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IMPROVED Lp –Lq HARDY INEQUALITIES

ALMAT ORAZBAYEV AND DURVUDKHAN SURAGAN ∗

(Communicated by L. E. Persson)

Abstract. In this note, we obtain a new version of the Hardy inequality which covers the recent
inequality of Frank, Laptev, and Weidl derived in [2] and improves the result of Persson and
Samko established in [8]. It gives new results in one dimension. We analyse radial and non-
radial multidimensional versions of the considered inequality as consequences.

1. Introduction

In 1925, G. H. Hardy described and proved the following integral inequality [4]∫ 

0

(
1
x

∫ x

0
f (t)dt

)p

dx �
(

p
p−1

)p∫ 

0
f p(x)dx, (1)

which holds for f (x) � 0, p > 1, and where f p is integrable over (0,) . The inequal-
ity (1) implies that the Hardy operator H f (x) = 1

x

∫ x
0 f (t)dt is bounded in Lp(0,)

with norm ‖H ‖Lp→Lp � p
p−1 , p > 1. Also, it can be shown that the norm is ‖H ‖Lp→Lp

= p
p−1 which means that the constant

(
p

p−1

)p
is sharp and never attained by any func-

tion in Lp(0,) except trivial one (see, e.g. [5]).
The discovery of the original Hardy inequality was a key for the further studies in

this field. We refer to [6], where the history of the establishment of the Hardy inequality
in the period 1906 – 1928 was described. Hardy’s inequality (1) and its extensions have
been widely used in various fields of mathematics such as functional analysis, partial
differential equations, spectral theory, etc. It also has several applications in physics,
particularly in quantum mechanics.

In the present paper, we are interested in the following extension from [8](∫ 

0
x
(∫ x

0
f (t)dt

)q

dx

)1/q

� Cpq

(∫ 

0
f p(x)dx

)1/p

for the case 1 < p � q <  which holds for all measurable (non-negative) functions
f (t) on (0,) if and only if

 +1
q

=
1
p
−1.
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Numerous authors have recently demonstrated a significant interest in enhancing
Hardy-type inequalities. We refer to [3, 9, 12, 13] and references therein for readers
seeking to explore these types of inequalities and their recent advancements in greater
detail.

In this paper, we obtain the following result: Let 1 < p � q <  . Let f (t) be any
measurable function on (0,) . Then we have the following inequality for +1

q = 1
p −1:

(∫ 

0
x+q sup

0<s<

∣∣∣∣min

{
1
x
,
1
s

}∫ s

0
f (t)dt

∣∣∣∣
q

dx

) 1
q

� Cpq

(∫ 

0
| f (x)|pdx

) 1
p

, (2)

with the sharp Bliss constant [1]

Cpq =
(

p′

q

) 1
p

⎛
⎝ q−p

p 
(

pq
q−p

)

(

p
q−p

)

(

p(q−1)
q−p

)
⎞
⎠

1
p− 1

q

,

for the case 1 < p < q <  and the constant approaches p′ = p
p−1 as q approaches p .

This inequality essentially provides not only the improvement of (1), but also extends
the recent results from [2], [8], and [11]. Thus, we obtain an improvement of the Hardy
inequality from [8] for one-dimensional case. In turn, it covers the recent improve-
ment of the Hardy inequality from [2]. Moreover, we extend the obtained inequality to
multidimensional case and establish the results in radial and non-radial setup. For this
purpose, the non-increasing rearrangements technique is used as one of the main tools.
These multidimensional inequalities extend the recent Lp -inequalities from [11] to Lp -
Lq cases. Note that, in general, form inequalities with operators, involving suprema,
were studied in [10].

The paper is organized as follows: Section 2 is devoted to some basic facts on non-
increasing rearrangements and supporting lemmas. In Section 3, we prove our main
results related to establishing the one-dimensional and multidimensional improvements
of the Lp -Lq Hardy inequality.

2. Preliminaries

In this section, we present brief preliminaries before proceeding to main results
and their consequences. We will start with an introduction to non-decreasing rearrange-
ments. Then, we will continue with a short discussion on radial gradient operator and
polar coordinate decomposition. Also, we establish a supporting result starting with
the description of the weighted Hardy inequality on the half-line with non-increasing
rearrangement of the function.

2.1. Non-increasing rearrangements

Throughout this paper we denote the non-increasing rearrangement of f by f ∗ .
This function is non-increasing and non-negative on the interval (0,) , satisfying the
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property |{| f | > }| = |{ f ∗ > }| for all  > 0. Here we recall Lp norm-preserving
property which can be expressed as follows:

|| f ||Lp(0,) = || f ∗||Lp(0,)

for all p � 1 and for any nonnegative measurable function f in Lp(0,) . We refer to
[7, Section 15.1] for more details.

