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APPLICATIONS OF UNITARILY DIAGONALIZABLE MATRICES IN AN

INDEFINITE INNER PRODUCT SPACE TO MATRIX PARTIAL ORDERS

K. KAMARAJ AND A. KARPAGAM ∗

(Communicated by G. P. H. Styan)

Abstract. Necessary and sufficient conditions for the unitary diagonalization of normal matrices
in an indefinite inner product space are given. As an application of unitary diagonalization,
several new characterizations of the star partial order with respect to an indefinite inner product
are established. The concepts of diamond order, space pre-order, and plus order are studied in
the indefinite setting. Some relations among these matrix partial orders are proved.

1. Introduction

The theory of matrix partial orderings has garnered significant attention from
mathematicians over the past several decades [1], [6], [12], [17] and [20]. These or-
ders play an important role in the study of shorted operators, which have applications
in electrical networks [19]. However, in the indefinite inner product space (IIPS), the
study of matrix partial orders have not received as much attention. Stanisev introduced
the concept of the star partial order in an IIPS and proved some of its properties in
[21]. The aim of this paper is to introduce additional matrix partial orders, such as left
and right star partial orders, diamond, and plus matrix partial orders in IIPSs, and to
characterize them.

The following notations are used throughout this paper. Let Cm×n be the set of
complex m× n matrices. For any matrix A ∈ C

m×n , A∗ , R(A) , N (A) and r(A)
denote the conjugate transpose, the range, null space and rank of A , respectively. A
square matrix A is called a projection if A = A2 and an orthogonal projection if A
is a projection and Hermitian. The symbol In stands for the identity matrix of order
n . The theory of generalized inverses is essential in the development of matrix partial
orderings. For every matrix A ∈ Cm×n , the unique matrix X ∈ Cn×m such that AXA =
A , XAX = X , (AX)∗ = AX and (XA)∗ = XA is called the Moore-Penrose inverse of A
and it is denoted by A† [4].

We recall the definitions of some matrix partial orders in Euclidean settings, which
will be extended to IIPS in this paper:
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• Star order: A
∗
� B if A∗A = A∗B and AA∗ = BA∗, where A , B ∈ Cm×n [8].

• Left star order: A∗ � B if A∗A = A∗B and R(A) ⊆ R(B) [3].

• Right star order: A � ∗B if AA∗ = BA∗ and R(A∗) ⊆ R(B∗) [3].

• Minus order: A
−
� B if A(1)A = A(1)B and AA(1) = BA(1) [10].

• Space order: A
S
� B if R(A) ⊆ R(B) and R(A∗) ⊆ R(B∗) [18].

• Diamond order: A
�
� B if A

S
� B and AA∗A = AB∗A [2].

• Plus order: A
+
� B if A

S
� B and there are orthogonal projections Q and Q such

that A = QBQ [17].

The rest of the paper is organized as follows: In Section 2, we provide basic def-
initions and some known results of indefinite inner product spaces and generalized in-
verses of matrices in IIPSs. In Section 3, we present the notion of unitary diagonal-
ization for N -normal and N -Hermitian matrices. As an application of unitary diag-
onalization, we prove some characterizations of matrix partial orderings in Section 4.
Finally, we extend the concepts of space, diamond, and plus orderings to the indefinite
setting.

2. Preliminary concepts of indefinite inner product space

An indefinite inner product in Cn is a conjugate symmetric sesquilinear form [x,y]
which satisfies the regularity condition: [x,y] = 0, ∀ y∈C

n which holds only when x =
0. Any indefinite inner product is associated with a unique invertible Hermitian matrix
N with complex entries such that [x,y] = 〈x,Ny〉 , where 〈., .〉 denotes the Euclidean
inner product on C

n. Such a matrix N is called a weight. A space with an indefinite
inner product is called an indefinite inner product space (IIPS). The study of linear
transformations over indefinite inner product space has received considerable attention
over the past decades; see for instance [5], [9], [11] and the references cited therein.

We call u and v orthogonal if [u,v] = 0, where u,v∈Cn. Let M and N be weights
of order m and n , respectively. The MN -adjoint of an m× n matrix A denoted A[∗]
is defined by A[∗] = N−1A∗M . We call a square matrix A is N -Hermitian, N -normal
N -unitary and N -orthogonal projection if A[∗] = A , AA[∗] = A[∗]A , AA[∗] = A[∗]A = In
and A = A2 = A[∗] , respectively.

The Moore-Penrose inverse of a matrix A ∈ Cm×n in an IIPS is defined as the
unique matrix X ∈ Cn×m satisfying the following four equations:

(1) AXA = A, (2) XAX = X , (3) (AX)[∗] = AX and (4) (XA)[∗] = XA.

Such X is denoted by A[†] . A matrix X is said to be {1}-inverse of A if it satisfies
the first Penrose equation and is denoted by A(1). The set of all {1}-inverses of A is
denoted by A{1} . The sets A{1,2} , A{1,2,3} and A{1,2,4} are defined in similar
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manner. Unlike the Euclidean case, not all matrices have the Moore-Penrose inverse.
The necessary and sufficient conditions for the existence of the Moore-Penrose inverse
in an IIPS is r(A) = r(AA[∗]) = r(A[∗]A) . Also, A[†] exists if and only if R(A) and
N (A[∗]) are orthogonal complementary subspaces [21]. More properties of Moore-
Penrose inverse in an IIPS can found in [15].

