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Abstract. In the work, by virtue of some techniques in the theory of majorization, the authors
find necessary and sufficient conditions for a mixed bivariate mean of three parameters to be
Schur m -power convex.

1. Preliminaries

We recall two fundamental definitions in the theory of majorization.

DEFINITION 1. ([5, 13]) Let xxxxx = (x1,x2, . . . ,xn) and yyyyy = (y1,y2, . . . ,yn) ∈ R
n .

1. The n -tuple xxxxx is said to be majorized by yyyyy , in symbols xxxxx ≺ yyyyy , if

k


i=1

x[i] �
k


i=1

y[i], 1 � k � n−1 and
n


i=1

xi =
n


i=1

yi,

where x[1] � x[2] � · · · � x[n] and y[1] � y[2] � · · · � y[n] are rearrangements of xxxxx
and yyyyy in descending order.

2. A set ⊆ R
n is called to be convex if

(x1 +y1,x2 +y2, . . . ,xn +yn) ∈

for any xxxxx and yyyyy ∈ , where , ∈ [0,1] such that  + = 1.

3. A function  :  → R is said to be Schur-convex (or Schur-concave, respec-
tively) if the majorizing relation xxxxx≺ yyyyy on  implies the inequality 

(
xxxxx
)
�

(
yyyyy
)
.
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REMARK 1. In the papers [3, 4, 6, 8, 9, 11, 12, 16, 18, 25], for example, there
have been many results on investigations of the Schur-convexity and related ones.

DEFINITION 2. ([21, 22, 23]) Let f : R+ = (0,) → R be defined by

f (x) =

⎧⎨
⎩

xm −1
m

, m �= 0;

lnx, m = 0.
(1)

A function  : ⊆ R
n
+ → R is said to be Schur m-power convex (or Schur m-power

concave, respectively) on  if the majorizing relation

f (xxxxx) = ( f (x1), f (x2), . . . , f (xn)) ≺ f (yyyyy) = ( f (y1), f (y2), . . . , f (yn))

on  implies the inequality (xxxxx) � (yyyyy) .

REMARK 2. When taking m = 1, 0, −1, or say, when putting f (x) = x , lnx ,
1
x , in Definition 2, we can derive definitions of the Schur-convexity (see [5, 13], for
example), the Schur-geometric convexity (see [2, 27], for example), and the Schur-
harmonic convexity (see [1, 19, 20], for example), respectively.

REMARK 3. In the papers [15, 17, 24, 26], for example, there have been many
results on investigations of the Schur m-convexity and related ones.

REMARK 4. The function f (x) defined by (1) has an integral representation

f (x) =
∫ x

1
um−1 du.

This integral representation is a special case of the function

ha,b(x) =
∫ b

a
ux−1 du =

⎧⎨
⎩

bx −ax

x
, x �= 0

lnb− lna, x = 0

for b > a > 0 and x ∈ R , that is, h1,x(m) = f (x) . The function ha,b(x) was investi-
gated and applied in over one hundred of works by Qi and his coauthors since 1997;
see the last paragraph in [7, p. 13], the paper [10], and [17, Remark 1], for example.
Definition 2 is a special case of the definition of the so-called Schur f -convex functions
introduced in [21, 22, 23] by Yang.

2. Motivations and main results

In the paper [14], Wang, Shi, and Fu defined the mixed mean

Wn(xxxxx;1,2; p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
1Hn(xxxxxp)+2Gn(xxxxxp)

1 +2

]1/p

, 0 � 1,2 < 

[Hn(xxxxxp)]1/p, 1 = 
Gn(xxxxx), 2 =  or p = 0

(2)
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for n � 2, xxxxx = (x1,x2, . . . ,xn) ∈ R
n
+ , p ∈ R , and 1,2 � 0 such that 1 +2 �= 0,

where

Hn(xxxxxp) =
n

n
i=1

1
xp
i

and Gn(xxxxxp) =
n


i=1

xp/n
i = Gp

n(xxxxx)

are the harmonic mean and geometric mean of xxxxxp = (xp
1 ,xp

2 , . . . ,xp
n) , respectively. Here-

after, three authors studied the Schur convexity, the Schur-geometric convexity, and the
Schur-harmonic convexity of the mixed mean Wn(xxxxx;1,2; p) , which are recited as
follows.

THEOREM 1. ([14, Theorem 1.2]) Let n � 2 , xxxxx ∈ R
n
+ , p ∈ R , and 1,2 � 0

such that 1 +2 �= 0 .

1. If p � −1 , the mixed mean Wn(xxxxx;1,2; p) is Schur-concave in xxxxx ∈ R
n
+ .

2. If p � 0 , the mixed mean Wn(xxxxx;1,2; p) is Schur-geomertrically concave in
xxxxx ∈ R

n
+ .

