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ABSTRACT HARDY INEQUALITIES: THE CASE p=1

ALEJANDRO SANTACRUZ HIDALGO

(Communicated by J. Soria)

Abstract. The Boundedness of an abstract formulation of Hardy operators between Lebesgue
spaces over general measure spaces is studied and, when the domain is L', shown to be equiva-
lent to the existence of a Hardy inequality on the half line with general Borel measures. This is
done by extending the greatest decreasing minorant construction to general measure spaces de-
pending on a totally ordered collection of measurable sets, called an ordered core. A functional
description of the greatest decreasing minorant is given, and for a large class of ordered cores, a
pointwise description is provided. As an application, characterizations of Hardy inequalities for
metric measure spaces are given, we note that the metric measure space is not required to admit
a polar decomposition.

1. Introduction: Abstract Hardy inequalities

Given three Borel measures on [0,c0), simple necessary and sufficient conditions
for which the inequality

1/q

/ (/fdxl)qdv(x) gc(/fpdn>l/p (1)

{0,00) 0] [0,%2)

holds for all positive measurable functions have been given by several authors. Letting
p=g¢q>1, A and n as the Lebesgue measure and dv = 1/xdA yields the classical
Hardy inequality proved in the 1925 paper [4], which holds with best constant p/(p —
1). Muckenhoupt, in [8], showed that letting v and 1 be absolutely continuous with
respect to the Lebesgue measure, the inequality holds if and only if a one-parameter
supremum 1is finite. Bradley, in [3], extended the result for indices 1 < p < g < oo.
Maz’ya, in [7] and Sinnamon, in [13], showed that for 0 < g < p and 1 < p < oo, the
characterization is given by the finiteness of a single integral. In the case p > 1, simple
characterizations for inequality (1) can be found in [16].

Extensions have been made in several directions; results for more general mea-
sures, higher dimensions, and restrictions on the domain are available, see [6].

The case p = 1 must be treated differently. In [5, Theorem 3.1] the following
characterization is shown:
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THEOREM 1.1. If 0 < g < 1 = p, then the inequality (1) holds if and only if

(/ (/ dv) E v(x)>l/q<oo, )

[0,]
with w(x) = essinfy {w(t) : € [0,x]}, where dn = dA*+ +wdA and A+ 1 A.
In this paper we are concerned with a large class of Hardy inequalities introduced
in [17], which require the following definition.
DEFINITION 1. Let (U,2,u) and (Y,.7,7) be two o -finite measure spaces, a
map B:Y — X is called a core map provided it satisfies:
1. (Total order) The range of B is totally ordered by inclusion.
2. (Measurability) For each E € X the map y — u(ENB(y)) is 7 -measurable.

3. (o -boundedness) There is a countable subset Yo CY such that Uyey B(y) =

UyGY() B(y) .
4. (Finite measure) Forall y € Y, u(B(y)) < eo.

Given a core map, an inequality of the form

(J( frayam)“<c(fran) o
B(y) U

Y

for all positive measurable functions f is called an Abstract Hardy inequality. Notice
that setting Y = U = [0,e0) and B(y) = [0,y] recovers inequality (1). In the case that
u=mn,[17, Theorem 2.4] shows that the best constant C in (3) is the same as the best
constant in the inequality

b(x) q 1/q < 1/p
(/ ( f()dt) dx> <c(/f(t)1’dt) . forall fe L™,
0 0 5

for an appropriate non-increasing function b : (0,e0) — [0,ec]. For p > 1, any abstract
Hardy inequality (3) can be reduced to the case where 1 and u coincide (see [17,
Theorem 5.1]), however, the reduction is not available for the case p = 1, as the for-
mula involves a power of the form ﬁ . Our main result is the following extension of
Theorem 1.1 to the abstract setting.

THEOREM A. For o -finite measure spaces (Y, 7 ,7),(U,Z,u),(U,Z,n) and a
coremap B:Y — X, let 1 = Ny + Ns, where dng, = udu and ng L u. Then the best
constant C in the inequality

(/(/fdu> d(y ) N C/fdm )
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satisfies

Y

c~</( / R(i)oquy)dr(y))‘idr(z))q,

Y u(B(x)<p(B(y)

for q€(0,1) and

seU \ U

C =sup (l(s)> t({yeY:seBO)NY, forqge|l,).

Here the least core decreasing majorant u is taken with respect to the core </ =
{0}y U{B(y):y €Y} R is the transition map from Definition 3.

Our approach is to show that, for p = 1, an abstract Hardy inequality is equivalent
to a Hardy inequality with measures and give necessary and sufficient conditions for
such an inequality to hold.

In Section 2 we introduce the tools necessary to state our main result. The key
construction is the greatest core decreasing minorant of a function, which extends the
construction w of Theorem 1.1 to general measure spaces. This construction allows us
to reduce inequality (3) to a suitable inequality of the form (1). This is done in Section
3. In Section 4 we give explicit examples of the greatest core decreasing minorant and
apply the main result in Section 3 for Hardy inequalities in metric measure spaces. We
leave Section 5 for the proof of a functional description of the least core decreasing
minorant, which is the key step in proving our main result.

We finish this introduction by setting up notation and some basic results. For a
o -finite measure space (U,X,u) and a set <7 C X we denote the o -ring generated
by &/ by o(<«/). By L(«/) we mean the collection of all (equivalence classes of)
[—o0,00]-valued o(</)-measurable functions on U. The collection of non-negative
functions in L(7) is written as L™ (</). We reserve the notation Lg for the collection
of X-measurable functions and LZ for the non-negative ones.

We write 0 < o, T @ to indicate the limit of a non-decreasing sequence in [0, o]
and use o | o when the sequence is non-increasing. In the case of sets, we write
A, TA or A, | A if their characteristic functions converge increasingly or decreasingly
almost everywhere. We adopt the convention that expressions that evaluate to 0/0 will
be taken to be zero. For p € (0,e] the expression Lﬁ denotes the usual Lebesgue space
of u-measurable functions. For two positive constants C and D we write C ~ D if
d1D < C < d,D for positive numbers dy,d; .

