ordered core A the relation �A on U is defined by u �A v if for all
A ∈ A , v ∈ A implies u ∈ A . When there is no ambiguity on the core, we omit
the subscript A . We will write u <A v whenever u �A v holds but v �A u
fails.

• For a full ordered core A there exists an extension M that does not modify the
order relation and is closed under arbitrary unions and intersections, provided the
result has finite measure and (A ) = (M ) (see [12, Lemma 4.1]). We will
refer to this extension as the maximal core induced by A .

• For a maximal core M and E ∈ (A ) , then E ∈ M is equivalent to: For all
u,v ∈U , if v ∈ E and u �A v , then u ∈ E . (see [12, Lemma 4.1 (c)])

• A function f : U → [0,] is called core-decreasing relative to A if it is (A )-
measurable and if for all u,v ∈U , u �A v implies f (u) � f (v) . The collection
of core-decreasing functions is denoted by L↓(A ) .

We define the collection of (equivalence classes of) functions

L1
locA , =

{
f ∈ L() :

∫
A
| f | d <  for all A ∈ A

}
.

Let B be the Borel  -algebra on [0,) . Then by virtue of [12, Theorem 6.4],
for every ordered core A there exists a Borel measure  induced by the core A and
linear maps R : L1

locA , → L1
loc, and Q : L1

loc, → L1
locA , satisfying:

1. If  ∈ L+(B)∪L1
loc, , then RQ =  up to a set of  -measure zero.

2. If f ∈ L+(A )∪
(
L1

locA , ∩L(A )
)

, then QR f = f up to a set of  -measure
zero.
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3. If f ∈ L+() ,  ∈ L+(B) and A ∈ A then∫
A

fQ()d =
∫

[0,(A)]

R( f ) d and
∫
U

fQ()d =
∫

[0,)

R( f ) d .

4. If f ,g ∈ L+
 ∩L1

locA , ∩L(A ) , then R( f g) = R( f )R(g) .

5. If f ,g∈ L+
 ∩L1

locA ,∩L(A ) satisfy
∫
A f d =

∫
A gd for all A∈A , then f = g

up to a set of zero  -measure.

Notice that condition (v) follows from (ii) and the fact that the equality∫
[0,x]

R f d =
∫

[0,x]

Rgd

holding for all x > 0 forces that the functions R f and Rg to be equal  -almost every-
where. We reserve a special name for the operators R,Q .

DEFINITION 3. For a  -finite measure space (U,,) with a  -bounded full
ordered core A , we denote transition maps the operators R and Q mentioned above.

We introduce our main technical tool, which extends the greatest non-increasing
minorant (see [15, Section 2]).

DEFINITION 4. For a -measurable function g , we call h ∈ L↓(A ) a greatest
core decreasing minorant of g if 0 � h � |g|  -a.e and for any w ∈ L↓(A ) satisfying
0 � w � |g| , then w � h  -a.e.

Note that a greatest core decreasing minorant is unique almost everywhere, pro-
vided it exists. The next lemma shows that such a greatest core decreasing minorant
always exists.

LEMMA 2.1. Every -measurable function g admits a greatest core-decreasing
minorant denoted g, which is unique up to a set of  measure zero.

Proof. Suppose that |g| � C <  and let {An}n∈N ⊆ A such that An ↑U . Set

n = sup

{∫
An

hd : h ∈ L↓(A ) and h � |g|
}

.

The collection defining the supremum is not empty as h = 0 is a core-decreasing func-
tion, moreover, the supremum is finite since

∫
An

hd � C(An) <  .

Let hn = 0 if n = 0, otherwise there exists hn ∈ L↓(A ) such that hn � |g| and
n − 1/n <

∫
An

hn d . Since the pointwise maximum of core decreasing functions is
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core decreasing, we may assume that {hn} is an increasing sequence. Let h = supn hn ,
which is clearly a core decreasing minorant of g .

To show that h is the greatest core decreasing minorant of g , let w be another core
decreasing minorant, then so is max{h,w} , thus

 >
∫
An

hd �
∫
An

hn d > n −1/n �
∫
An

max{w,h}d−1/n.

Then 1/n �
∫
An

(max{w,h}−h) d � 0. Let n →  to get max{w,h} = h almost

everywhere. This completes the proof in the case that g is bounded.
For the unbounded case, define gm = min{m, |g|} and let gm be its greatest core

decreasing minorantwhich exists since gm is bounded. Since gm−1 � min{m−1, |g|}�
min{m, |g|} = gm , then gm−1 � gm . Therefore {gm}m∈N is an increasing sequence.

Let h = supm∈N gm . Since each gm is bounded above by |g| , then h � |g| , thus
h is a core decreasing minorant of |g| . If w is another core decreasing minorant of
|g| , then min(m,w) is a core decreasing minorant of |gm| , thus min(m,w) � gm . Let
m →  to get w � h and complete the proof. �

The next theorem gives a functional description of the greatest core decreasing
minorant; it extends the corresponding statement in [15, Theorem 2.1] to a very large
class of functions. The proof follows a different argument than its real line counterpart
and is left for Section 5.

THEOREM 2.2. For -measurable non-negative functions f and u, then∫
U

f ud = inf

{∫
U

gud :
∫

E
gd �

∫
E

f d for all E ∈ A

}
.

As the necessary and sufficient conditions for the existence of a finite constant C
in the abstract Hardy inequality (3) depend on the computation of this greatest core de-
creasing minorant, the next result gives an explicit pointwise formula of this minorant,
in the case that the ordered core satisfies a mild condition. It is worth mentioning that
for the ordered core constructed in [12, Example 5.4], the following formula does not
hold. Hence, some conditions on the core must be required.

THEOREM 2.3. Let (U,,) be a measure space with a full  -bounded ordered
core A such that arbitrary unions and intersections in A are measurable in (A ) .
Then for any -measurable function g the formula

g(s) = ess inf


{|g(v)| : v �A s}

holds.