The next theorem gives sufficient condition for the existence of reverse order law
for Moore-Penrose inverse in an IIPS.

THEOREM 1. ([14], Theorem 3.5) Let A and B be complex matrices of appro-
priate order such that A[†] and B[†] exist. If R(A[∗]AB) ⊆ R(B) and R(BB[∗]A[∗]) ⊆
R(A[∗]), then (AB)[†] = B[†]A[†] .

DEFINITION 1. A complex square matrix A is said to have the spectral property
if (A− I)[†] exists for all eigenvalues  of A.

THEOREM 2. ([16], Theorem 3.18) Let A be a linear operator on a real or com-
plex finite dimensional vector space V and let 1,2, . . . ,k be the distinct eigenvalues
of A. Then A is N -normal and A has a spectral property if and only if there exist
N -orthogonal projections E1,E2, · · · ,Ek on V such that:

(i) A = 1E1 + · · ·+kEk.

(ii) I = E1 + · · ·+Ek.

(iii) EiE j = 0 , i 	= j.

COROLLARY 1. ([16], Corollary 3.24) Let A be a linear operator on a finite di-
mensional real or complex vector space V . Then A is N -Hermitian and has spec-
tral property if and only if there exists distinct real numbers 1,2, . . . ,k and N -
orthogonal projections E1,E2, . . . ,Ek such that conditions (i)–(iii) of Theorem 2 hold.

3. Unitary diagonalization

The concept of singular value decomposition (SVD) for a matrix in an IIPS was
studied by Hassi [11]. Utilizing the notion of SVD, the unitary diagonalization for
N -normal matrices was obtained in [13]. For completeness, we provide some basic
definitions and results on unitary diagonalization in this section. More detailed proper-
ties and results can be found in [13].

A linear subspace W of a complex indefinite inner product space V is non-
degenerate, if the condition x ∈ W , [x,y] = 0 for every y ∈ W implies x = 0. Clearly,
W is non-degenerate if and only if W [⊥] is a direct complement to W , i.e., W [⊥] ∩
W = {0} . Consequently, for non-degenerate linear subspace W , and only for them,
one can construct an [., .]-orthonormal basis, i.e., a basis {x1,x2, . . . ,xs} , s = dimW
of W satisfying:

[xi,x j] =

{
±1 if i = j

0 otherwise.
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REMARK 1. Let E be the N -orthogonal projection onto a linear subspace R(E).
Then it is easy to verify that E [†] = E . Thus, Cn = R(E)⊕N (E) . Let x ∈ R(E) and
suppose [x,y] = 0 for all y ∈ R(E). Then for all z ∈ Cn, we have [x,z] = [x,z1 + z2]
= [x,z1]+ [x,z2] = 0. This implies x = 0. Therefore, R(E) is non degenerate.

DEFINITION 2. A complex square matrix A is called N -unitarily diagonalizable
if and only if there exists a nonsingular matrix U and a diagonal matrix D such that
A = UDU−1 where the column vectors u1,u2, . . . ,un of U satisfy [ui,u j] = ±i j.

THEOREM 3. Let V be a finite dimensional complex indefinite inner product space
and let A be an n×n complex square matrix. Then the following are equivalent:

(i) A is N -normal and has spectral property.

(ii) V has an N -orthonormal basis consisting of eigenvectors of A.

(iii) A is N -unitarily diagonalizable.

Proof. (i) ⇒ (ii)
By Theorem 2, A can be written as A = k

i=1iEi , where i ’s are the distinct
eigenvalues of A and Ei ’s are N -orthogonal projections onto R(Ei) = N (A− iI) .
Then by Remark 1, N (A − iI) is non-degenerate. Thus, we can construct a N -
orthonormal basis for N (A−iI) using the well-known Gram-Schmidt orthogonaliza-
tion process. On this basis, every vector is an eigenvector of A . Since V =k

i=1⊕R(Ei) ,
the union of all orthonormal bases of N (A−iI) forms a basis for V .

(ii) ⇒ (iii)
Let {u1,u2, . . . ,un} be an N -orthonormal basis for V consisting of eigenvectors

of A and let Aui = iui , i = 1,2, . . . ,n . Set U = [u1, u2, . . . ,un] . Then the column
vectors u1,u2, . . . ,un of U satisfy [ui,u j] = ±i j . Moreover,

U−1AU = U−1[Au1, Au2, . . . , Aun] = U−1[1u
1, 2u

2, . . . , nu
n].

Let S = diag(c1,c2, . . . ,cn) where ci = [ui,ui] . We call S the signature matrix with
respect to U . It follows that S is invertible and S2 = I . Also, the ith column of
SU∗NU is

(SU∗NU)i = SU∗Nui

= S((ui)∗NU)∗

= S((ui)[∗]U)∗

= S
[
(ui)[∗]u1, (ui)[∗]u2, . . . , (ui)[∗]un

]∗
= S [0, 0, · · · ,ci, 0 · · · , 0]∗

= [0,0, . . . ,1,0, . . . ,0]∗.
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Thus, SU∗NU = I , since c2
i = 1, or equivalently, U−1 = SU∗N . The ith column of

U−1AU is (
U−1AU

)i
= (SU∗NAU)i

=
(
SU∗N[1u

1, 2u
2, . . . , nu

n]
)i

= iSU
∗Nui

= iS
(
(ui)[∗]U

)∗

= iS
[
(ui)[∗]u1, (ui)[∗]u2, . . . , (ui)[∗]un

]∗
= iS [0,0, · · · ,ci,0, · · · ,0]∗

= [0,0, . . . ,i,0, . . . ,0]∗.