2.2. Radial gradient and polar coordinates

A function which depends only on radial part is called radially symmetric. Given
that u ∈ L1(RN) , the radial symmetric function ũ can be defined as follows for any
1 < p <  :

ũ(x) = ũ(r) :=
(

1
N

∫
SN−1

|u(r)|pd
) 1

p

for any x ∈ R
N , (3)

where r = |x| ,  = x
|x| , and N is the surface area of the N -dimensional sphere S

N−1 .

Given that f (x) is a radial function on [0,) , for any x ∈ R
N we have the following

equality

f (x) = f (|x|) where f (x) = f (r) with r = |x|.
Also, the radial gradient of a differentiable function f (x) can be defined by

 f
 r

(x) =
x
|x| · f (x), (4)

where  is the standard gradient on R
N and “ · ” is the scalar product.

Given that R
N is the N -dimensional Euclidean space with Lebesgue measure dx ,

we say that it can undergo polar coordinate decomposition with respect to the origin 0.
For any locally integrable function f , the following equality is valid∫

RN
f (x)dx =

∫ 

0

∫
SN−1

f (r,) rN−1ddr, (5)

where x = (r,) ∈ [0,)×S
N−1 with r = |x| . The N -dimensional unit sphere with the

surface measure d is denoted as follows:

S
N−1 = {x ∈ R

N : |x| = 1}.

2.3. Supporting lemma

LEMMA 1. Let 1 � N < p � q < and  is some real number satisfying +N
q =

N
p . Then for any measurable function f the following weighted inequality holds:

(∫ 

0
r+N−1 sup

0<s<

∣∣∣∣min

{
1
r
,
1
s

}∫ s

0
f (t)dt

∣∣∣∣
q

dr

) 1
q

� CNpq

(∫ 

0
rN−1 | f ∗(r)|pdr

) 1
p

,

(6)
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where f ∗ is the non-increasing rearrangement of f . The expression of the constant can
be given by

CNpq =
(

p−1
p−N

) 1
p′ +

1
q
(

p′

q

) 1
p

⎛
⎝ q−p

p 
(

pq
q−p

)

(

p
q−p

)

(

p(q−1)
q−p

)
⎞
⎠

1
p− 1

q

, (7)

for the case N < p < q <  where  is the Gamma function. As q approaches p, the
constant approaches p

p−N .

Proof. By using [11, Lemma 3.1] with g(r)= r+N−1 and h(r) = r for r ∈ (0,) ,
we have

(∫ 

0
r+N−1 sup

0<s<

∣∣∣∣min

{
1
r
,
1
s

}∫ s

0
f (t)dt

∣∣∣∣
q

dr

) 1
q

�
(∫ 

0
r+N−q−1

(∫ r

0
f ∗(t)dt

)q

dr

) 1
q

.

Now exploiting [8, Theorem 2.7 (a)] in the right-hand side of the above we obtain the
following inequality

(∫ 

0
r+N−q−1

(∫ r

0
f ∗(t)dt

)q

dr

) 1
q

� CNpq

(∫ 

0
rN−1| f ∗(r)|pdr

) 1
p

.

Applying this and formulas (3.1)–(3.2) from [8], we obtain (6). �

3. Improvement of the Lp -Lq Hardy inequality

In this section, we establish a novel Hardy inequality which improves the result
of [8], which essentially covers the result obtained in [2] when q = p . In addition, we
extend this version of the one-dimensional inequality to the multidimensional setting.

3.1. Main results

First, we present a new version of the Lp -Lq Hardy inequality in the integral form
which gives the improvement of the inequality obtained in [8, Theorem 2.7] and covers
the result obtained in [2, Theorem 4] when p = q .

THEOREM 1. Let 1 < p � q < . Let f be any measurable function in Lp(0,) .
Then we have the following inequality for +1

q = 1
p −1 :

(∫ 

0
x+q sup

0<s<

∣∣∣∣min

{
1
x
,
1
s

}∫ s

0
f (t)dt

∣∣∣∣
q

dx

) 1
q

� Cpq

(∫ 

0
| f (x)|pdx

) 1
p

, (8)
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where the constant is sharp constant and denoted by

Cpq =
(

p′

q

) 1
p

⎛
⎝ q−p

p 
(

pq
q−p

)

(

p
q−p

)

(

p(q−1)
q−p

)
⎞
⎠

1
p− 1

q

,

for the case 1 < p < q <  and as q approaches p, this constant approaches p
p−1 .

Proof. Applying [11, Lemma 3.1], for h(x) = x and g(x) = x+q , we have the
following inequality:

(∫ 

0
x+q sup

0<s<

∣∣∣∣min

{
1
x
,
1
s

}∫ s

0
f (t)dt

∣∣∣∣
q

dx

) 1
q

�
(∫ 

0
x
(∫ x

0
f ∗(t)dt

)q

dx

) 1
q

.