Proof. Let h(s) = ess inf {|g(v)| : v �A s} . Since the order relation A is un-
changed if we replace A by its maximal core, we may assume that A is maximal and
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that arbitrary unions and intersections of core sets are in the core, provided the result
has finite  -measure. It follows from the definition of the order relation that

{t ∈U : t <A s} =
⋃

{A ∈ A : s ∈ A} and {t ∈U : t �A s}
=
⋂

{A ∈ A : s ∈ A} .

By hypothesis, all of these sets are (A )-measurable for all s ∈U . Define [s] =
{t ∈U : t �A s and s �A t} , which is the difference of the sets above, so it is (A )-
measurable as well.

To show that h is a (A )-measurable function: Let  ∈ R and define O =
h−1 (,) , we proceed to show that O is (A )-measurable.

Clearly O ⊆⋃
x∈O {t ∈U : t �A x} . Conversely, if x ∈ O and y �A x , then

h(y) = ess inf


{t ∈U : t �A y} � ess inf


{t ∈U : t �A x} = h(x) > ,

hence {t ∈U : t <A x} ⊆ O , this proves that O =
⋃

x∈O {t ∈U : t <A x} , which by hy-
pothesis, is a (A )-measurable set. As  was arbitrary, then h is (A )-measurable.

Since h satisfies y �A x implies h(y) � h(x) and is (A )-measurable, it only
remains to show that h is a minorant of |g| and that it is optimal.

We show the inequality h(z) � |g(z)| by cases, depending on the measure of the
set [z] . If z ∈U satisfies ([z]) > 0, notice that if z′ ∈ [z] then h(z′) = h(z) . Hence, by
definition of essential infimum we have that  ({z′ ∈ [z] : |g(z′)| < h(z)}) = 0. There-
fore h � |g| on [z] up to a set of  -measure zero. Since  is a  -finite measure, the
collection of sets UD = {[z] : ([z]) > 0} must be countable. Hence, we have h � |g|
on its union up to a set of  -measure zero.

We must show the same inequality holds for the set U0 = {z ∈ U : ([z]) = 0} .
For this purpose: Fix  > 0,n,m ∈ N , {An} ∈ A satisfy U ⊆ ∪nAn and define

Sm,n = {z ∈U0∩Am : h(z)−|g(z)| >  and n � |g(z)| < (n+1)} .

By the previous estimate, we have that

 ({z ∈U : |g(z)| < h(z)} \∪m,nSm,n) = 0.

Since UD ∈ (A ) , is obtained by countably many unions of set differences of core
sets, RUD is a characteristic function by [12, Proposition 6.2(i)]. Since U = U0∪UD ,
we have that RU0 is also a characteristic function, and [0,) is a disjoint union of
some Borel sets L0,LD such that L0 = RU0 and LD = RUD .

We claim that any t ∈ [0,) satisfying  ({t}) > 0 must be contained in LD .
To see this, let E1,E2 satisfy (E1) =  (0,t) and (E2) =  (0,t] , Observe that any
A ∈ A must satisfy (A) � (E1) or (E2) � (A) . Define

M = ∪{A ∈ A : (A) < (E2)} and N = ∩{A ∈ A : (E1) < A}.
By hypothesis M,N ∈ A , by the choice of E1,E2 we must have that (A) < (E2)
implies (A) � (E1) and the monotone convergence theorem shows that (M) =



962 A. SANTACRUZ HIDALGO

(E1) . Similarly, the dominated convergence theorem shows that (N) = (E2) . Let
z ∈ M \N , then ([z]) =  (t) > 0, so M \N is contained in UD . An application of R
yields t ∈ LD .

Since the support of RSm,n is contained in LC , there are no atoms, thus the func-
tion

(y) =
∫

[y,]

RSm,n d

is continuous. Moreover, (0) = (Sm,n) and lim
y→

(y) = 0.

Suppose that (Sm,n) > 0 seeking a contradiction. Pick r1,r2 > 0 such that

(r1) = (Sm,n)
3 , (r2) = (Sm,n)

2 and let E ∈A satisfy r1 � (E) � r2 . Then (Sm,n∩
E) > 0 and (Sm,n \E) > 0. Let z ∈ Sm,n \E , then any t ∈ E satisfies t �A z , thus

h(z) = ess inf


{|g(t)| : t �A z} � ess inf


{|g(t)| : t ∈ E}
� ess inf


{|g(t)| : t ∈ E ∩Sm,n} � (n+1).

But since z ∈ Sm,n , we have h(z) >  + |g(t)| >  +n = (n+1) , which is a contra-
diction, therefore (Sm,n) = 0 for all m,n ∈ N . This shows that h(z) � |g(z)| almost
everywhere.

We have shown that h is a core-decreasing minorant of g , thus h � g. To show
the converse, let z ∈ U , and note that if t �A z , then g(z) � g(t) � |g(t)| , therefore
taking essential infimum yields g(z) � h(z) completing the proof. �

As a consequence of this result, we have the following examples where the or-
dered core satisfies that any arbitrary union or intersection of core sets can be reduced
to a countable one, therefore it is measurable. These examples show that the terms ap-
pearing in formula (1.1) and [9, Theorem 3.1] are a particular case of the greatest core
decreasing minorant.

EXAMPLE 1. Let U = [0,) , A = { /0}∪{[0,x] : x > 0} and  be a Borel mea-
sure, then

g(x) = ess inf
[0,x]

|g(t)| .

EXAMPLE 2. Let U = X be a metric measure space with distance function d ,
a ∈ X be any element,  be any Borel measure and the core

A = { /0}∪{Ba,r : r > 0}

where Ba,r = {x ∈ X : d(a,x) � r} . Then

g(x) = ess inf


{
|g(t)| : t ∈ Ba,|x|a

}
,

where |x|a = d(a,x) .
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3. Abstract Hardy inequalities with p = 1

Our approach to finding necessary and sufficient conditions on the measures for
inequality (3) is to find an equivalent inequality involving only two measures and a
weight function, then to use Theorem 2.2 to replace the weight function with a core
decreasing function. Finally, we find an equivalent Hardy inequality on the half line.