Let D = diag(1, . . . ,n) . Then U−1AU = D . Thus A is N -unitarily diagonalizable.
(iii) ⇒ (i)
Let A =UDU−1 . Then the column vectors {u1,u2, . . . ,un} of U are eigenvectors

of A such that [ui,u j] = ±i j . Let S = diag(c1,c2, . . . ,cn) , where ci = [ui,ui] . Then S
is invertible and S2 = I . It is easy to check that U−1 = SU∗N as above. Since SD = DS
then we have,

AA[∗] = AN−1A∗N = UDSD∗U∗N = USDD∗U∗N

and
A[∗]A = N−1A∗NA = USD∗SDSU∗N = USDD∗U∗N.

Thus A is N -normal. Moreover,

(A− I)(A− I)[∗] = U(D− I)U−1(U−1)[∗](D− I)[∗]U [∗]

= U(D− I)SN(D− I)[∗]U [∗]

= US(D− I)(D− I)∗U∗N.

Thus

rank(A− I) = rank(D− I)
= rank ((D− I)(D− I)∗)

= rank
(
(A− I)(A− I)[∗]

)
.

Similarly, rank(A− I) = rank
(
(A− I)[∗](A− I)

)
. Thus A has spectral property.

This completes the proof. �

COROLLARY 2. Let A be a linear operator on a finite-dimensional real or com-
plex vector space V and let 1,2, . . . ,n be the eigenvalues of A. Then A is N -
normal and has spectral property if and only if there exist N -orthogonal projectors
P1,P2, · · · ,Pn on V such that:
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(i) A = 1P1 + · · ·+nPn.

(ii) I = P1 + · · ·+Pn.

(iii) PiPj = 0 , i 	= j.

Proof. Suppose A is N -normal and has spectral property. Then by Theorem 3,
there exists an N -orthonormal basis {u1,u2, . . . ,un} consisting of eigenvectors of A .
Let Pi = ciui(ui)[∗], where ci = [ui,ui] = ±1, i = 1,2, . . . ,n . Then it is easy to check
that Pi satisfies the conditions (i)–(iii), above.

Conversely, if conditions (i)–(iii) hold and P[∗]
i = Pi for all i = 1,2, . . . ,n, then

AA[∗] = n
i=1 |i|2Pi = A[∗]A . Thus A is N -normal. By (i) and (ii),

A− jI =
n


i=1
i 	= j

(i− j)Pi, ∀ j = 1,2, . . . ,n.

So by (iii)

(A− jI)(A− jI)[∗] =
n


i=1
i 	= j

|i− j|2Pi, ∀ j.

Post- multiplying by Ps , where s 	= j and 1 � s � n , we get

(A− jI)(A− jI)[∗]Ps = |s− j|2Ps, ∀ j.

Since |s− j| 	= 0 then

Ps =
1

|s − j|2 (A− jI)(A− jI)[∗]Ps, ∀ j.

Using the above formula for Pi in equation (i), we get

A− jI =
n


i=1
i 	= j

(i − j)
|i− j|2 (A− jI)(A− jI)[∗]Pi

= (A− jI)(A− jI)[∗]
n


i=1
i 	= j

(
i − j

)−1
Pi, ∀ j.

Thus, rank(A− jI) � rank
(
(A− jI)(A− jI)[∗]

)
� rank(A− jI) ∀ j . Therefore,

rank(A− jI)= rank
(
(A− jI)(A− jI)[∗]

)
. Since (A− jI) is N -normal, then (A−

 jI)[†] exists for all j = 1,2, . . . ,n . This completes the proof. �
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COROLLARY 3. Let P be a n×n complex square matrix. If P is projection then
the following are equivalent:

(i) P is an N -orthogonal projection.

(ii) P is an N -unitarily diagonalizable.

Proof. Suppose, P is an N -orthogonal projection. Then I − P is also an N -
orthogonal projection. Clearly, P [†] and (I −P) [†] are exist. Thus, P has spectral
property. Therefore, by Theorem 3, P is N -unitarily diagonalizable.

Conversely, let us assume that P is an N -unitarily diagonalizable matrix. Then by

Theorem3, there exists an invertible matrix U such that P =U

(
Ir 0
0 0

)
U−1. Moreover,

U−1 = SU∗N where S = diag(c1,c2, . . . ,cn) , ci = ±1. It is easy to check that P2 = P .
Since, S is a diagonal matrix, thus

P[∗] = N−1NUS

(
Ir 0
0 0

)
U∗N = US

(
Ir 0
0 0

)
U∗N

= U

(
Ir 0
0 0

)
SU∗N = U

(
Ir 0
0 0

)
U−1 = P.

This completes the proof. �

4. Star partial order, left and right star partial orders

As a natural extension, Stanisev defined the star partial order in an IIPS as follows:

A
[∗]
� B if AA[∗] = BA[∗] and A[∗]A = A[∗]B [21]. In this paper, we utilize the definitions

of matrix partial orders based on the works referenced in [6], [7] and [20]. The primary
aim of using these definitions is to explore the potential extension of matrix partial
orders to infinite dimensional Kerin spaces.