For a function f € L(X), its distribution function, uy is given by

(o) =pu({seU:[f(s)| > a}).
Following [1], if pif = 7, then for any p € (0,e0) we have [|f|” du = [|g|’ dt.
U Y

We consider a metric measure space to be the triple (X,d, u) where d is a distance
function and u is a Borel measure with respect to the topology induced by the metric
d and for every a € X and r > 0, the closed ball of radius r centered at a has finite
measure.
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2. Ordered cores

In this section, we set up our tools and notation to work with monotone functions
in general measure spaces without an order relation on the elements. First, we recall
some key definitions in [12, Definition 1.1]:

DEFINITION 2. Let (U,X,u) be a o-finite measure space. A family of sets o7 C
Y is a full o -bounded ordered core provided:

1. The family <7 is totally ordered by inclusion.
2. Every set E € o/ has finite u-measure.

3. The space U can be realized as the union U = [Jgey, E for some countable
subfamily Ag of 7.

We will also need the following related concepts

e For a full ordered core o7 the relation <., on U is defined by u <, v if for all
A€o/, veA implies u € A. When there is no ambiguity on the core, we omit
the subscript <. We will write u <., v whenever u <, v holds but v <, u
fails.

e For a full ordered core o7 there exists an extension .7 that does not modify the
order relation and is closed under arbitrary unions and intersections, provided the
result has finite measure and 6(«7) = o(.#) (see [12, Lemma 4.1]). We will
refer to this extension as the maximal core induced by o7 .

e For a maximal core . and E € 6(</), then E € . is equivalent to: For all
u,veU,if veE and u <, v,then u € E. (see [12, Lemma 4.1 (¢)])

e A function f: U — [0,c0] is called core-decreasing relative to <7 if itis o(</)-
measurable and if for all u,v € U, u <. v implies f(u) > f(v). The collection
of core-decreasing functions is denoted by L' (7).

We define the collection of (equivalence classes of) functions

Lhe = {feL(Z) :/A\f\ dyt < oo for all A ed}.

Let A be the Borel o -algebra on [0,e0). Then by virtue of [12, Theorem 6.4],
for every ordered core <7 there exists a Borel measure A induced by the core </ and
linear maps R : Ly, — Lig. ; and Q: Ly ; — Ly, satisfying:

1. If pe LT (A) UL%OM , then RQ@ = ¢ up to a set of A -measure zero.

2. If feLt()U (Ll

o, ﬂL(szf)), then QRf = f up to a set of u-measure
zZero.
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3. I feLl™(Z), pe LT (A) and A € o/ then

[rewyan= [ rpjgar and [ro@ran= [ rippar.
A U

[0,1(A)] [0,00)

4. If f,g e LiNL, NL(<), then R(fg) = R(f)R(g).

locgs,u

5.0 f,g € L NLy,,  ,NL(</) satisty [, fdu= [ygdu forall Ac o, then f=g

loc oy,
up to a set of zero MU -measure.

Notice that condition (v) follows from (ii) and the fact that the equality

/MM:/@M
[0,x] [0,x]

holding for all x > 0 forces that the functions Rf and Rg to be equal A -almost every-
where. We reserve a special name for the operators R, Q.

DEFINITION 3. For a o -finite measure space (U,X,u) with a o -bounded full
ordered core <7, we denote transition maps the operators R and Q mentioned above.

We introduce our main technical tool, which extends the greatest non-increasing
minorant (see [15, Section 2]).

DEFINITION 4. For a X-measurable function g, we call & € L'(.27) a greatest
core decreasing minorant of g if 0 </ < |g| u-a.e and for any w € L!(.7) satisfying
0<w<|g|, then w<h p-ae.

Note that a greatest core decreasing minorant is unique almost everywhere, pro-
vided it exists. The next lemma shows that such a greatest core decreasing minorant
always exists.

LEMMA 2.1. Every Z-measurable function g admits a greatest core-decreasing
minorant denoted g, which is unique up to a set of W measure zero.

Proof. Suppose that |g| < C < oo and let {A,},en C &7 such that A, T U. Set

a,,:sup{/ hdu :he L' (<) and h < |g|}.
An

The collection defining the supremum is not empty as # = 0 is a core-decreasing func-
tion, moreover, the supremum is finite since [ hdu < Cu(A,) < oo.

n

Let h, =0 if o, = 0, otherwise there exists A, € Ll(sz{ ) such that 4, < |g| and
0p —1/n < [hydu. Since the pointwise maximum of core decreasing functions is

An
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core decreasing, we may assume that {&,} is an increasing sequence. Let i = sup,, &,
which is clearly a core decreasing minorant of g.

To show that £ is the greatest core decreasing minorant of g, let w be another core
decreasing minorant, then so is max{h,w}, thus

oo>/hdu /hdu>ocn—l/n /max{wh}d,u—l/n
Ay Ap

Then 1/n > [ (max{w,h} —h)dp > 0. Let n — oo to get max{w,h} = h almost
A

everywhere. This completes the proof in the case that g is bounded.

For the unbounded case, define g,, = min{m,|g|} and let g, be its greatest core
decreasing minorant which exists since g,, is bounded. Since g,,_; < min{m—1,g|} <
min{m, [g|} = gm., then g, 1 < gm. Therefore {gu}men is an increasing sequence.

Let /i = sup,,cy gm- Since each g, is bounded above by |g|, then & < [g|, thus
h is a core decreasing minorant of |g[. If w is another core decreasing minorant of
|g|, then min(m,w) is a core decreasing minorant of |g,,|, thus min(m,w) < g,,. Let
m — oo to get w < h and complete the proof. [J o

The next theorem gives a functional description of the greatest core decreasing
minorant; it extends the corresponding statement in [15, Theorem 2.1] to a very large
class of functions. The proof follows a different argument than its real line counterpart
and is left for Section 5.