PROPOSITION 3.1. Fix q∈ (0,) , let  and  be  -finite measures over (U,)
and let  be a  -finite measure over (Y,) . Suppose B : Y →  is a core map and
p = 1 . Then there exists a positive -measurable function u such that the best constant
in inequality (3) is the same as the best constant in the inequality(∫

Y

( ∫
B(y)

f d
)q

d(y)

)1/q

� C
∫
U

f ud , ∀ f ∈ L+
 . (5)

Proof. First, we reduce the problem to the case U = ∪y∈Y B(y) . Fix f ∈ L+() ,
set U0 = ∪y∈Y B(y) and g = f U0 . Then(∫

Y

( ∫
B(y)

gd
)q

d(y)

)1/q

∫
U0

gd
=

(∫
Y

( ∫
B(y)

f d
)q

d(y)

)1/q

∫
U

gd

�

(∫
Y

( ∫
B(y)

f d
)q

d(y)

)1/q

∫
U

f d
.

Taking the supremum over all f ∈ L+() shows that

sup
f∈L+()

(∫
Y

( ∫
B(y)

f d
)q

d(y)

)1/q

∫
U

f d
� sup

f∈L+()

(∫
Y

( ∫
B(y)

f d
)q

d(y)

)1/q

∫
U0

f d
.

Conversely,

sup
f∈L+()

(∫
Y

( ∫
B(y)

f d
)q

d(y)

)1/q

∫
U0

f d
= sup

f U0∈L+()

(∫
Y

( ∫
B(y)

f d
)q

d(y)

)1/q

∫
U

f d

� sup
f∈L+()

(∫
Y

( ∫
B(y)

f d
)q

d(y)

)1/q

∫
U

f d
.
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Therefore, we may replace U with U0 in (4). The same argument shows that we may
replace U with U0 in (5). Hence, we may suppose that U = U0 .

An application of the Lesbesgue decomposition theorem shows that  = 1 +2 ,
with 2 �  and 1 ⊥  . Also U = U1 ∪U2 with U1 ∩U2 = /0 and 2(U1) = 0 =
(U2) . The Radon-Nikodym theorem provides a -measurable non-negative function
h such that d2 = hd . If E = {s ∈ U : h(s) = 0} we can define the function g =
h(U\E) and the sets V1 =U1 \E and V2 =U2∪E to get a decomposition d = gd+
d1 supported on V1 and V2 respectively, moreover g is never zero on V1 . Thus the
inequality (3) becomes(∫

Y

( ∫
B(y)

f gd +
∫

B(y)

f d1

)q

d(y)

) 1
q

� C
∫
U

f d , ∀ f ∈ L+
 .

Fix z ∈ Y and set f = (B(z)∩V2) , then if C is finite, we have

(∫
Y

(
1 (B(y)∩B(z))

)q

d(y)

) 1
q

=

(∫
Y

( ∫
B(y)∩B(z)

d1

)q

d(y)

) 1
q

� C (B(z)∩V2) = 0.

Therefore 1 (B(y)∩B(z)) = 0 for  -almost every y . Since this holds for all z ∈ Y ,
letting B(z) ↑U we get 1 (U) = 0.

Hence the inequality becomes(∫
Y

( ∫
B(y)

f gd
)q

d(y)

) 1
q

� C
∫
U

f d , ∀ f ∈ L+
 .

Since g is non-zero  -almost everywhere, then we can define u = 1
g , so d =

ud . Notice that the sets L+
 and L+

 are only dependent on  , thus the substitution
f �→ f u is a bijection from L+

 → L+
 and yields the inequality (5). This shows that

if the best constant in the inequality (3) is finite, then it is also the best constant in the
inequality (5). For the remaining case, notice that we can decompose d = ud+d2

for some measure 2 satisfying  ⊥ 2 . Therefore

sup
f∈L+



(∫
Y

( ∫
B(y)

f d
)q

d(y)

) 1
q

∫
U f d

� sup
f∈L+



(∫
Y

( ∫
B(y)

f d
)q

d(y)

) 1
q

∫
U f ud

,

thus if the best constant in inequality (5) is infinite, then it is also the best constant in
the inequality (3) and completes the proof. �

Now we replace the weight function u with its greatest core decreasing minorant.
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PROPOSITION 3.2. Given a  -finite measure  over (U,) , a  -finite measure
 over (Y,) , and a core map B :Y →  , the best constant in inequality (5) is the same
as the best constant in the inequality(∫

Y

( ∫
B(y)

f d
)q

d(y)

)1/q

� C
∫
U

f ud , (6)

where u is the greatest core-decreasing minorant of u with respect to the ordered core
A = { /0}∪{B(y) : y ∈ Y}.

Proof. Our goal is to show that

sup
f�0

(∫
Y

( ∫
B(y)

f d
)q

d(y)

)1/q

∫
U

f ud
= sup

f�0

(∫
Y

( ∫
B(y)

f d
)q

d(y)

)1/q

∫
U

f ud
.

Since u � u , the inequality ‘� ’ is clear. For the converse, using Theorem 2.2 we
get

sup
f�0

(∫
Y

( ∫
B(y)

f d
)q

d(y)

)1/q

∫
U

f ud
= sup

f�0

(∫
Y

( ∫
B(y)

f d
)q

d(y)

)1/q

inf

{∫
U

gud : f � g

}

= sup
f�0

sup

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∫
Y

( ∫
B(y)

f d
)q

d(y)

)1/q

∫
U

gud
: f � g

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

� sup
f�0

sup

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∫
Y

( ∫
B(y)

gd
)q

d(y)

)1/q

∫
U

gud
: f � g

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Here the symbol f � g means that
∫
E f d �

∫
E gd for every E ∈ A .