DEFINITION 3. Let A and B be any two complex matrices of the same order. We
say A is below B with respect to

• Star order: A
[∗]
� B if there exist M -orthogonal projection P and N -orthogonal

projection Q such that A = PA = PB , A = AQ = BQ , R(P) = R(A) = R(AA[∗])
and N (Q) = N (A) = N (A[∗]A).

• Left star order: A
[∗]� B if and only if there exist M -orthogonal projection P and

projection Q such that A = PA= PB , A = AQ= BQ , R(P)= R(A)= R(AA[∗]) ,
N (A) = N (Q) .

• Right star order: A �[∗]
B if and only if there exist projection P and N -orthogonal

projection Q such that A = AP = BP , A = AQ = BQ , R(P) = R(A) , N (A) =
N (Q) = N (A[∗]A) .
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• Minus order: A
−
� B if and only if there exist projections P and Q such that

A = AP = BP , A = AQ = BQ , R(P) = R(A) , N (A) = N (Q) .

REMARK 2. From Definition 3, it is easy to observe that A
[∗]
� B ⇒ A

[∗]� B ⇒
A

−
� B . Additionally in view of Baksalary [1, p. 164], it is observed that A

−
� B if and

only if A = AB(1)A = BB(1)A = AB(1)B for some B(1) ∈ B{1} . Thus, it is clear that
the definition for minus order given in Definition 3 is equivalent to AA(1) = BA(1) and
A(1)A = A(1)B , for some A(1) .

THEOREM 4. Let A and B have any two complex m× n matrices. Then the
following are equivalent:

(i) A
[∗]
� B.

(ii) A[†] exists, R(A)[⊥]R(B−A) and R(A[∗])[⊥]R(B[∗]−A[∗]) .

Proof. Suppose A
[∗]
� B . Then by Definition 3, there exist M -orthogonal projection

P and N -orthogonal projection Q such that A = PA = PB , A = AQ = BQ . Thus,
B− A = B− PB = (I − P)B and (I − P)A = 0. Clearly, [Ax,(B− A)y] = [Ax,(I −
P)By] = [(I−P)Ax,By] = 0 for all x and y . Therefore, R(A)[⊥]R(B−A) . Similarly,
we can prove the other one using the fact that A[∗] = A[∗]Q = B[∗]Q . The existence of
Moore-Penrose inverse of A directly follows from the definition.

Conversely, if A[†] exists then, R(A)⊕N (A[∗]) = Cm and R(A[∗])⊕N (A) =
Cn. Thus, there exists an N -orthogonal projection P such that R(P) = R(A) and
N (P) = R(A)[⊥] = N (A[∗]) . Therefore, R(B−A) ⊆ R(A)[⊥] ⊆ N (A[∗]) = N (P) .
This shows that PB = PA = A . Similarly, we can prove the other one. This completes
the proof. �

LEMMA 1. Let A and B be two complex matrices of the same order such that A[†]

and B[†] exist. If AA[†] = BA[†] and A[†]A = A[†]B, then

1. (BA[†])[†] = AB[†].

2. (A[†]B)[†] = B[†]A.

Proof. To prove (i), by Theorem 1, it is enough to show R(B[∗]BA[†]) ⊆ R(A[†])
and R(A[†](A[†])[∗]B[∗]) ⊆ R(B[∗]) . Thus,

R(B[∗]BA[†]) = R(B[∗]AA[†]) = R((AA[†]B)[∗]) = R((AA[†]A)[∗]) = R(A[∗])⊆R(A[†]).

Also,

R(A[†](A[†])[∗]B[∗]) = R((A[†]A)[∗]A[†](A[†])[∗]B[∗]) = R((A[†]B)[∗]A[†](A[†])[∗]B[∗]))

= R(B[∗](A[†])[∗]A[†](A[†])[∗]B[∗]) ⊆ R(B[∗]).
(ii) can be proved in similar manner. �
The following theorem provides main characterization of star partial order.
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THEOREM 5. Let A and B have any two m× n complex matrices of the same
order. Then the following are equivalent:

(i) A
[∗]
� B.

(ii) There exists invertible matrices U and V such that

A = U

(
A1 0
0 0

)
V−1 and B = U

(
A1 0
0 B4

)
V−1,

for some matrix B4 and invertible A1 . Moreover, U−1 = SU∗M and V−1 =
RV ∗N , where S and R are signature matrices with respect to U and V respec-
tively.

(iii) A[†] exists, AA[∗] = BA[∗] and A[∗]A = A[∗]B.

(iv) AA[†] = BA[†] and A[†]A = A[†]B.

(v) AA[†]B = A = BA[†]A.

Moreover if B[†] exists, then the following statement is equivalent to (i)–(v)

(vi) AA[†] = AB[†] and A[†]A = B[†]A.