THEOREM 2.2. For Z-measurable non-negative functions f and u, then

/fgd,u:inf{/gud,u:/gdu}/fduforallEe%}.
U U E E

As the necessary and sufficient conditions for the existence of a finite constant C
in the abstract Hardy inequality (3) depend on the computation of this greatest core de-
creasing minorant, the next result gives an explicit pointwise formula of this minorant,
in the case that the ordered core satisfies a mild condition. It is worth mentioning that
for the ordered core constructed in [12, Example 5.4], the following formula does not
hold. Hence, some conditions on the core must be required.

THEOREM 2.3. Let (U,Z, ) be a measure space with a full o -bounded ordered

core o such that arbitrary unions and intersections in </ are measurable in o().
Then for any X-measurable function g the formula

8(s) = essinf{[g(v)] :v s 5}
holds.

Proof. Let h(s) = essinfy, {|g(v)| : v <./ s}. Since the order relation &7 is un-
changed if we replace o/ by its maximal core, we may assume that <7 is maximal and
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that arbitrary unions and intersections of core sets are in the core, provided the result
has finite u-measure. It follows from the definition of the order relation that

{teUit<pst=\J{Ac o :scA}and {t €U :1 <y s}
=({Ac o :s¢A}.

By hypothesis, all of these sets are (.7 )-measurable for all s € U. Define [s] =
{teU:t<,sands <4 t}, which is the difference of the sets above, so it is o(2/)-
measurable as well.

To show that 4 is a o(</)-measurable function: Let o € R and define O =
h=! (a,), we proceed to show that O is o(.<7)-measurable.

Clearly O C Uy {t €U :1 <4 x}. Conversely, if x € O and y <4 x, then

h(y) =essinf{t €U :t <4y} Zessinf{re U :t <qx} =h(x) > a,
u u

hence {r € U :1 <4 x} C O, this proves that O = J,co {t € U :t <4 x}, which by hy-
pothesis, is a 0(«7)-measurable set. As o was arbitrary, then & is o(%/)-measurable.

Since h satisfies y <4 x implies i(y) > h(x) and is o(</)-measurable, it only
remains to show that % is a minorant of |g| and that it is optimal.

We show the inequality %(z) < |g(z)| by cases, depending on the measure of the
set [z]. If z € U satisfies u([z]) > 0, notice that if 7/ € [z] then h(z’) = h(z). Hence, by
definition of essential infimum we have that u ({z' € [z] : |g(Z)] < h(z)}) = 0. There-
fore h < |g| on [z] up to a set of u-measure zero. Since A is a o -finite measure, the
collection of sets Up = {[z] : t([z]) > O} must be countable. Hence, we have & < |g]
on its union up to a set of | -measure zero.

We must show the same inequality holds for the set Uy = {z € U : u([z]) = 0}.
For this purpose: Fix € > 0,n,m € N, {A,} € & satisfy U C U,A, and define

Smn={z2€UpNAy: h(z) —|g(z)| > € and ne < [g(z)] < (n+1)e}.
By the previous estimate, we have that

u ({Z eU: |g(z)\ < h(Z)} \ UrmnSm.,n) =0.

Since Up € o(&), is obtained by countably many unions of set differences of core
sets, Rxy,, is a characteristic function by [12, Proposition 6.2(i)]. Since U = Uy U Up,
we have that Ry, is also a characteristic function, and [0,°) is a disjoint union of
some Borel sets Ly, Lp such that x;, = Ryy, and x,, = Rxy, -

We claim that any ¢ € [0,e0) satisfying A({r}) > 0 must be contained in Lp.
To see this, let E1,E; satisfy u(E;) = A(0,¢) and u(E,) = A(0,¢], Observe that any
A € o/ mustsatisfy u(A) < u(Ep) or w(Ez) < u(A). Define

M=U{Ac & :u(A)<u(Ey)} and N=n{Ac .o :u(E)) <A}

By hypothesis M,N € <, by the choice of E;,E, we must have that u(A) < u(Es)
implies (A) < u(E;) and the monotone convergence theorem shows that u(M) =
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w(Ey). Similarly, the dominated convergence theorem shows that u(N) = u(E,). Let
z€M\N, then u([z]) =A(r) >0, s0 M\ N is contained in Up. An application of R
yields t € Lp.

Since the support of RYs,, . is contained in L¢, there are no atoms, thus the func-
tion

o) = [ Ris,,
o]
is continuous. Moreover, ¢(0) = u(Sy,») and lim ¢(y) =0.
y—o0

Suppose that [ (S,,) > 0 seeking a contradiction. Pick rj,r» > 0 such that

o(r)= M Q(r)= M andlet E € o7 satisfy rj < u(E) <ra. Then u(Sy.,N

E)>0and u(Smu,\E)>0.Let z€ Sy, \E, then any 7 € E satisfies t <, z, thus
h(z) =essinf{|g(r)| : 1 <o z} <essinf{|g(t)|:t € E}
u u

Lessinf{|g(t)|: 1 € ENSpp} <e(m+1).
u

But since z € Sy, we have h(z) > €+ |g(t)| > € +ne = (n+ 1)e, which is a contra-
diction, therefore W (Sy,) = 0 for all m,n € N. This shows that h(z) < |g(z)| almost
everywhere.

We have shown that /4 is a core-decreasing minorant of g, thus & < g. To show
the converse, let z € U, and note that if # <, z, then g(z) < g(¢) < |g(t)], therefore
taking essential infimum yields g(z) < h(z) completing the proof. [J

As a consequence of this result, we have the following examples where the or-
dered core satisfies that any arbitrary union or intersection of core sets can be reduced
to a countable one, therefore it is measurable. These examples show that the terms ap-
pearing in formula (1.1) and [9, Theorem 3.1] are a particular case of the greatest core
decreasing minorant.