The right hand side is bounded above by sup f�0

(∫
Y

( ∫
B(y)

f d

)q

d(y)

)1/q

∫
U

f ud , this

completes the proof. �
We now reduce the problem to a Hardy inequality with measures over the half line.
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LEMMA 3.3. Given B,, as in the previous propositions, then there exist Borel
measures , on [0,) and a non-increasing function w finite  -almost everywhere,
such that the best constant in inequality (6) is the best constant in( ∫

[0,)

( ∫
[0,x]

f d
)q

d(x)

)1/q

� C
∫

[0,)

f wd , ∀ f ∈ L+
 (7)

Proof. Since B is a core map, then the function  :Y → [0,) defined by (y) =
(B(y)) is measurable. Let  be the push-forward Borel measure associated to  , that
is

(E) = 
(
−1(E)

)
, ∀E Borel.

Let  be the Borel measure associated to the ordered core A with enriched core
M , and R,Q the transition operators.

Fix a positive -measurable function f integrable over every core set A ∈A and
define the functions

H f (x) =
∫

[0,x]

R( f )d , and T f (y) =
∫

B(y)

f d .

We will show that H f and T f are equimeasurable with respect to the measures 
and  by computing their distribution functions. First notice that for all y ∈Y we have

(H f )◦(y) = H f
(

(
B(y)

))
=

∫
[0,(B(y))]

R( f )d =
∫

B(y)

f d = T f (y).

Fix  > 0 and define the sets

E = {x ∈ [0,) : H f (x) > } and F = {y ∈ Y : T (y) > } .

Let

 = sup

⎧⎪⎨⎪⎩x ∈ [0,) :
∫

[0,x]

R f d � 

⎫⎪⎬⎪⎭ .

Notice that by the monotone convergence theorem H f () �  . We claim that E =
(,) and that F = −1(E) .

Let x ∈ E , then since H f is increasing, we must have that x >  , thus E ⊆
(,) . Conversely, let x >  , then H f (x) >  , thus x ∈ E , this shows the first
equation.

For the second equation, notice that

F = {y ∈ Y : T (y) > } = {y ∈ Y : (H f )◦(y) > } .

So if y ∈ F , then (y) ∈ E , this shows F ⊆ −1(E) . Conversely, if y ∈ −1(E) ,
then T (y) >  , hence y ∈ F .
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Computation of the distribution functions yields

(E) = 
(
−1(E)

)
= (F).

Therefore H f and T f are equimeasurable, hence( ∫
[0,)

( ∫
[0,x]

R( f )d
)q

d

) 1
q

=

( ∫
[0,)

(
H f

)q

d

) 1
q

=

(∫
Y

(
T f

)q

d

) 1
q

=

(∫
Y

( ∫
B(y)

f d
)q

d

) 1
q

.

Since u is core-decreasing, we have∫
U

f ud =
∫

[0,)

R fRud .

Therefore if inequality (6) holds, so does( ∫
[0,)

( ∫
[0,x]

R f d
)q

d(x)

) 1
q

� C
∫

[0,)

R fRud , ∀ f ∈ L+
 .

Note that Ru must be finite almost everywhere, otherwise, the original measures are
not  -finite. The result follows by letting w = Ru and noting that R maps L+

 onto
L+
 . �

We are ready to prove the main result.

Proof (of Theorem A). Suppose that q ∈ (0,1) , then by Lemma 3.3 and Theorem
1.1 (Theorem 3.1 of [5]) the best constant is equivalent to( ∫

[0,)

( ∫
[0,x]

1
w

d
) q

1−q

d(x)

)1/q

,

where w = R(u) and  is the push-forward measure (see [2]) for the map (y) =
 ◦B(y) . Notice that w = w , and it follows from Definition 2.2 (iv) that 1

R(u) = R
(

1
u

)
,

then ∫
[0,x]

1
w

d =
∫

[0,)
R

(
1
u

)
[0,x] d =

∫
Y

R

(
1
u

)
◦(y)[0,x] ◦(y)d(y)

=
∫

(y)�x

R

(
1
u

)
◦(y)d(y).
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Thus ∫
[0,)

( ∫
[0,x]

1
w

d
) q

1−q

d(x) =
∫
Y

( ∫
(y)�(z)

R

(
1
u

)
◦(y)d(y)

) q
1−q

d(z)

and completes the proof for the case q ∈ (0,1) .
The case q ∈ [1,) follows directly from duality and we include it for the sake of

completeness.
By Proposition 3.1 the best constant in inequality (4) is the norm of the integral

operator K f (y) =
∫
U k(y,s) f (s)d (s) acting from L1

 → Lq
 where d = ud and

k(y,s) = 1
u(s)B(y)(s) . By duality, it is the best constant in the inequality∥∥∥∥∥∥

∫
Y

k(y, ·)h(y)d(y)

∥∥∥∥∥∥
L

� C

(∫
Y

hq′ d
) 1

q′
,∀h ∈ L+

 .

Define s(y) = 1 if s ∈ B(y) and s(y) = 0 otherwise. Divide both sides of the equa-
tion by ‖h‖

Lq′


to get

sup

⎧⎨⎩ 1
u(s)

∫
Y

s(y)
h(y)
‖h‖

Lq′


d(y) : s ∈U

⎫⎬⎭� C.

Taking supremum over non-zero positive functions h yields

sup
s∈U

1
u(s)

‖s‖Lq

� C,

which is the same as

C � sup
s∈U

(
1
u
(s)
)
 ({y ∈Y : s ∈ B(y)})1/q .