Proof. (i) ⇒ (ii) Since A
[∗]
� B , there exist M -orthogonal projection P and N -

orthogonal projection Q such that A = PA = PB , A = AQ = BQ , R(P) = R(A) =
R(AA[∗]) and N (Q) = N (A) = N (A[∗]A). Clearly, by Corollary 3, there exist in-

vertible matrices U and V such that P = U

(
Ir 0
0 0

)
U−1 and Q = V

(
Ir 0
0 0

)
V−1 ,

where r is equal to rank of A . Moreover, U−1 = SU∗M and V−1 = RV ∗N where
S = diag(c1,c2, . . . ,cm) , ci = ±1 and R = diag(d1,d2, . . . ,dn) , di = ±1.

The matrices A and B can be written, with suitable block matrices, as

A = U

(
A1 A2

A3 A4

)
V−1 and B = U

(
B1 B2

B3 B4

)
V−1.

Now, using the fact that A = PA and AQ = A , we get A2 = 0, A3 = 0 and A4 = 0.
Similarly, using the fact that PB = A and BQ = A , we get B1 = A1 , B2 = 0 and
B3 = 0. Also, rank(A1) = rank(A) = rank(P) = r . Thus A1 is invertible.

(ii) ⇒ (iii)
Suppose A and B have the decomposition mentioned in (ii). Then

A[∗] = N−1(V−1)∗
(

A∗
1 0

0 0

)
U∗M

= N−1(V−1)∗
(

A∗
1 0

0 0

)
SU−1

= N−1(V−1)∗
(

A∗
1S1 0
0 0

)
U−1.
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Where S =
(

S1 0
0 S2

)
and R =

(
R1 0
0 R2

)
. Since, U−1 = SU∗M and V−1 = RV ∗N

It is easy to verify that,

A[∗]A = N−1(V ∗)−1
(

A∗
1S1A1 0
0 0

)
V−1 = A[∗]B

and

AA[∗] = U

(
A1R1A∗

1 0
0 0

)
V ∗M = BA[∗].

Also, rank(A[∗]A)= rank(A∗
1S1A1)= rank(A1)= rank(A) . Similarly, rank(AA[∗])

= rank(A1R1A∗
1) = rank(A1) = rank(A) . Thus, A[†] exists.

(iii) ⇒ (iv)

Since, A[†] exists then,
(
AA[∗]

)[†]
and

(
A[∗]A

)[†]
are exist and A[†] = A[∗]

(
AA[∗]

)[†]

=
(
A[∗]A

)[†]
A[∗]. Post-multiplying by

(
AA[∗]

)[†]
in AA[∗] = BA[∗] , we get AA[†] =

BA[†] . Similarly, pre-multiplying by
(
A[∗]A

)[†]
in A[∗]A = A[∗]B, we get A[†]A = A[†]B.

(iv) ⇒ (v)
Post- and pre-multiplying by A , we get AA[†]B = A = BA[†]A.
(iv) ⇒ (vi)
By Lemma 1, we get AA[†] = AB[†] and A[†]A = B[†]A .
(v) ⇒ (i)
Since, AA[†]B = A and BA[†]A = A . Choose P = AA[†] and Q = A[†]A . Clearly,

A = AA[†]A = PA and A = BA[†]A = BQ . Thus A = PA = BQ . Since A[†] exists, thus
R(A)= R(AA[∗]) = R(AA[†]) =R(P) and N (A)= N (A[∗]A)= N (A[†]A)= N (Q) .

It shows that A
[∗]
� B.

(v) ⇒ (vi)
From the assumptions, it is easy to observe that R(A) ⊆ R(B) and R(A[∗]) ⊆

R(B[∗]) equivalently, BB[†]A = A = AB[†]B . Post-multiplying AA[†]B = A by B[†] we
get AB[†] = AA[†]BB[†] = (BB[†]AA[†])[∗] = AA[†] . Other one is similar.

(vi) ⇒ (iii)
Let AA[†] = AB[†] and A[†]A = B[†]A , then by Lemma 1, AA[†] = (AA[†])[†] =

(AB[†])[†] = BA[†] . Post-multiplying by AA[∗] , we get AA[†]AA[∗] = BA[†]AA[∗] . This
gives AA[∗] = BA[∗]. Similarly, we can be prove A[∗]A = A[∗]B.

This completes the theorem. �

THEOREM 6. The relation
[∗]
� is a partial order on Cm×n .

Proof. From Definition 3, it is easy to observe that A
[∗]
� A. It ensures that

[∗]
� reflex-

ive. Suppose A
[∗]
� B and B

[∗]
� A, then there exist M -orthogonal projections P1 and P2

and N -orthogonal projections Q1 and Q2 such that A = P1A = P1B , A = AQ1 = BQ1 ,
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B = P2B = P2A and B = BQ2 = AQ2 . Then A = P1B = P1AQ2 = AQ2 = B . This shows

that the relation
[∗]
� is anti-symmetric.

Next, suppose A
[∗]
� B and B

[∗]
� C , then by Theorem 5 (v), we have A = AA[†]B =

BA[†]A and B = BB[†]C =CB[†]B. It is clear that R(A)⊆R(B) and R(A[∗])⊆R(B[∗]) .
Thus A = AA[†]B = AA[†]BB[†]C = AA[†]C and A = BA[†]A = CB[†]BA[†]A = CA[†]A .

This shows that A
[∗]
� C by Theorem 5, (v). Therefore, the relation

[∗]
� is transitive.

This completes the theorem. �

THEOREM 7. Let A and B have any two complex m×n matrices. If A
[∗]
� B. Then

(i) A[†]BA[†] = A[†].

(ii) AA(1)BA(1)A = A.