3. If p < 0 , the mixed mean Wn(xxxxx;1,2; p) is Schur-geomertrically convex in
xxxxx ∈ R

n
+ .

4. If p � 1 , the mixed mean Wn(xxxxx;1,2; p) is Schur-harmonically convex in xxxxx ∈
R

n
+ .

THEOREM 2. ([14, Theorem 1.4]) Let n � 2 , xxxxx∈R
n
+ , p∈R , and 1,2,∗

2 � 0
such that 2 � ∗

2 and 1 +∗
2 �= 0 .

1. If p � −1 , then the ratio Wn(xxxxx;1,2;p)
Wn(xxxxx;1,∗

2 ;p) is Schur-concave in xxxxx ∈ R
n
+ .

2. If p � 0 , then the ratio Wn(xxxxx;1,2;p)
Wn(xxxxx;1,∗

2 ;p) is Schur-geomertrically concave in xxxxx ∈ R
n
+ .

3. If p � 0 , then the ratio Wn(xxxxx;1,2;p)
Wn(xxxxx;1,∗

2 ;p) is Schur-geomertrically convex in xxxxx ∈ R
n
+ .

4. If p � 1 , then the ratio Wn(xxxxx;1,2;p)
Wn(xxxxx;1,∗

2 ;p) is Schur-harmonically convex in xxxxx ∈ R
n
+ .

In order to study the Schur m-power convexity of the mixed mean in (2) for n = 2,
we reformulate the definition of the mixed mean of two variables and three parameters
as

W2(a,b;1,2; p) =

⎧⎪⎨
⎪⎩

[
1H(ap,bp)+2G(ap,bp)

1 +2

]1/p

, p �= 0

G(a,b), p = 0

(3)

for (a,b) ∈ R
2
+ , p ∈ R , and 1,2 ∈ R0 = [0,) such that 1 +2 �= 0.

The main aim of this paper is to find necessary and sufficient conditions for the
mixed mean W2(a,b;1,2; p) to be Schur m-power convex with respect to (a,b) ∈
R

2
+ for p ∈ R and 1,2 ∈ R0 such that 1 +2 �= 0.

Our main results are stated in the following three theorems.
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THEOREM 3. For fixed p ∈ R , m = 0 , and 1,2 ∈ R0 such that 1 +2 �=
0 , the mixed mean W2(a,b;1,2; p) is Schur m-power convex (or Schur m-power
concave, respectively) with respect to (a,b) ∈ R

2
+ if and only if p � 0 (or p � 0 ,

respectively) for 1,2 ∈ R0 such that 1 +2 �= 0 .

THEOREM 4. For fixed p ∈ R , m > 0 , and 1,2 ∈ R0 such that 1 +2 �=
0 , the mixed mean W2(a,b;1,2; p) is Schur m-power convex (or Schur m-power
concave, respectively) with respect to (a,b) ∈ R

2
+ if and only if (p;1,2) ∈ A1 (or

(p;1,2) ∈ A2 , respectively), where

A1 = {(p;1,2) : m+ p � 0,1 ∈ R0,2 = 0}

and
A2 = {(p;1,2) : p ∈ R,1,2 ∈ R0,(m+ p)1 +m2 � 0}.

THEOREM 5. For fixed p ∈ R , m < 0 , and 1,2 ∈ R0 such that 1 +2 �=
0 , the mixed mean W2(a,b;1,2; p) is Schur m-power convex (or Schur m-power
concave, respectively) with respect to (a,b) ∈ R

2
+ if and only if (p;1,2) ∈ B1 (or

(p;1,2) ∈ B2 , respectively), where

B1 = {(p;1,2) : p ∈ R,1,2 ∈ R0,(m+ p)1 +m2 � 0}

and
B2 = {(p;1,2) : m+ p � 0,1 ∈ R0,2 = 0}.

In this paper, we will use Yang’s method in [21, 22, 23] to prove the above Theo-
rems 3 to 5.

3. Lemmas

For proving the above three theorems, we need the following lemmas.

LEMMA 1. ([21, 22, 23]) Let ⊂ R
n
+ be a symmetric set such that ◦ �= /0 and

let the function  : → R+ be continuous on  and differentiable in ◦ . Then  is
Schur m-power convex (or Schur m-power concave, respectively) on  if and only if
 is symmetric on  and the inequalities

xm
1 − xm

2

m

[
x1−m
1

(xxxxx)
x1

− x1−m
2

(xxxxx)
x2

]
� 0, m �= 0

and

(lnx1 − lnx2)
[
x1
(xxxxx)
x1

− x2
(xxxxx)
x2

]
� 0, m = 0

are valid for xxxxx ∈◦ .
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REMARK 5. If letting m = 1,0,−1 in Lemma 1 respectively, we can deduce cri-
teria theorems for the Schur-convexity (see [5, 13]), for the Schur-geometric convexity
(see [2, 27]), and for the Schur-harmonic convexity (see [1, 19, 20]), respectively.