For the reverse inequality, an application of Minkowski’s integral inequality yields⎛⎝∫
Y

(∫
U

k(s,y) f (s)d (s)
)q

d(y)

⎞⎠1/q

�

⎛⎝∫
U

(∫
Y
s(y)d(y)

)1/q f (s)
u(s)

d (s)

⎞⎠
� sup

s∈U

(
1
u
(s)
)
 ({y ∈ Y : s ∈ B(y)})1/q

×
∫
U

f (s)d (s)

hence C � sups∈U

(
1
u (s)

)
 ({y ∈ Y : s ∈ B(y)})1/q and proves the statement for

q ∈ [1,) . �
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4. Applications to metric measure spaces

In this section, we show that the framework of abstract Hardy inequalities can be
used to give different proofs to [10, Theorem 2.1 Condition D1 ], [11, Theorem 2.1] and
[9, Theorem 3.1]. These theorems give necessary and sufficient conditions for Hardy
inequalities to hold in metric measure spaces; they cover three cases depending on the
indices p and q , provided the existence of a locally integrable function  ∈ L1

loc such
that for all f ∈ L1(X) the following polar decomposition at a ∈ X holds:∫

X

f d =
∫ 

0

∫
r

f (r,) (r,)drdr,

for a family of measures dr , where r = {x ∈ X : d(x,a) = r} .
Our new proofs show that the polar decomposition hypothesis is not required so

the results hold in all metric measure spaces.
We begin with the case p > 1, extending [10, Theorem 2.1 Condition D1 ], [11,

Theorem 2.1] to all metric measure spaces.

THEOREM 4.1. Let  be a  -finite measure on a metric measure space X . Fix
a ∈ X and let p ∈ (1,) , q > 0 , q = 1 and  ,v be measurable functions, positive
 -almost everywhere such that  is integrable over X\Ba,|x|a and v1−p′ is integrable
over Ba,|x|a for all x ∈ X . Then the Hardy inequality

(∫
X

( ∫
Ba,|x|a

f (y)d(y)
)q

(x)d(x)

) 1
q

� C

(∫
X

f (x)pv(x)d(x)
) 1

p

, (8)

holds for all f ∈ L+
 if and only if p � q and

sup
x=a

⎧⎪⎨⎪⎩
( ∫

X\Ba,|x|a

 d
) 1

q
( ∫

Ba,|x|a

v1−p′ d
) 1

p′

⎫⎪⎬⎪⎭< ,

0 < q < 1 < p and

∫
X

( ∫
X\Ba,|x|a

 d
) r

p
( ∫

Ba,|x|a

v1−p′ d
) r

p′
u(s)d(s) < ,

or 1 < q < p and

∫
X

( ∫
X\Ba,|x|a

 d
) r

q
( ∫

Ba,|x|a

v1−p′ d
) r

q′
v1−p′(s)d(s) < .

Here 1
r = 1

q − 1
p .
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Proof. By hypothesis v > 0 and v <   -almost everywhere, then the mapping
f �→ v1−p′ f is a bijection on L+

 . Then, the inequality (8) is equivalent to(∫
X

( ∫
Ba,|x|a

f (y)v1−p′(y)d(y)
)q

(x)d(x)

) 1
q

� C

(∫
X

f (x)pv1−p′(x)d(x)
) 1

p

.

Above we have used the identity vp(1−p′)v = v1−p′ . Let d = v1−p′d and define the
map B : X →  by

B(x) = Ba, |x|a.
The image of B is a totally ordered set. By hypothesis (B(x)) <  for each x ∈ X .
Therefore, it is an ordered core with respect to the measure  . We get the equivalent
abstract Hardy inequality(∫

X

( ∫
Ba,|y|a

f d
)q

(y)d(y)

) 1
q

� C

(∫
X

f p d
) 1

p

, ∀ f ∈ L+
 .

By definition of  this is equivalent to(∫
X

( ∫
Ba,|y|a

f v1−p′ d
)q

(y)d(y)

) 1
q

� C

(∫
X

f pv1−p′ d
) 1

p

, ∀ f ∈ L+
 . (9)

Let  be the measure on [0,) induced by the core, so that for every M in the core∫
[0,x]

R f d =
∫
M

f v1−p′ d , where x =
∫
M

v1−p′ d .

We claim that inequality (9) is equivalent to the Hardy inequality( ∫
[0,)

( ∫
[0,y]

gd
)q

R
( 

v1−p′

)
d (y)

) 1
q

� C

( ∫
[0,)

gpd
) 1

p

, ∀g ∈ L+
 . (10)

By [17, Theorem 2.4], it suffices to show that the normal form parameters of in-
equalities (9) and (10) coincide. Hence, it suffices to show that the maps

b1(s) =
∫

Ba,|s|a

v1−p′ d and b2(x) =  ([0,x]),

have the same distribution functions with respect to the measures  d and R
(


v1−p′

)
d

respectively.
Fix t > 0 and consider the sets E1 = b−1

1 (t,) and E2 = b−1
2 (t,) , we give a

characterization for these sets.
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Define the set W as follows

W =
⋃⎧⎪⎨⎪⎩Ba,|s|a :

∫
Ba,|s|a

v1−p′ d � t

⎫⎪⎬⎪⎭ .

If z ∈ E1 , then b1(z) > t , thus z ∈ W , conversely if z ∈W then b1(z) � t , therefore
z ∈ E1 . Hence Wc = E1 . Since W is a union of closed balls centered at a , then there
exists a sequence sn such that B(a,sn) ↑W . Let tn =

∫
B(a,sn)

v1−p′ d .

Let t̃ be defined as

t̃ = sup

⎧⎪⎨⎪⎩z � t : z =
∫

Ba,|s|a

v1−p′ d for some s ∈ X

⎫⎪⎬⎪⎭ ,

hence t̃ =  [0, t] .
Therefore, the action of R and two applications of the monotone convergence

theorem show that∫
Ec

1

 d = sup
n∈N

∫
B(a,sn)

 d = sup
n∈N

∫
[0,tn]

R
( 

v1−p′

)
d =

∫
[0,t]

R
( 

v1−p′

)
d

=
∫
Ec

2

R
( 

v1−p′

)
d .