EXAMPLE 1. Let U = [0,e0), &/ = {0} U{[0,x] : x >0} and u be a Borel mea-
sure, then

gx) = es[gi]nflg(t)h

EXAMPLE 2. Let U = X be a metric measure space with distance function d,
a € X be any element, u be any Borel measure and the core

o ={0} U{By,:r>0}
where B, = {x € X:d(a,x) <r}. Then

gx) = essﬂmf{|g(t)| ite Ba7‘x‘a}7

where |x|, =d(a,x).
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3. Abstract Hardy inequalities with p = 1

Our approach to finding necessary and sufficient conditions on the measures for
inequality (3) is to find an equivalent inequality involving only two measures and a
weight function, then to use Theorem 2.2 to replace the weight function with a core
decreasing function. Finally, we find an equivalent Hardy inequality on the half line.

PROPOSITION 3.1. Fix g € (0,0), let N and u be o -finite measures over (U,X)
and let T be a o -finite measure over (Y, 7). Suppose B:Y — X is a core map and
p = 1. Then there exists a positive X-measurable function u such that the best constant
in inequality (3 ) is the same as the best constant in the inequality

1/q
(/(/fdu)qdf(y)> <c [ fudu, vr e, 5)
Y B(y) U

Proof. First, we reduce the problem to the case U = UyeyB(y). Fix f € LT (%),
set Up = UyeyB(y) and g = fx, . Then

q 1/q q 1/q
(g (B(fy)gdu> dr<y>> ) (; (B(fy>fdu> dr<y>>

[ gdn Jgdn
Uo U
1/q
(f( / fdu)qdr(y)>
S Y \B(y) '
- gfdn

Taking the supremum over all f € L™ (X) shows that

( / (B(fv) fdu)qdf(y)> " (;‘ (B(f) fdu>qdr(y)> "
| . , |

ferte) T S rere) Tran
Conversely,
q 1/a q 1/q
(f( J rau) dr<y>> (f( I rau) dr<y>>
Y \B(y) . Y \B(y)
ret®) l{fd” " el [ fdn
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Therefore, we may replace U with Uy in (4). The same argument shows that we may
replace U with Uy in (5). Hence, we may suppose that U = Uj.

An application of the Lesbesgue decomposition theorem shows that u = u; + U,
with up < and u; L n. Also U =U,UU, with UyNU, =0 and u,(U;) =0 =
N (U). The Radon-Nikodym theorem provides a -measurable non-negative function
h such that du, = hdn. If E={s € U : h(s) = 0} we can define the function g =
hxw\r) and the sets Vi = U, \E and V, = U, UE to get a decomposition du = gdn +
duy supported on V| and V, respectively, moreover g is never zero on V. Thus the
inequality (3) becomes

(/(/fgdn+ /fdul)qddy))g <c [ ran.vret;.
B(y)

Y B(y)

Fix z €Y and set f = X(p(;)rvy). then if C is finite, we have
( [ (mEoinse) ) ( / dm) dx( >>
Y

Therefore u; (B(y)NB(z)) =0 for 7-almost every y. Since this holds for all z €Y,
letting B(z) T U we get u; (U) =0.
Hence the inequality becomes

([ ([ sean)'asn) " <c [ ranvress
B(y)

Y

Since g is non-zero 7 -almost everywhere, then we can define u = é, so dn =
udu . Notice that the sets L:[ and Lﬁ are only dependent on X, thus the substitution
f +— fu is a bijection from Lj; — LZ and yields the inequality (5). This shows that
if the best constant in the inequality (3) is finite, then it is also the best constant in the
inequality (5). For the remaining case, notice that we can decompose dn = udu +dn,
for some measure 1), satisfying 1 L 1,. Therefore

(g (B(fy)fduydr(y))% . (I{(B(fy)fdpt)qdr(y))é

sup S )
fer Jutdn feLy Ju fudp

thus if the best constant in inequality (5) is infinite, then it is also the best constant in
the inequality (3) and completes the proof. [J

Now we replace the weight function u with its greatest core decreasing minorant.



ABSTRACT HARDY INEQUALITIES: THE CASE p = 1 965

PROPOSITION 3.2. Given a o -finite measure W over (U,X), a O -finite measure
T over (Y,7), and a core map B:Y — X, the best constant in inequality (5) is the same
as the best constant in the inequality

( / ( / fdu>qdf(y)> 1/q<c [ fuan. (©)
B(y) Y

Y

where u is the greatest core-decreasing minorant of u with respect to the ordered core
o ={0}U{B(y):yeY}.

Proof. Our goal is to show that

( ] (B(fy)fdu)qdr(y)> " (; ( f)fdu> dr(y)> "

sup = sup
£20 I{f“dﬂ £20 gfﬂd.“

Since u < u, the inequality ‘<’ is clear. For the converse, using Theorem 2.2 we
get

q 1/q q 1/q
d d d d
. (g(B(fy)f ) r<y>> (Yf(wf ) r(y))

= sup
N 2 R R
U
q 1/q
(f( I rau) dr<y>)
= supsup Y \BG) =g
120 Jgudu h
U
q 1/q
(f( I ean) dr<y>)
< supsup Y 0 g
= 20 l{gudﬂ h

Here the symbol f < g means that [ fdu < [pgdu forevery E € o/ .

q 1/q
<f< / fd#) dT()’))
Y \B(y)

TFudn , this
U

The right hand side is bounded above by sup;-g

completes the proof. [

We now reduce the problem to a Hardy inequality with measures over the half line.
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LEMMA 3.3. Given B,7,u as in the previous propositions, then there exist Borel
measures V,A on [0,) and a non-increasing function w finite A -almost everywhere,
such that the best constant in inequality (6) is the best constant in

1/q
(/ (/fd/l)qdv(x)> <C/fwd/l,erLj{ 7)
[0,0)

0,0)  [04]

Proof. Since B is a core map, then the function ¢ : ¥ — [0, ) defined by ¢(y) =
w(B(y)) is measurable. Let v be the push-forward Borel measure associated to ¢, that
is

V(E)=1(¢ '(E)), VE Borel.