Proof. By Theorem 5 (ii),

A = U

(
A1 0
0 0

)
V−1 and B = U

(
A1 0
0 B4

)
V−1

for some matrix B4 and invertible A1 . It is easy to verify that A(1) = V

(
A−1

1 0
0 L

)
U−1

for some L and A[†] = V

(
A−1

1 0
0 0

)
U−1 .

Thus,

A[†]BA[†] = V

(
A−1

1 0
0 0

)
U−1U

(
A1 0
0 B4

)
V−1V

(
A−1

1 0
0 0

)
U−1

= V

(
A−1

1 0
0 0

)
U−1

= A[†].

Also,

AA(1)BA(1)A = U

(
Ir 0
0 0

)
U−1U

(
A1 0
0 B4

)
V−1V

(
Ir 0
0 0

)
V−1

= U

(
A1 0
0 0

)
V−1

= A. �

PROPOSITION 1. Let A and B have complex matrices of the same order. Then the
following characterizations are hold:

(i) A
[∗]
� B ⇔ A[∗] [∗]

� B[∗].
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(ii) If U and V are unitary matrices of order m×m and n×n respectively then

A
[∗]
� B ⇔ UAV

[∗]
� UBV.

Proof. It is well known that A[†] exists if and only if (A[∗])[†] exists. Also, by
Theorem 5

A
[∗]
� B ⇔ A[∗]A = A[∗]B and AA[∗] = BA[∗]

⇔ (A[∗])[∗]A[∗] = (A[∗])[∗]B[∗] and A[∗](A[∗])[∗] = B[∗](A[∗])[∗]

⇔ A[∗] [∗]
� B[∗].

Similarly, to prove (ii) it is easy to check that A[†] exists if and only if (UAV )[†] exist.
Thus,

A
[∗]
� B ⇔ A[∗]A = A[∗]B and AA[∗] = BA[∗]

⇔ V [∗]A[∗]U [∗]UAV = V [∗]A[∗]U [∗]UBV and UAVV [∗]A[∗]U [∗] = UBVV [∗]A[∗]U [∗]

⇔ (UAV )[∗]UAV = (UAV )[∗]UBV and UAV (UAV )[∗] = UBV (UAV )[∗]

⇔ UAV
[∗]
� UBV. �

THEOREM 8. Let A, B and C be complex matrices of the same order. Then the
following conditions are equivalent:

(i) A
[∗]
� B.

(ii) A[†] exists and R(C)⊆ R(B) , A[∗]C = 0 and CA[∗] = 0 , where C = B−A.

Proof. If A
[∗]
� B , then by Theorem 5, we have A[∗]A = A[∗]B and AA[∗] = BA[∗] .

This implies A[∗](B−A) = 0 and (B−A)A[∗] = 0. Let C = B−A , then it follows that
R(C)⊆ R(B) and A[∗]C = 0 and CA[∗] = 0. Conversely, if A[†] exists and R(C)⊆
R(B) , A[∗]C = 0 and CA[∗] = 0, where C = B− A , it directly follows from these

conditions that A
[∗]
� B. �

THEOREM 9. Let A and B be any two matrices of same order. If A
−
� B and both

BA(1) and A(1)B are M and N -Hermitian matrices, respectively, for some A(1) ∈A{1} ,

then A
[∗]
� B.

Proof. Clearly, AA(1) = BA(1) = (AA(1))[∗] and A(1)A = A(1)B = (A(1)A)[∗] . Thus,
A = AA(1)A = A(A(1)A)[∗] = AA[∗](A(1))[∗] . It shows that rank(A) = rank(AA[∗]) . Sim-
ilarly, we can prove that rank(A) = rank(A[∗]A) . Thus A[†] exists.

Also, [Ax,By] = [AA(1)Ax,By] = [Ax,(AA(1))[∗]By] = [Ax,AA(1)By] = [Ax,AA(1)Ay]
= [Ax,Ay] . Thus [Ax,(B−A)y] = 0 for all x and y . This shows that R(A)[⊥]R(B−A) .

Similarly, we can prove R(A[∗])[⊥]R(B[∗]−A[∗]) . Thus A
[∗]
� B , by Theorem 4. �
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THEOREM 10. Let A and B be any two m×n complex matrices. Then A
[∗]
� B if

and only if A[†] exists, A
−
� B and AB[∗] and A[∗]B are M-Hermitian and N -Hermitian

matrices, respectively.

Proof. Necessity is straightforward. Suppose, P and Q are projections such that
A = PA = PB and A = AQ = BQ then AA[∗] = PBA[∗] = P(AB[∗])[∗] = PAB[∗] = AB[∗]

and A[∗]A = A[∗]BQ = (A[∗]B)[∗]Q = B[∗]AQ = B[∗]A . Thus A
[∗]
� B . �

Next, we characterize left star partial ordering in an IIPS.

THEOREM 11. Let A and B have any two m× n complex matrices of the same
order. Then the following are equivalent:

(i) A
[∗]� B.

(ii) There exist invertible matrices U and V such that

A = U

(
A1 0
0 0

)
V−1 and B = U

(
A1 0
0 B4

)
V−1,

for some matrix B4 and invertible A1 . Moreover, U−1 = SU∗M where S is a
signature matrix with respect to U.