LEMMA 2. For fixed p,m ∈ R with m �= 0 , the mean W2(a,b;1,2; p) given
by (3) is Schur m-power convex (or Schur m-power concave, respectively) with re-
spect to (a,b) ∈ R

2
+ if and only if (t) � 0 (or (t) � 0 , respectively) for all t > 0 ,

where

(t) = −81 sinh[(m+ p)t]
−22{sinh[(m+2p)t]+2sinh(mt)+ sinh[(m−2p)t]}. (4)

Proof. Without loss of generality, we assume a > b .
If p �= 0, by the equation (3), we obtain the partial derivatives

W2(a,b;1,2; p)
a

=

a

[
41a

p/2b3p/2 +2(ap +bp)2] (5)

and
W2(a,b;1,2; p)

b
=


b

[
41a

3p/2bp/2 +2(ap +bp)2], (6)

where

 =
(ab)p/2[W2(a,b;1,2; p)]1−p

2(1 +2)(ap +bp)2 .

Employing Lemma 1 and utilizing the expressions (5) and (6), we acquire

p,m =
am −bm

m

[
a1−m W2(a,b;1,2; p)

a
−b1−m W2(a,b;1,2; p)

b

]

= − (am−bm)
m(ab)m

[
41(ab)p/2(ap+m−bp+m)+2(ap +bp)2(am −bm)

]

= − (am −bm)
m(ab)m/2−p

{
41

[(
a
b

)(m+p)/2

−
(

a
b

)−(m+p)/2]

+2

[(
a
b

)p/2

+
(

a
b

)−p/2]2[(
a
b

)m/2

−
(

a
b

)−m/2]}
.

Putting ln
√ a

b = t and considering the definitions sinhx = ex −e−x

2 and coshx = ex +e−x

2 ,
we deduce

p,m =
(am −bm)
m(ab)m/2−p

(t). (7)
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It is clear that W2(a,b;1,2;0)= G(a,b) for (a,b)∈R
2
+ . By virtue of Lemma 1,

we have

0,m =
am−bm

m

[
a1−m W2(a,b;1,2;0)

a
−b1−mW2(a,b;1,2;0)

b

]

=
(am−bm)

√
ab

2m

(
1
am − 1

bm

)

= − (am−bm)(ab)(1−m)/2

m
sinh(mt).

It is easy to verify that limp→0p,m = 0,m . Consequently, the formula (7) holds for all
p ∈ R .

Since a > b , the positivity (am−bm)
m(ab)m/2−p > 0 is valid. By Lemma 1, we see that the

mixed mean W2(a,b;1,2; p) is Schur m-power convex (or Schur m-power concave,
respectively) with respect to (a,b) ∈ R

2
+ if and only if (t) � 0 for all t > 0. The

proof of Lemma 2 is thus complete. �

LEMMA 3. Let (t) be given by (4). Then

lim
t→0+

(t)
t

= lim
t→0+

 ′(t) = −8[1(m+ p)+2m].

Proof. Since (0) = 0, applying the L’Hospital rule yields

lim
t→0+

(t)
t

= lim
t→0+

 ′(t)

= −81(m+ p)−22(m+2p+2m+m−2p)
= −8[1(m+ p)+2m].

The proof of Lemma 3 is thus complete. �

LEMMA 4. Let m, p ∈ R with m �= 0 ,  = max{|m+2p|, |m−2p|} , and (t) be
given by (4).

1. When m > 0 ,

(a) limt→
(t)
e t � 0 if and only if 1 ∈ R+ , 2 = 0 , and p �= 0 ;

(b) limt→
(t)
e t � 0 if and only if 1,2 ∈ R0 and p ∈ R .

2. When m < 0 ,

(a) limt→
(t)
e t � 0 if and only if 1,2 ∈ R0 and p ∈ R;

(b) limt→
(t)
e t � 0 if and only if 1 ∈ R+ , 2 = 0 , and p �= 0 .
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Proof. Using the expression (4) and the L’Hospital rule, we obtain

lim
t→

2(t)
e t

= lim
t→

2 ′(t)
e t

= −4 lim
t→

1

e t
{41(m+ p)cosh[(p+m)t]

+2[(m+2p)cosh((m+2p)t)
+2mcosh(mt)+ (m−2p)cosh((m−2p)t)]}

=

⎧⎪⎨
⎪⎩
−8(1 +2)m, p = 0,m �= 0;

−22(m+2p), mp > 0;

−22(m−2p), mp < 0.