Let A be the Borel measure associated to the ordered core <7 with enriched core
A ,and R, Q the transition operators.

Fix a positive Z-measurable function f integrable over every core set A € 7 and
define the functions

HG) = [ Rz, and Ti0)= [ fdh.
(0,4] B(y)

We will show that H f and T f are equimeasurable with respect to the measures v
and 7 by computing their distribution functions. First notice that for all y € Y we have

H)oot) =i (0(BK)) = [ R()du= [ far=7s0).

[0,u(B(y))] B(y)

Fix o > 0 and define the sets
Ey={x€[0,00):Hf(x) >a} and Fy ={ye Y :T(y) > o}.

Let

Y = sup xe[O,oo):/Rfd/lga
[0,

Notice that by the monotone convergence theorem H f(y) < ¢«. We claim that E, =
(y,°0) and that F, = @~ (E).

Let x € E,, then since Hf is increasing, we must have that x > vy, thus E, C
(Y,00). Conversely, let x > v, then Hf(x) > o, thus x € Ey, this shows the first
equation.

For the second equation, notice that

Fo={yeY:T(y)>a}={yeY:(Hf)op(y)>a}.

Soif y € Fy, then @(y) € Eq, this shows Fy, C ¢~ (E,). Conversely, if y € ¢~ (Ey,),
then T(y) > o, hence y € Fy.
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Computation of the distribution functions yields

V(Eq) =1(¢ ' (Ex)) = T(Fy).

Therefore H f and T f are equimeasurable, hence

<[0£> <[0.,/x] Rmdl)[jdv) | B <[o£) <Hf)qdv> B (Y/ (Tf>qdr>%
- (/(/fdu)qdry,

Y B(y)

Q=

Since u is core-decreasing, we have

/fgd,u: /Rngd)L.
v 01

Therefore if inequality (6) holds, so does
1
q q
(/ (/Rfd/l) dv(x)> <C/Rngd/l, Vf L.
0,20)  [04] [0,22)

Note that Ry must be finite almost everywhere, otherwise, the original measures are
not o-finite. The result follows by letting w = Ru and noting that R maps LZ onto

+
Ly. O
We are ready to prove the main result.
Proof (of Theorem A). Suppose that g € (0, 1), then by Lemma 3.3 and Theorem
1.1 (Theorem 3.1 of [5]) the best constant is equivalent to

(J([4m)" o)

[0,4]

where w = R(u) and v is the push-forward measure (see [2]) for the map o(y) =
poB(y). Notice that w = w, and it follows from Definition 2.2 (iv) that 7 (%)

1 1 1
o= f (D)t [1(3) s
[O/] w " Jom (E) Zogdv= | R )°00)xp.g000)dT(y)

-/ R(l) 0 0(y)d(y).

u
P(y)<x

then
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Thus

q q

/ (/ idv)l"dv(x)Z/Y< / R(i)o(p(y)df(y)> lfqd,[(z)

[0,00)  [0.x] P(y)<9(2)

and completes the proof for the case g € (0,1).

The case g € [1,0) follows directly from duality and we include it for the sake of
completeness.

By Proposition 3.1 the best constant in inequality (4) is the norm of the integral
operator Kf(y) = [, k(v,5)f(s)dO(s) acting from L} — L? where d0 = udu and
k(y,s) = ﬁ XB(y)(s) . By duality, it is the best constant in the inequality

|Y/k(y, Jh(y)drly)| <c (/Y h dr) 7 VheLt.

oo

0

Define y,(y) =1 if s € B(y) and y;(y) = 0 otherwise. Divide both sides of the equa-
tion by HhHLq/ to get

ul / h
y):seU p <C.
u(s) v H H 470)

Taking supremum over non-zero positive functions /4 yields

sup 5 IWslle <€,

()

which is the same as

C > sup (%(s)) t({yey:seBy)}Y.

seU

For the reverse inequality, an application of Minkowski’s integral inequality yields

/(] k(s,y>f<s>de<s>)qdr<y> / (w2 aoi
/ ”

sup( <>) t({ye¥:se By

seU

/f )do(s

hence C < sup,y (%( )) t({yeY:s EB(y)})l/q and proves the statement for
g€[l,). O
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4. Applications to metric measure spaces

In this section, we show that the framework of abstract Hardy inequalities can be
used to give different proofs to [10, Theorem 2.1 Condition 2 ], [11, Theorem 2.1] and
[9, Theorem 3.1]. These theorems give necessary and sufficient conditions for Hardy
inequalities to hold in metric measure spaces; they cover three cases depending on the
indices p and ¢, provided the existence of a locally integrable function A € L! . such
that for all f € L'(X) the following polar decomposition at a € X holds:

/deuZ/Ow/zrf(nw)/l(r,w)dwrdn

for a family of measures dw,, where 2, = {x € X : d(x,a) = r}.

Our new proofs show that the polar decomposition hypothesis is not required so
the results hold in all metric measure spaces.

We begin with the case p > 1, extending [10, Theorem 2.1 Condition Z; ], [11,
Theorem 2.1] to all metric measure spaces.

loc

THEOREM 4.1. Let U be a © -finite measure on a metric measure space X. Fix
acX andlet p € (1,), g>0, qg# 1 and ®,v be measurable functions, positive
u-almost everywhere such that @ is integrable over X\Ba7|x|a and v'=7" is integrable
over B |y forall x € X. Then the Hardy inequality

1

(/(/f Jauly ) o) du(x ) (/f ))p, (®)

holds for all f € L; if and only if p < q and

sup / wdu (/vl‘pldu)p < oo,
x#a

Ball alxlq

O0<g<l<pand
/Q{/ o) ([ v an) s auts) <
\Ba |, B,
or1<q<pand

/&/ odu (/ 1pdu>%v1_p,(s)du(s)<oo.

g
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Proof. By hypothesis v > 0 and v < e u-almost everywhere, then the mapping
f+vI7P f is a bijection on L:[. Then, the inequality (8) is equivalent to

(/(

X Ba,lx|,

/ q % / P
FOW )aut)) ol du(x)) <c( [ rwm = maut)
X

Above we have used the identity v?(!1=P)y = y1=P' Let d7 = v!=P'du and define the
map B: X — X by
B(x) = Ba,|x|,.