(iii) A[∗]A = A[∗]B, R(A)⊆ R(B) and A(1,2,3) exists.

(iv) A(1,2,3) exists, A(1,2,3)A = A(1,2,3)B and R(A)⊆ R(B) .

(v) A(1,2,3) exists and AA(1,2,3)B = A = BA(1)A.

Proof. (i) ⇒ (ii) Since A
[∗]� B , there exist M -orthogonal projection P and pro-

jection Q such that A = PA = PB , A = AQ = BQ , R(P) = R(A) = R(AA[∗]) and

N (Q) = N (A) . Then by Theorem 3, P can be written as P = U

(
Ir 0
0 0

)
U−1 , where

U−1 = SU∗M . Also, it is well known that any projection matrix can be written as

Q = V

(
Ir 0
0 0

)
V−1 . The rest of the proof is similar to Theorem 5.

(ii) ⇒ (iii)
Suppose A and B have the decomposition mentioned in (ii). Then

A[∗]A = N−1(V ∗)−1
(

A∗
1S1A1 0
0 0

)
V−1 = A[∗]B.

Let Y = V

(
Ir 0
0 0

)
V−1 , then BY = A . It concludes that R(A)⊆ R(B) . Also,

rank(A[∗]A) = rank(A∗
1S1A1) = rank(A1) = rank(A) . It ensures that A(1,2,3) exists.
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(iii) ⇔ (iv) Pre-multiplying A[∗]A = A[∗]B by A(1,2,3)[∗] , we get (AA(1,2,3))[∗] A =
(AA(1,2,3))[∗] B implies A = AA(1,2,3) B . Again, pre-multiply by A(1,2,3) , we get (iv).
Pre-multiplying A(1,2,3)A = A(1,2,3)B by A[∗]A we get (iii).

(iii) ⇒ (v) Post- and pre-multiplying A[∗]A = A[∗]B by B(1)A and A(1,2,3)[∗] , re-
spectively, we get AB(1)A = A . Also, the inclusions R(A) ⊆ R(B) and R(A[∗]A) ⊆
R(B[∗]) give A = BB(1)A = AB(1)B is equivalent to A(1)A = A(1)B and AA(1) = BA(1)

for some A(1) ∈ A{1} , by Remark 2. Thus, BA(1)A = BA(1)B = AA(1)B = AA(1)A =
A . Also, A = AA(1,2,3)A = AA(1,2,3)B .

(v) ⇒ (i) By setting, P = AA(1,2,3) and Q = A(1)A then we get the desired result.
This completes the proof. �

The next theorem characterizes the right star partial order. The proof is similar to
Theorem 11.

THEOREM 12. Let A and B have any two m× n complex matrices of the same
order. Then the following are equivalent:

(i) A �[∗]
B.

(ii) There exists invertible matrices U and V such that

A = U

(
A1 0
0 0

)
V−1 and B = U

(
A1 0
0 B4

)
V−1,

for some matrix B4 and invertible A1 . Moreover, V−1 = RV ∗N where R is
signature matrix with respect to V .

(iii) AA[∗] = BA[∗] , R(A[∗])⊆ R(B[∗]) , A(1,2,4) exists.

(iv) AA(1,2,4) = BA(1,2,4) , R(A[∗])⊆ R(B[∗]) , A(1,2,4) exists.

(v) A(1,2,4)AB = A = BAA(1) .

5. Space, diamond and plus matrix partial orders

In this section, we introduce the space, diamond and plus order in an IIPS and
study some of their properties.

DEFINITION 4. Let A and B be any two matrices of same order. We call A is
below B with respect to

• Space order, denoted A
[S]
� B if R(A) ⊆ R(B) and R(A[∗]) ⊆ R(B[∗]) .

• Diamond order, denoted A
[�]
� B if A[†] exists, A

[S]
� B and AA[∗]A = AB[∗]A .

• Plus order, denoted A
[+]
� B if A[†] exists, A

[S]
� B and A = PBQ , where P and Q

are some projections.
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REMARK 3. The relation
[S]
� is not a partial order on Cm×n . Since,

[S]
� is reflexive

and transitive but not an anti-symmetric.

THEOREM 13. The relation
[�]
� is a partial order on Cm×n .

Proof. Clearly
[�]
� is reflexive. Now, we assume A

[�]
� B and B

[�]
� A . Then by Def-

inition 4, we have AA[∗]A = AB[∗]A , BB[∗]B = BA[∗]B , R(A) = R(B) and R(A[∗]) =
R(B[∗]) . Thus there exist invertible matrices X and Y , such that B = AY = XA .
Since AA[∗]A = AB[∗]A = AA[∗]X [∗]A . Pre- and post-multiplying by A[†] , we get A[∗] =
A[∗]X [∗]AA[†] = (XA)[∗]AA[†] = B[∗]AA[†] = B[∗] . It concludes that B = A . Finally, let

A
[�]
� B and B

[�]
� C , we have AA[∗]A = AB[∗]A and BB[∗]B = BC[∗]B . Thus there ex-

ist matrices X and Y , such that A = BY = XB . It follows that AA[∗]A = AB[∗]A =

XBB[∗]BY = XBC[∗]BY = AC[∗]A and hence A
[�]
� C . This completes the proof. �

PROPOSITION 2. Let A and B be matrices of the same order. Then the following
characterizations are hold:

(i) A
[�]
� B ⇔ A[∗] [�]

� B[∗] .