When m > 0, we obtain

lim
t→

2(t)
e t

=

{
−8(1 +2)m < 0, p = 0;

−22(m+2|p|) � 0, p �= 0.

Thus, we verified the necessary and sufficient condition that limt→
(t)
e t � 0 if and

only if 1 ∈ R+ , 2 = 0, and p �= 0.
When m < 0, we derive

lim
t→

2(t)
e t

=

{
−8(1 +2)m > 0, p = 0;

22(|m|+2|p|) � 0, p �= 0.

Hence, we confirmed the necessary and sufficient condition that limt→
(t)
e t � 0 if

and only if 1 ∈ R+ , 2 = 0, and p �= 0. The proof of Lemma 4 is complete. �

4. Proofs of main results

Now we start out to prove our main results.

Proof of Theorem 3. For m = 0, by Lemma 2, we need to prove the necessary and
sufficient conditions that (t) � 0 for all t > 0 if and only if p � 0 for 1,2 ∈ R0

with 1 +2 �= 0.
When m = 0, we see immediately that (t) = −81 sinh(pt) � 0 for all t > 0 if

and only if p � 0 for 1,2 ∈ R0 with 1 +2 �= 0. The proof of Theorem 3 is thus
complete. �

Proof of Theorem 4. For m > 0, according to Lemma 2, we need to prove the nec-
essary and sufficient conditions that (t)� 0 for all t > 0 if and only if (p;1,2)∈A1

(or (p;1,2) ∈ A2 , respectively). We now prove the necessary and sufficient condi-
tions by splitting into two cases.
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1. Using Lemma 2, we see that the positivity (t) � 0 for all t > 0 is valid if and
only if

lim
t→0+

(t)
t

� 0 and lim
t→

(t)
e t

� 0. (8)

Further, by Lemma 3 and the first item in Lemma 4, the inequalities in (8) are
equivalent to {

−8 [1(m+ p)+2m] � 0;

2 = 0,1 ∈ R+, p �= 0,

that is, they are equivalent to the conditions 2 = 0, 1 ∈ R+ , and m+ p � 0.
Therefore, the inequalities in (8) are equivalent to

(p;1,2) ∈ A1 = {(p;1,2) : p ∈ R,1 ∈ R0,m+ p � 0,2 = 0}.

2. From Lemma 2, we see that the negativity (t) � 0 for all t > 0 is valid if and
only if

lim
t→0+

(t)
t

� 0 and lim
t→

(t)
e t

� 0. (9)

By Lemma 3 and the first item in Lemma 4, we see that the inequalities in (9) are
equivalent to {

−8 [1(m+ p)+2m] � 0;

1,2 ∈ R0, p ∈ R,

that is, the positivity 1(m+ p)+2m � 0 is valid. Therefore, the inequalities
in (9) are equivalent to

(p;1,2) ∈ A2 = {(p;1,2) : p ∈ R,1,2 ∈ R0,1(m+ p)+2m � 0}.

The proof of Theorem 4 is thus finished. �

Similar to the proof of Theorem 4, the proof of Theorem 5 is given as follows.

Proof of Theorem 5. For m < 0, using Lemma 2, we need to prove the necessary
and sufficient conditions that (t) � 0 for all t > 0 if and only if (p;1,2) ∈ B1 (or
(p;1,2) ∈ B2 , respectively). We now prove the necessary and sufficient conditions
by dividing into the following two steps.

1. Using Lemma 2 to the second item in Lemma 4, we see that the positivity (t) �
0 is valid for all t > 0 if and only if

lim
t→0+

(t)
t

� 0 and lim
t→

(t)
e t

� 0. (10)

The inequalities in (10) are equivalent to{
−8 [1(m+ p)+2m] � 0;

1,2 ∈ R0, p ∈ R,

simply speaking, 1(m+ p)+2m � 0.
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2. From Lemma 2 to the second item in Lemma 4, we see that the positivity (t)� 0
is valid for all t > 0 if and only if

lim
t→0+

(t)
t

� 0 and lim
t→

(t)
e t

� 0. (11)

The inequalities (11) are equivalent to

{
−8 [1(m+ p)+2m] � 0;

2 = 0, 1 ∈ R+, p �= 0,

in other words, they are equivalent to 1 ∈ R+ , 2 = 0, and m+ p � 0.

The proof of Theorem 5 is complete. �
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