The image of B is a totally ordered set. By hypothesis 7(B(x)) < o for each x € X.
Therefore, it is an ordered core with respect to the measure 7. We get the equivalent
abstract Hardy inequality

( /(] fdr>qw(y)du(y)>

X By,

1

<C</f1’dr)p, VfeL].

X

e,

By definition of 7 this is equivalent to

( / ( / fvl‘P’du>qw(y>du(y>>q<C( / fpvl‘p'du>p7vf€LZ. ©)
X

X B

avlq
Let A be the measure on [0,°0) induced by the core, so that for every M in the core
/Rfd/l = /fvl‘l’/dm where x = /vl‘pldu.
(0.4] M M

We claim that inequality (9) is equivalent to the Hardy inequality

(/ (/gd)t>qR<Vlwp,>d/l(y)>;<C</gpd)t>%, VgeLl. (10)
0

) [0,] [0,2)

By [17, Theorem 2.4], it suffices to show that the normal form parameters of in-
equalities (9) and (10) coincide. Hence, it suffices to show that the maps

bi(s) = / WP and ba(x) = A([0,x]),
Bll

sl

have the same distribution functions with respect to the measures wdu and R < Vl‘i’p, ) dA
respectively.
Fix ¢ > 0 and consider the sets Ej = b, '(t,%0) and E» = b, ' (t,0), we give a

characterization for these sets.
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Define the set W as follows

W:U Ba7‘_y|ai /vlip du <t

B“~Ma

If z € Ey, then b(z) > t, thus z & W, conversely if z € W then b(z) < ¢, therefore
z ¢ Ey. Hence W€ = E;. Since W is a union of closed balls centered at a, then there

exists a sequence s, such that B(a,s,) | W.Lets, = [ v'"?du.
B(a,sn)

Let 7 be defined as

f=sup{z<tiz= / v du forsomeseX %,

Ba s,

hence 7 = A[0,1].
Therefore, the action of R and two applications of the monotone convergence
theorem show that

/wdu—:gg wdu—ilelg <vla_)p,>d/l: /R(%) dA

Bl(a,sp) [0,2] [0.]

Since by hypothesis f wdu < oo, then we have that

/ wdu — / R(Vf‘jp,)dx.

by (1,00

It follows that the distribution functions coincide which proves that the Hardy inequal-
ities (9) and (10) have the same normal form parameter, therefore they are equivalent.
For all the index cases, we can apply [14, Theorem 7.1] in the case 1 < p < g < oo,

inequality (10) holds if and only if
1
q
,)d)t(t)) (/ d/l)

w
sup < / R (Vlip

) [0.4]

1
P

which is equivalent to

sup&/ wdu) (/ 11’du> < oo
s#a
“Y‘a

Bm\

Isla

= |-
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In the case 0 < g < 1 < p < oo, another application of [14, Theorem 7.1] (be
mindful of a typo in the exponents), inequality (10) holds if and only if

LG ('

717,) dA(x) <
[,c0 A

which is equivalent to

r

/Qg/ wdu (/vlpldu)p/w(s)du(s)<

Blh‘s‘a

In the case 1 < g < p we have that inequality (10) holds if and only if

[074 ( /> R<vlajp,> dlf(@/ﬂ dl)ﬁdl(@ )

fxes

which is equivalent to

/&/ oan) ' ([ o) auto <

\By s, Basl,

U~

completing the proof.

For the case p = 1, our Theorem A implies the following characterization

COROLLARY 4.2. Let U be a o -finite measure on a metric measure space X. Fix
a€X, let g€ (0,00) and w,v be measurable functions, positive U -almost everywhere
satisfying that  is integrable over X\Bama and v'=7 is integrable over B, |y for
each x € X. Then the best constant in the Hardy inequality

(/(/f Jau) ot ) <C [ sartoauts. v <1

alxlg
satisfies

1—
q q

( / §<x>w<x>du<x>) ”w@du(z)) T prac o),

and

coap(ts) ] mone) s

Xég/t

Here y(x) = essinfy {v(t) :t € By |y }, X < t means B,y C B(a,|t|) and By, =
{zeX:dist(a,z) < dist(a,x)}.
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Proof. Let o/ = {0} U{B, | }xex be the full ordered core induced by the core
map x — By |, . Let dT=wdu, dn =vdu and A be the measure on [0,0) induced
by the ordered core.

Consider the function @ : X — [0,%0) defined by ¢(x) = u(B,,y,) and let v be
the pushforward measure. Then, if y = ¢(x) we have

v(0.3) =n(e~(03)) = [ du()
Py

_ / du=2([0,0(x)]) =A([0.5]).

B,

It follows that the Borel measures v and A coincide and are finite over [0,y] for all
y > 0, therefore A is the pushforward measure of ¢.

We now show that R (%) = i o up to aset of u-measure zero.
Indeed
1 1 1
[ au= [ cwao= [ &(5)0aro
Baﬁ\x\a B (p([)g(p(x) - [0,(,0()6)] B

—_

= [ #(3) 000 0a20)

0
C(R(1). -~
_!R<2) (X010 91 dR()

-/ R(%)oq)(t)d,u(t)

p(<px)

= / R(i) o@(t)du(t).

B

alxlq

Since the equality holds for all core sets, then R (%) = % o ¢ almost everywhere.
Then for g € (0,1), Theorem A yields

1—q

Cr (/( / R(i) o(p(x)w(x)du>ﬁw(z)du(z)> N

X e(z)<o(x)
=

~ (/( / %(x)w(x)du)quw(z)du(z)>7.