(ii) If U and V are M-unitary and N -unitary matrices, respectively. Then A
[�]
� B

⇔ UAV
[�]
� UBV .

Proof. Similar to Proposition 1. �

THEOREM 14. Let A and B have two complex matrices of the same order. If A[†]

exists, then the following are equivalent:

(i) AA[†]BA[†]A = A.

(ii) AA[∗]A = AB[∗]A.

(iii) A[†]BA[†] = A[†] .

(iv) A[†]BA[†] ∈ A{1} .

Proof. (i) ⇒ (ii) Suppose AA[†]BA[†]A = A . Pre- and post-multiplying by A[∗] ,
we get AA[∗]A = AB[∗]A .

(ii) ⇒ (iii) Let A[∗]BA[∗] = A[∗]AA[∗] . Pre-multiplying by (A[∗]A)[†] and post-multi-
plying by (AA[∗])[†] , we get (A[∗]A)[†]A[∗]BA[∗](AA[∗])[†] = (A[∗]A)[†]A[∗]AA[∗](AA[∗])[†] .
Thus A[†]BA[†] = A[†]AA[†] = A[†] .

(iii) ⇒ (iv) Since A[†]BA[†] = A[†] ∈ A {1,2,3,4} . Thus A[†]BA[†] ∈ A {1} .
(iv) ⇒ (i) Since A[†]BA[†] ∈ A {1} , thus by Definition of {1} inverse we get,

AA[†]BA[†]A = A . �
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THEOREM 15. If A and B are complex matrices of the same order. If A[†] and
B[†] exists. Then the following conditions are equivalent:

(i) A
[�]
� B.

(ii) BB[†]AA[†] = AA[†] , B[†]BA[†]A = A[†]A and A[†]BA[†] = A[†] .

Proof. (i) ⇒ (ii) Suppose A
[�]
� B , then R(A) ⊆ R(B) and R(A[∗]) ⊆ R(B[∗])

and AA[∗]A = AB[∗]A . By Theorem 14, A[†] = A[†]BA[†] . Since R(A)⊆R(B) , we have
BB[†]A = A and hence BB[†]AA[†] = AA[†] . Similar way, we can prove the other one.

(ii) ⇒ (i) It is clear that R(A) = R(AA[†]) = R(BB[†]AA[†]) ⊆ R(B) and simi-
larly, R(A[∗]) ⊆ R(B[∗]) . Finally, pre- and post-multiplying the equation A[†]BA[†] =

A[†] by A[∗]A and AA[∗] , it gives A[∗]BA[∗] = A[∗]AA[∗] . Thus A
[�]
� B . �

THEOREM 16. The relation
[+]
� is a partial order on Cm×n .

Proof. Choose P = AA(1) and Q = A(1)A , then PAQ = AA(1)AA(1)A = A . Clearly
[+]
� is reflexive. Now, we assume A

[+]
� B and B

[+]
� A . By Definition 4, we have A = PBQ

and B = PAQ , such that A = PBQ = PPAQQ = PAQ = B . Finally, let A
[+]
� B and

B
[+]
� C . We have A = PBQ , B = PCQ , then A = PBQ = PPCQQ = PCQ , which gives

A
[+]
� C . Thus

[+]
� is a partial order. �

The next theorem establishes a relationship between the star, diamond and plus
partial orders.

THEOREM 17. Let A and B be any two m×n complex matrices. Then

A
[∗]
� B ⇒ A

[�]
� B ⇒ A

[+]
� B.

Conversely, if AB[∗] and A[∗]B are M-Hermitian and N -Hermitian matrices, re-
spectively, then

A
[∗]
� B ⇔ A

[�]
� B ⇔ A

[+]
� B.

Proof. Let A
[∗]
� B , then by Theorem 5, AA[∗] = BA[∗] and A[∗]A = B[∗]A . Clearly,

R(A) ⊆ R(B) and R(A[∗]) ⊆ R(B[∗]) . Thus A
[S]
� B . Also, by Theorem 5, we have

A[†]A = A[†]B . Pre- and post-multiplying by A[∗]A and A[∗] , respectively, we get AA[∗]A

= AB[∗]A . It concludes that A
[�]
� B .



APPLICATIONS OF UNITARILY DIAGONALIZABLE MATRICES 17

Suppose A
[�]
� B , then A[∗]AA[∗] = A[∗]BA[∗] . Pre- and post-multiplying by (A[†])[∗] ,

we get AA[†]BA[†]A = A . Clearly, P = AA[†] and Q = A[†]A are projections and A =

PBQ . Thus A
[+]
� B .

Conversely, let A
[�]
� B and AB[∗] and A[∗]B are Hermitian. Then AA[∗] = AA[∗]AA[†]

= AB[∗]AA[†] = AA[†](AB[∗])[∗] = AB[∗] . Similarly, we can prove A[∗]A = B[∗]A . It con-

cludes A
[∗]
� B .

Suppose A
[+]
� B and set P = AA[†] and Q = A[†]A , then we have AA[∗] = PBQA[∗] =

AA[†]BA[†]AA[∗] = AA[†]BA[∗] = AA[†](AB[∗])[∗] = AB[∗] . Similarly, we can prove A[∗]A =

B[∗]A . It concludes A
[∗]
� B . �
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