Since by hypothesis
∫
Ec

1

 d <  , then we have that

∫
b−1
1 (t,)

 d =
∫

b−1
2 (t,)

R
( 

v1−p′

)
d .

It follows that the distribution functions coincide which proves that the Hardy inequal-
ities (9) and (10) have the same normal form parameter, therefore they are equivalent.

For all the index cases, we can apply [14, Theorem 7.1] in the case 1 < p � q < ,
inequality (10) holds if and only if

sup
x

( ∫
[x,)

R
( 

v1−p′

)
d (t)

) 1
q
( ∫

[0,x]

d
) 1

p′
< ,

which is equivalent to

sup
s =a

( ∫
X\Ba,|s|a

 d
) 1

q
( ∫

Ba,|s|a

v1−p′ d
) 1

p′
< 
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In the case 0 < q < 1 < p <  , another application of [14, Theorem 7.1] (be
mindful of a typo in the exponents), inequality (10) holds if and only if∫

[0,)

( ∫
[x,)

R
( 

v1−p′

)
d

) r
p
( ∫

[0,x]

d
) r

p′
R
( 

v1−p′

)
d (x) < ,

which is equivalent to∫
X

( ∫
X\Ba,|s|a

 d
) r

p
( ∫

Ba,|s|a

v1−p′ d
) r

p′
(s)d(s) < .

In the case 1 < q < p we have that inequality (10) holds if and only if∫
[0,)

( ∫
[x,)

R
( 

v1−p′

)
d

) r
q
( ∫

[0,x]

d
) r

q′
d (x) < 

which is equivalent to∫
X

( ∫
X\Ba,|s|a

 d
) r

q
( ∫

Ba,|s|a

v1−p′ d
) r

q′
v1−p′ d(s) < 

completing the proof. �
For the case p = 1, our Theorem A implies the following characterization

COROLLARY 4.2. Let  be a  -finite measure on a metric measure space X . Fix
a ∈ X , let q ∈ (0,) and  ,v be measurable functions, positive  -almost everywhere
satisfying that  is integrable over X \Ba,|x|a and v1−p′ is integrable over Ba,|x|a for
each x ∈ X . Then the best constant in the Hardy inequality(∫

X

( ∫
Ba,|x|a

f (y)d(y)
)q

(x)d(x)

) 1
q

� C
∫
X

f (x)v(x)d(x), ∀ f ∈ L+


satisfies

C ≈
(∫

X

( ∫
z�A x

1
v
(x)(x)d(x)

) q
1−q

(z)d(z)

) 1−q
q

, for q ∈ (0,1),

and

C = sup
x∈X

(
1
v
(x)

)( ∫
x�A t

(t)d(t)
)1/q

, for q ∈ [1,).

Here v(x) = ess inf{v(t) : t ∈ Ba,|x|a} , x �A t means Ba,|x|a ⊆ B(a, |t|) and Ba,|x|a =
{z ∈ X : dist(a,z) � dist(a,x)} .
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Proof. Let A = { /0}∪ {Ba,|x|a}x∈X be the full ordered core induced by the core
map x → Ba,|x|a . Let d = d , d = vd and  be the measure on [0,) induced
by the ordered core.

Consider the function  : X → [0,) defined by (x) = 
(
Ba,|x|a

)
and let  be

the pushforward measure. Then, if y = (x) we have


(
[0,y]

)
= 

(
−1([0,y])

)
=

∫
(t)�y

d(t)

=
∫

Ba,|x|a

d = 
(
[0,(x)]

)
= 

(
[0,y]

)
.

It follows that the Borel measures  and  coincide and are finite over [0,y] for all
y > 0, therefore  is the pushforward measure of  .

We now show that R
(

1
v

)
= 1

v ◦ up to a set of  -measure zero.

Indeed ∫
Ba,|x|a

1
v

d =
∫

(t)�(x)

1
v
(t)d(t) =

∫
[0,(x)]

R

(
1
v

)
(t)d (t)

=
∫

[0,)

R

(
1
v

)
(t)[0,(x)](t)d (t)

=
∫
X

R

(
1
v

)
◦(t)[0,(x)] ◦(t)d(t)

=
∫

(t)�(x)

R

(
1
v

)
◦(t)d(t)

=
∫

Ba,|x|a

R

(
1
v

)
◦(t)d(t).

Since the equality holds for all core sets, then R
(

1
v

)
= 1

v ◦ almost everywhere.

Then for q ∈ (0,1) , Theorem A yields

C ≈
(∫

X

( ∫
(z)�(x)

R

(
1
v

)
◦(x)(x)d

) q
1−q

(z)d(z)

) 1−q
q

≈
(∫

X

( ∫
z�A x

1
v
(x)(x)d

) q
1−q

(z)d(z)

) 1−q
q

.

The statement for q ∈ [1,) follows directly from Theorem A. The description of
v follows from Example 2.2 and completes the proof. �
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5. Proof of Theorem 2.2

Before proving the functional description of the greatest core decreasing majorant,
we need a technical lemma, which will be the key in the ‘pushing mass’ technique
needed to prove Theorem 2.2.

LEMMA 5.1. Let u be a non-negative measurable function, a > 0 and A = {s ∈
U : u(s) � a} such that 0 < (A) . Then, for all  > 0 and B ∈ M such that (A) <
(B) , the set

{s ∈ B\A : u(s)+  > u(s)}
has positive  -measure.

Proof. Since u is core-decreasing, up to a set of  -measure zero, if s ∈ A and
t �A s then t ∈A . Therefore A coincides with a set in M up to measure zero. Suppose
that the statement does not hold, then there exists some  > 0 and B ∈ M such that
(A) < (B) and u(s)+  � u(s) for  -almost all s ∈ B\A .