X IS X

The statement for g € [1,o0) follows directly from Theorem A. The description of
v follows from Example 2.2 and completes the proof. [
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5. Proof of Theorem 2.2

Before proving the functional description of the greatest core decreasing majorant,
we need a technical lemma, which will be the key in the ‘pushing mass’ technique
needed to prove Theorem 2.2.

LEMMA 5.1. Let u be a non-negative measurable function, a >0 and A = {s €
U :u(s) > a} such that 0 < u(A). Then, for all >0 and B € 4 such that u(A) <
W(B), the set

{s€B\A:u(s)+0 >ul(s)}

has positive L-measure.

Proof. Since u is core-decreasing, up to a set of u-measure zero, if s € A and
t <. s thenr € A. Therefore A coincides with a setin .# up to measure zero. Suppose
that the statement does not hold, then there exists some & > 0 and B € .# such that
w(A) < u(B) and u(s)+ 6 < u(s) for p-almostall s € B\ A.

Let b = essinfp 4 u(s), since u is core-decreasing, then a > b, equality does not
hold, otherwise u(B\A) = 0. Without loss of generality, we may assume that 6 <
a— b, pick n big enough, such that “n;b < 0 and define the function

L a—>b
h=wxu\@a) + ];_ll (b th—— ) X 1\E)»

where Ey ={s€ U :u(s) > b—i—k“n;b} . Notice that / is core-decreasing by construction
and 7 > u but h(s) —u(s) < &, hence & is also a minorant of u, by maximality we get
h=u. Since u(B\ A) > 0, there exists some k such that u(E;_; \ Ex) > 0, and notice
that k # n, now define

a—>b
hy = wxw\@ g+ (b +k+1)—— ) X(E1\ED)-
By the same argument as before, h, is a core-decreasing minorant of u, but hy is
strictly greater than u, a contradiction. [
We now ‘push the mass to the left” of f to an appropriate function g to achieve

the desired infimum.

LEMMA 5.2. Let u and f be non-negative measurable functions such that the
integral [;; fudp is finite. Then, for any € >0, there exists a measurable non-negative
function g such that [ygdu > [; fdu forany E € o/ and

/gud,u—€</fgd,u.
U U
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Proof. Fix € > 0. Since we assume that [;;, fudu < oo, there exists o0 > 1 such
that

€
o [ fudn < [ fudu+ s
U U 2
Define the sequence {A,},cz as
Ap={s€U:u(s)>a"""}, foreachneZ.

Since u is core decreasing, the sets A, € .# . Define the sets {Jn},,GZU{im} by

Jo=(An, Ja=Ay\Anp1, foreachneZ, and J o=U\|]J/J
nez nez

Notice that the sets {Jn}neZU{:I:oo} are disjoint and cover the whole space U. Also
Joo € &/ and the complement of J_.. also belongs in 7. It will be useful to consider
the presentation

Jo={s€U:u(s)=o}, Jow={s€U:u(s)=0}, and

Ih={seU:a" <u(s)< o™}, foreachneZ.

Define the functions f, = fyy, for each n € ZU{£eo}. Our goal is to build non-
negative functions g, satisfying

/gnd,uZ/fnd,u, forall E € o/ andeachn € ZU {+oo}, (11)
E E

/g,,udu < oc/ faudu, foreachn € ZU{e}, and (12)
U U

: 13)

N ™

/ g—etdll <
U

Since [ = ¥,ez0{+e} fn, the function g = ¥,c7(1) gn clearly satisfies Jpgdu >
Jg fdu forall E € o/ and

€
du = du < du+ =
/Uguu D /Ugnuu o Y /Ufnz uts

neZU{teo} neZU{eo}
:a/fgdu+£</fgdu+s.
U 2 U

For any n € ZU {eo} such that f, =0 we define g, = 0 and it clearly satisfies in-
equalities (11) and (12). For the other cases, since fU fudp < oo, we must have that
w =0.
Fix n € Z such that that f, # 0 p-almost everywhere. This means that 0 <
w(Jn) = u(An) — u(Ay+1). Since

w> [ fuan> [ fuauzar [ fap,
U Jn Jn

thus [; fdu < eo.
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Let
=inf{u(E): u(Ay+1) <u(E),E€ .#,and E CA,}.

There are two cases, either 8, > u(A,+1) or B, = u(A,+1). In the first case, pick
C, € # such that u(C,) = B,. An application of Lemma 5.1 with a = a"*!, b = "
B=A,, A=A, and C = C, shows that the set

Hy = {s € (Ci\Aps1) 1 0" <u(s) <u(s) <a"*'}

has positive u-measure. Define

For each E € &7,

if L(E) < u(A,
/gn _ 1 [J.( ) nu( +1) :/fnd,u,
f j, fdu, otherwise E

therefore g, satisfies the inequality (11). Also

/ guudy f’"f s / fdu=a / o fdu < o / o
In

(Hy) Ju, i A

proving that g, satisfies the inequality (12).

The remaining case is when f3, = u(A,4+1). We prove by induction that there
exists a sequence of sets {Hy }nen+ Of positive pu-measure and {C,  }men such that
Com C Ay, W(Cym) is strictly decreasing to t(A,4;) and

Hym € {5 € Copm1\ Com s 0" < u(s) <u(s) <ot}

We show the induction step first. Suppose that the sequences are constructed up to an
integer My > 0. Apply Lemma 5.1 with a = o"*!, b=a" B=A,, A=A, and
C = Cy um, » to get that the set