Now we apply [8, Theorem 2.1] to get

(∫ 

0
x
(∫ x

0
f ∗(t)dt

)q

dx

) 1
q

� Cpq

(∫ 

0

(
f ∗(x)

)p
dx

) 1
p

.

Finally, using the fact that the Lp norm of its rearrangement is equal to the Lp norm of
the function, i.e.,(∫ 

0

(
f ∗(x)

)p
dx

) 1
p

=
(∫ 

0
| f ∗(x)|pdx

) 1
p

=
(∫ 

0
| f (x)|pdx

) 1
p

,

for 1 � p <  , we complete the proof. Also, by observing the fact that

(∫ 

0
x+q sup

0<s<

∣∣∣∣min

{
1
x
,
1
s

}∫ s

0
f (t)dt

∣∣∣∣
q

dx

) 1
q

�
(∫ 

0
x
∣∣∣∣
∫ s

0
f (t)dt

∣∣∣∣
q

dx

) 1
q

�
(∫ 

0
x
(∫ s

0
f (t)dt

)q

dx

) 1
q

,

and the best constant obtained in [8, Theorem 2.1] we establish the optimality here. �

REMARK 1. Let 1 < p � q <  and +1
q = 1

p − 1. Set u(x) =
∫ x
0 f (t)dt and

u′(x) = f (x) in (8). Then, for any locally absolutely continuous function u on (0,)
with liminfx→0 |u(x)| = 0, we have

(∫ 

0
x+q sup

0<s<

∣∣∣∣min

{
1
x
,
1
s

}
u(s)

∣∣∣∣
q

dx

) 1
q

� Cpq

(∫ 

0
|u′(x)|pdx

) 1
p

, (9)
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which is equivalent to (8) and covers [2, Theorem 1] when p = q .
Inequality (9) is an improvement of

(∫ 

0

∣∣∣∣∣ u(x)

x
1
q− 1

p +1

∣∣∣∣∣
q

dx

) 1
q

� Cpq

(∫ 

0
|u′(x)|pdx

) 1
p

, 1 < p � q < , (10)

since

|u(x)|q
xq � max

{
sup

0<s�x

|u(s)|q
xq , sup

x�s<

|u(s)|q
sq

}

= sup
0<s<

∣∣∣∣min

{
1
x
,
1
s

}
u(s)

∣∣∣∣
q

by (13).

3.2. Radial version

First, we present the inequality for the compactly supported smooth radial function
space denoted as C

c,rad(R
N \ {0}) .

THEOREM 2. Let N < p � q <  and +N
q = N

p . Then we have

(∫
RN

|x| max

{
sup

B(0 ; |x|)\{0}

|u(y)|q
|x|q , sup

Bc(0 ; |x|)

|u(y)|q
|y|q

}
dx

) 1
q

� CNpq
1
q− 1

p
N

(∫
RN

∣∣∣∣ x
|x| ·u(x)

∣∣∣∣
p

dx

) 1
p

, (11)

for all u ∈C
c,rad(R

N \ {0}) . Here N is the surface area of the unit sphere in R
N and

CNpq is defined in (7).

Proof. For u ∈C
c,rad(R

N \ {0}) we use the notation u(y) = u(s) for s = |y| . Re-
call the polar coordinate decomposition x = (r,) where r = |x| ∈ (0,) and  = x

|x| ∈
S

N−1 . Then we deduce

∫
RN

|x| max

{
sup

B(0 ; |x|)\{0}

|u(y)|q
|x|q , sup

Bc(0 ; |x|)

|u(y)|q
|y|q

}
dx

=
∫ 

0

∫
SN−1

r+N−1 max

{
sup

0<s�r

|u(s)|q
rq , sup

r�s<

|u(s)|q
sq

}
ddr. (12)
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Before going further let us mention the following identities

sup
0<s<

∣∣∣∣min

{
1
r
,
1
s

}
u(s)

∣∣∣∣
q

= sup
0<s<

min

{
1
rq ,

1
sq

}
|u(s)|q

= max

{
sup

0<s�r
min

{
1
rq ,

1
sq

}
|u(s)|q , sup

r�s<
min

{
1
rq ,

1
sq

}
|u(s)|q

}

= max

{
sup

0<s�r

|u(s)|q
rq , sup

r�s<

|u(s)|q
sq

}
. (13)

By using these, we compute

(∫
RN

|x| max

{
sup

B(0 ; |x|)\{0}

|u(y)|q
|x|q , sup

Bc(0 ; |x|)

|u(y)|q
|y|q

}
dx

) 1
q

=
(∫

SN−1

∫ 

0
r+N−1 sup

0<s<

∣∣∣∣min

{
1
r
,
1
s

}
u(s)