Let b = ess infB\A u(s) , since u is core-decreasing, then a > b , equality does not
hold, otherwise (B \A) = 0. Without loss of generality, we may assume that  <
a−b , pick n big enough, such that a−b

n <  and define the function

h = u(U\(B\A)) +
n


k=1

(
b+ k

a−b
n

)
(Ek−1\Ek),

where Ek = {s∈U : u(s) � b+k a−b
n } . Notice that h is core-decreasing by construction

and h � u but h(s)−u(s) <  , hence h is also a minorant of u , by maximality we get
h = u . Since (B\A) > 0, there exists some k such that (Ek−1 \Ek) > 0, and notice
that k = n , now define

h2 = u(U\(Ek−1\Ek) +
(

b+(k+1)
a−b

n

)
(Ek−1\Ek).

By the same argument as before, h2 is a core-decreasing minorant of u , but h2 is
strictly greater than u , a contradiction. �

We now ‘push the mass to the left’ of f to an appropriate function g to achieve
the desired infimum.

LEMMA 5.2. Let u and f be non-negative measurable functions such that the
integral

∫
U f ud is finite. Then, for any  > 0 , there exists a measurable non-negative

function g such that
∫
E gd �

∫
E f d for any E ∈ A and∫

U
gud−  <

∫
U

f ud .
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Proof. Fix  > 0. Since we assume that
∫
U f ud <  , there exists  > 1 such

that

∫
U

f ud <

∫
U

f ud+

2

Define the sequence {An}n∈Z as

An =
{
s ∈U : u(s) � n+1} , for each n ∈ Z.

Since u is core decreasing, the sets An ∈ M . Define the sets {Jn}n∈Z∪{±} by

J =
⋂
n∈Z

An, Jn = An \An+1, for each n ∈ Z, and J− = U \
⋃
n∈Z

Jn.

Notice that the sets {Jn}n∈Z∪{±} are disjoint and cover the whole space U . Also
J ∈ A and the complement of J− also belongs in A . It will be useful to consider
the presentation

J = {s ∈U : u(s) = } , J− = {s ∈U : u(s) = 0} , and

Jn =
{
s ∈U : n � u(s) < n+1} , for each n ∈ Z.

Define the functions fn = f Jn for each n ∈ Z∪ {±} . Our goal is to build non-
negative functions gn satisfying∫

E
gn d �

∫
E

fn d , for all E ∈ A and each n ∈ Z∪{±}, (11)∫
U

gnud � 
∫
U

fnud , for each n ∈ Z∪{}, and (12)∫
U

g−ud � 
2
. (13)

Since f = n∈Z∪{±} fn , the function g = n∈Z∪{±} gn clearly satisfies
∫
E gd �∫

E f d for all E ∈ A and∫
U

gud = 
n∈Z∪{±}

∫
U

gnud �  
n∈Z∪{}

∫
U

fnud+

2

= 
∫
U

f ud+

2

<

∫
U

f ud+ .

For any n ∈ Z∪ {} such that fn = 0 we define gn = 0 and it clearly satisfies in-
equalities (11) and (12). For the other cases, since

∫
U f ud <  , we must have that

f = 0.
Fix n ∈ Z such that that fn = 0  -almost everywhere. This means that 0 <

(Jn) = (An)− (An+1) . Since

>

∫
U

f ud �
∫

Jn
f ud � n

∫
Jn

f d ,

thus
∫
Jn f d <  .
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Let
n = inf{(E) : (An+1) < (E),E ∈ M , and E ⊆ An} .

There are two cases, either n > (An+1) or n = (An+1) . In the first case, pick
Cn ∈ M such that (Cn) = n . An application of Lemma 5.1 with a = n+1 , b = n

B = An , A = An+1 and C = Cn shows that the set

Hn =
{
s ∈ (Cn \An+1) : n � u(s) � u(s) < n+1}

has positive  -measure. Define

gn =
(∫

Jn
f d

) Hn

(Hn)
.

For each E ∈ A ,

∫
E

gn d =

{
0, if (E) � (An+1)∫
Jn f d , otherwise

=
∫

E
fn d ,

therefore gn satisfies the inequality (11). Also

∫
U

gnud =

∫
Jn f d
(Hn)

∫
Hn

ud < n+1
∫

Jn
f d = 

∫
Jn
n f d � 

∫
Jn

fnud ,

proving that gn satisfies the inequality (12).
The remaining case is when n = (An+1) . We prove by induction that there

exists a sequence of sets {Hn,m}m∈N+ of positive  -measure and {Cn,m}m∈N such that
Cn,m ⊆ An , (Cn,m) is strictly decreasing to (An+1) and

Hn,m ⊆ {
s ∈Cn,m−1 \Cn,m : n � u(s) � u(s) < n+1} .

We show the induction step first. Suppose that the sequences are constructed up to an
integer M0 > 0. Apply Lemma 5.1 with a = n+1 , b = n B = An , A = An+1 and
C = Cn,M0 , to get that the set

KM0 =
{
s ∈ (Cn,M0 \An+1) : n � u(s) � u(s) < n+1}

has positive  -measure. Since n = (An+1) , there exists a set Cn,M0+1 ∈ M such

that (Cn,M0+1 \An+1) <
(KM0 )

2 . Another application of Lemma 5.1 with a = n+1 ,
b = n B = An , A = An+1 and C = Cn,M0+1 provides a set

KM0+1 =
{
s ∈ (Cn,M0+1 \An+1) : n � u(s) � u(s) < n+1}

of positive  -measure. Notice that KM0+1 ⊆ KM0 but (KM0+1) < (KM0) , therefore
the difference has positive measure. Set Hn,M0+1 = KM0+1 \KM0 to prove the induction
step. The base case follows the same argument, letting M0 = 0 and Cn,0 = An .
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Define the function

gn =



m=2

( ∫
Cn,m−2\Cn,m−1

f d
) Hn,m

(Hn,m)
.

Let E ∈ A , if (E) � n , then both
∫
E fn d and

∫
E gn d vanish. If (E) � (An) ,

then ∫
E

gn d =



m=2

( ∫
Cn,m−2\Cn,m−1

f d
)

=
∫

Jn
f d =

∫
E

fn d .