My = {s € (Cupy \Ant1) 1 0" <u(s) <u(s) < OC"H}

has positive p-measure. Since 3, = u(A,41), there exists a set Cy 41 € .# such

that w(Cypy+1 \Ans+1) < “(I;MO) . Another application of Lemma 5.1 with a = o/**!,

b=o" B=A,, A=A, and C = G, p,+1 provides a set

Kiyr1 = {5 € (Comtyr1 \Ans1) - " <uls) <u(s) < o'}

of positive u-measure. Notice that Ky 1 C Ky, but pu(Ky41) < u(Kpy, ), therefore
the difference has positive measure. Set Hy, yg,+1 = Kygy+1 \ Ky, to prove the induction
step. The base case follows the same argument, letting My =0 and C, o = A,.
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Define the function
it XHMITI
= du ) ———.
& 2( / 7 “>M(Hn,m)

m=2
Cn.m72\cn.m71

Let E € o/, if u(E) < Py, thenboth [ fudu and [;g,du vanish. If w(E) > u(A,),

then N
/Egndu= D < / fdu) z/Jnfd,u:/Efndu.

m=2 Cn.m72\Cn‘n171
In the case that u(E) € (Bu, u(Ay)), there exists some Mg € N such that u(E) €
(u(Crg+1) 1(Citg )] hence

/Egndu> /gnduz i ( / fdu>: / fdu > /fdu

m=C,
CME+1 Mg +1 Cnﬁm—Z\Cnﬁm—l CME \An+l E\An+l

=Lﬂ@~

Therefore g, satisfies the inequality (11). Also
[oman=3( | _m@ﬁﬂ—ﬂgz( [ rdw)e
U m=2 u (Hm) m=2
Cn5m72\cnﬁm71 Cn,mfZ\Cn,mfl

:oan/fdu:a/ a”fduéa/ Jnlt.
Jn Jn In

proving that g, satisfies the inequality (12).

All that remains is defining the function g_.. whenever the function fyx; _ is not
zero W-almost everywhere. Let Uy = U,ezJ,. Since u(J_o) > 0, then there exists
some E € 7 such that Uy C A, therefore u(Uy) < oo, thus Uy € .# . If there exists
a set of positive measure W such that u(s) =0 forall s € W and u(WNE) >0 for
every E satisfying u(E) > u(Up) then we define

8—o0 = XUW-

In this case [;; g—udu =0, clearly satisfying the inequality (13). For any E € </, if

W(E) < u(Uo) then
0=/Ef—oo</Eg—oo

and if u(E) > u(Uo), then

o= [geduz [ foan,
E E

thus g_.. satisfies the inequality (11).
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If such set W does not exist, we will find a disjoint sequence of sets of positive
measure {Wj }rcn+ » such that

W, C {s eU:us) < 82,@“)}7 (14)

also satisfying that for any E € o such that u(E) > u(Up), then infinitely many sets
in the sequence are subsets of E. The desired function will be

Then

& W =1

fwudﬂ £ & £

wttd - Y otk==
/Ug udp = 2 22 5
)

satisfying the inequality (13). For any E € &, if u(E) < u(Uy

0= [fes [o-

andif u(E) > u(Up), then

E E

W,CE

thus g_.. satisfies the inequality (11). We now show that either the set W exists or we
build the sequence {W;}.

Since A_, increases to Uy whenever n | e, we have that u(A_,) T u(Up). There
are two possibilities, either t(A_,) < u(Up) for all n € N or there exists some Ny such
that p(A—y,) = u(Up).

In the first case, for any j € NT the set

Gj= {s cUp:u(s) < 82*(#1)} ,

has positive u-measure. Otherwise, the function = g2~ (/+1) Xu, 1s a core decreasing
minorant of u, thus 4 < u. Hence, for any n large enough such that o™" < g2~ (+D)
we would have w(A_,) = u(Up) arriving at a contradiction. Notice that {G,} is a
decreasing sequence, let W = NG;. If u(W) > 0, then there is nothing left to prove. If
u(W) =0, then we may choose a subsequence {G, }; such that the sequence of mea-
sures {1(Gj,)} is strictly decreasing. Then the sequence Wy = G, \ G}, ., is disjoint
and satisfies formula (14).

It remains to show that the set W or the sequence {W;} exist whenever there is a
positive integer ko such that u(A_g,) = u(Up), which implies that o0 < u(s) < u(s)
for almost every s € Uy. Let

Jiet1

P =inf{U(E):E € 4 and u(E) > u(Up)}.
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Once more, we consider the two possibilities; w(Up) < B-e orif pu(Up) = P-co.

In the first case, let A_o € . satisfy U(A_c) = Pf_w. Pick ry large enough, such
that €270 < a0 For any j > rg, apply Lemma 5.1 with a = €277/, b =0, A = U,
B=U and C = A_.. to get that the set

Gi={s€(Ax\Up) :u(s)<e2™/}

has positive u-measure. Let W = M-, G;. If n(W) > 0 there is nothing to prove,
so we drop to a subsequence with strictly decreasing measures and build the sequence
{W;} like it was done before. Note that for any E € o7 satisfying u(E) > u(Up), then
U(A_w) < U(E), so every set in the sequence W; is contained in E .

We are left with the final case; when u(Up) = B—... Choose a sequence {E;} C .#
such that u(E;) | Bu, and ry large enough so €270 < o0 For any j > ro, apply
Lemma 5.1 witha=¢€2"7,b=0,A=Uy, B=U and C = E; to get that the set

G;= {S € (EJ' \ o) s u(s) < 8271‘}
has positive u-measure. Since u(G;) < w(E;j\Up), we get u(G;j) | 0. Once more
we can drop to a subsequence and repeat the previous process to obtain disjoint sets of
positive measure W; satisfying formula (14) such that W; C E;. Therefore, for any E
such p(E) > u(Uy), there are infinitely many of such sets W; contained in E. This
finishes the proof. [

With this, we finish the functional description of the greatest core decreasing mi-
norant

Proof (of Theorem 2.2). If g satisfies [;gdu > [, fdu forall E € o then

/gudu}/ggd,u since u > u
U U

> / fudp since u is core-decreasing.
U
Infimum over all g yields the inequality

/fgduginf{/ gudu:/gd,u}/fd,u forauEe,Qf}.
U U E E

If eo = [, fudu, then equality clearly follows. So we may suppose that [, fudu < oo,
and in this case, equality follows from Lemma 5.2. [J
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