∣∣∣∣
q

drd
) 1

q

=
(∫

SN−1

∫ 

0
r+N−1 sup

0<s<

∣∣∣∣min

{
1
r
,
1
s

} ∫ s

0

u
 t

(t)dt
∣∣∣∣
q

drd
) 1

q

Lemma1
� CNpq|N |

1
q− 1

p

(∫
SN−1

∫ 

0
rN−1

∣∣∣∣
(
u
 r

)∗
(r)
∣∣∣∣
p

drd
) 1

p

= CNpq
1
q− 1

p
N

(∫
RN

∣∣∣∣
(

u
 |x|

)∗
(x)
∣∣∣∣
p

dx

) 1
p

= CNpq
1
q− 1

p
N

(∫
RN

∣∣∣∣ u
 |x| (x)

∣∣∣∣
p

dx

) 1
p

= CNpq
1
q− 1

p
N

(∫
RN

∣∣∣∣ x
|x| ·u(x)

∣∣∣∣
p

dx

) 1
p

.

In the middle, we have used Lemma 1 for f (t) = u
 t (t) and the norm preserving prop-

erty for the function u
 r . �

3.3. Non-radial setting of the results

In this subsection, we state the non-radial version of Theorem 2. Note that radial-
isation technique is commonly used in order to establish a non-radial inequality from
radial one.
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THEOREM 3. Let N < p � q < and +N
q = N

p . Then, for all u∈C
c (RN \{0}) ,

we have (
max

{∫ 

0
rN−1+ sup

0<s�r

∫
SN−1

|u(s)|q
rq ddr,

∫ 

0
rN−1+ sup

r�s<

∫
SN−1

|u(s)|q
sq ddr

}) 1
q

� CNpq
1
q− 1

p
N

(∫
RN

∣∣∣∣ x
|x| ·u(x)

∣∣∣∣
p

dx

) 1
p

. (14)

Here N is the surface area of the unit sphere in R
N and CNpq is defined in (7).

Proof. Let u∈C
c (RN \{0}) and ũ be the radial symmetric function associated to

it. Using (3), for any 1 < p < , we define the radial symmetric function ũ as follows:

ũ(x) = ũ(r) :=
(

1
N

∫
SN−1

|u(r)|p d
) 1

p

for any x ∈ R
N .

Then exploiting [11, Lemma 4.2] with f (x) = |x| and then substituting the result
into Theorem 2, we deduce(

max

{∫ 

0
rN−1+ sup

0<s�r

∫
SN−1

|u(s)|q
rq ddr,

∫ 

0
rN−1+ sup

r�s<

∫
SN−1

|u(s)|q
sq ddr

}) 1
q

�
(∫

RN
|x| max

{
sup

B(0 ; |x|)\{0}

|ũ(y)|q
|x|q , sup

Bc(0 ; |x|)

|ũ(y)|q
|y|q

}
dx

) 1
q

� CNpq
1
q− 1

p
N

(∫
RN

∣∣∣∣ x
|x| ·ũ(x)

∣∣∣∣
p

dx

) 1
p

.

Next, using [11, Lemma 4.1] with f (x) = 1, we have(∫
RN

∣∣∣∣ x
|x| ·ũ(x)

∣∣∣∣
p

dx

) 1
p

�
(∫

RN

∣∣∣∣ x
|x| ·u(x)

∣∣∣∣
p

dx

) 1
p

,

Finally, combining the above two estimates we obtain(
max

{∫ 

0
rN−1+ sup

0<s�r

∫
SN−1

|u(s)|q
rq ddr,

∫ 

0
rN−1+ sup

r�s<

∫
SN−1

|u(s)|q
sq ddr

}) 1
q

� CNpq
1
q− 1

p
N

(∫
RN

∣∣∣∣ x
|x| ·u(x)

∣∣∣∣
p

dx

) 1
p

,
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which is the desired result (14). �

REMARK 2. The above result gives the following Lp -Lq Hardy inequality. Let
N < p � q <  and +N

q = N
p . Then, for all u ∈C

c (RN \ {0}) , we have

(∫
RN

|x| |u(x)|q
|x|q dx

) 1
q

�
(

max

{∫ 

0
rN−1+ sup

0<s�r

∫
SN−1

|u(s)|q
rq ddr,

∫ 

0
rN−1+ sup

r�s<

∫
SN−1

|u(s)|q
sq ddr

}) 1
q

� CNpq
1
q− 1

p
N

(∫
RN

∣∣∣∣ x
|x| ·u(x)

∣∣∣∣
p

dx

) 1
p

� CNpq
1
q− 1

p
N

(∫
RN

|u(x)|pdx

) 1
p

.
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