In the case that (E) ∈ (
n,(An)

)
, there exists some ME ∈ N such that (E) ∈(

(CME+1),(CME )
]
, hence

∫
E

gn d �
∫

CME+1

gn d =



m=CME +1

( ∫
Cn,m−2\Cn,m−1

f d
)

=
∫

CME \An+1

f d �
∫

E\An+1

f d

=
∫

E
fn d .

Therefore gn satisfies the inequality (11). Also∫
U

gnud =



m=2

( ∫
Cn,m−2\Cn,m−1

f d
)∫

Hm
ud

(Hm)
�




m=2

( ∫
Cn,m−2\Cn,m−1

f d
)
n+1

= n+1

∫
Jn

f d = 
∫

Jn
n f d � 

∫
Jn

fnu.

proving that gn satisfies the inequality (12).
All that remains is defining the function g− whenever the function f J− is not

zero  -almost everywhere. Let U0 = ∪n∈ZJn . Since (J−) > 0, then there exists
some E ∈ A such that U0 ⊆ A , therefore (U0) <  , thus U0 ∈ M . If there exists
a set of positive measure W such that u(s) = 0 for all s ∈W and (W ∩E) > 0 for
every E satisfying (E) > (U0) then we define

g− = W .

In this case
∫
U g−ud = 0, clearly satisfying the inequality (13). For any E ∈ A , if

(E) � (U0) then

0 =
∫

E
f− �

∫
E

g−

and if (E) > (U0) , then

 =
∫

E
g−d �

∫
E

f− d ,

thus g− satisfies the inequality (11).
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If such set W does not exist, we will find a disjoint sequence of sets of positive
measure {Wk}k∈N+ , such that

Wk ⊆
{

s ∈U : u(s) < 2−(k+1)
}

, (14)

also satisfying that for any E ∈ A such that (E) > (U0) , then infinitely many sets
in the sequence are subsets of E . The desired function will be

g− =



k=1

Wk

(Wk)
.

Then ∫
U

g−ud =



k=1

∫
Wk

ud
(Wk)

<

2




k=1

2−k =

2
,

satisfying the inequality (13). For any E ∈ A , if (E) � (U0) then

0 =
∫

E
f− �

∫
E

g−

and if (E) > (U0) , then

 = 
Wk⊆E

1 =
∫

E
g−d �

∫
E

f− d ,

thus g− satisfies the inequality (11). We now show that either the set W exists or we
build the sequence {Wk} .

Since A−n increases to U0 whenever n ↑ , we have that (A−n) ↑ (U0) . There
are two possibilities, either (A−n) < (U0) for all n∈N or there exists some N0 such
that (A−N0) = (U0) .

In the first case, for any j ∈ N
+ the set

Gj =
{

s ∈U0 : u(s) < 2−( j+1)
}

,

has positive  -measure. Otherwise, the function h = 2−( j+1)U0 is a core decreasing
minorant of u , thus h � u . Hence, for any n large enough such that −n < 2−( j+1)

we would have (A−n) = (U0) arriving at a contradiction. Notice that {Gj} is a
decreasing sequence, let W = ∩Gj . If (W ) > 0, then there is nothing left to prove. If
(W ) = 0, then we may choose a subsequence {Gjk}k such that the sequence of mea-
sures {(Gjk)} is strictly decreasing. Then the sequence Wk = Gjk \Gjk+1 is disjoint
and satisfies formula (14).

It remains to show that the set W or the sequence {Wk} exist whenever there is a
positive integer k0 such that (A−k0) = (U0) , which implies that −k0 � u(s) � u(s)
for almost every s ∈U0 . Let

− = inf{(E) : E ∈ M and (E) > (U0)} .
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Once more, we consider the two possibilities; (U0) < − or if (U0) = − .
In the first case, let A− ∈M satisfy (A−) = − . Pick r0 large enough, such

that 2−r0 < −k0 . For any j > r0 , apply Lemma 5.1 with a = 2− j , b = 0, A = U0 ,
B = U and C = A− to get that the set

Gj =
{
s ∈ (A− \U0) : u(s) < 2− j}

has positive  -measure. Let W = ∩k>r0Gj . If (W ) > 0 there is nothing to prove,
so we drop to a subsequence with strictly decreasing measures and build the sequence
{Wk} like it was done before. Note that for any E ∈ A satisfying (E) > (U0) , then
(A−) � (E) , so every set in the sequence Wk is contained in E .

We are left with the final case; when (U0) =− . Choose a sequence {Ej}⊆M
such that (Ej) ↓ n , and r0 large enough so 2−r0 < −k0 . For any j > r0 , apply
Lemma 5.1 with a = 2− j , b = 0, A = U0 , B =U and C = Ej to get that the set

Gj =
{
s ∈ (Ej \U0) : u(s) < 2− j}

has positive  -measure. Since (Gj) � (Ej \U0) , we get (Gj) ↓ 0. Once more
we can drop to a subsequence and repeat the previous process to obtain disjoint sets of
positive measure Wj satisfying formula (14) such that Wj ⊆ Ej . Therefore, for any E
such (E) > (U0) , there are infinitely many of such sets Wj contained in E . This
finishes the proof. �

With this, we finish the functional description of the greatest core decreasing mi-
norant

Proof (of Theorem 2.2). If g satisfies
∫
E gd �

∫
E f d for all E ∈ A then

∫
U

gud �
∫
U

gud since u � u

�
∫
U

f ud since u is core-decreasing.

Infimum over all g yields the inequality

∫
U

f ud � inf

{∫
U

gud :
∫

E
gd �

∫
E

f d for all E ∈ A

}
.

If =
∫
U f ud , then equality clearly follows. So we may suppose that

∫
U f ud < ,

and in this case, equality follows from Lemma 5.2. �
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