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APPLICATIONS OF UNITARILY DIAGONALIZABLE MATRICES IN AN
INDEFINITE INNER PRODUCT SPACE TO MATRIX PARTIAL ORDERS

K. KAMARAJ AND A. KARPAGAM *

(Communicated by G. P. H. Styan)

Abstract. Necessary and sufficient conditions for the unitary diagonalization of normal matrices
in an indefinite inner product space are given. As an application of unitary diagonalization,
several new characterizations of the star partial order with respect to an indefinite inner product
are established. The concepts of diamond order, space pre-order, and plus order are studied in
the indefinite setting. Some relations among these matrix partial orders are proved.

1. Introduction

The theory of matrix partial orderings has garnered significant attention from
mathematicians over the past several decades [1], [6], [12], [17] and [20]. These or-
ders play an important role in the study of shorted operators, which have applications
in electrical networks [19]. However, in the indefinite inner product space (IIPS), the
study of matrix partial orders have not received as much attention. Stanisev introduced
the concept of the star partial order in an IIPS and proved some of its properties in
[21]. The aim of this paper is to introduce additional matrix partial orders, such as left
and right star partial orders, diamond, and plus matrix partial orders in IIPSs, and to
characterize them.

The following notations are used throughout this paper. Let C"*" be the set of
complex m x n matrices. For any matrix A € C"™", A*, #Z(A), A4 (A) and r(A)
denote the conjugate transpose, the range, null space and rank of A, respectively. A
square matrix A is called a projection if A = A and an orthogonal projection if A
is a projection and Hermitian. The symbol [, stands for the identity matrix of order
n. The theory of generalized inverses is essential in the development of matrix partial
orderings. For every matrix A € C"*", the unique matrix X € C"™ such that AXA =
A, XAX =X, (AX)" =AX and (XA)* = XA is called the Moore-Penrose inverse of A
and it is denoted by A" [4].

We recall the definitions of some matrix partial orders in Euclidean settings, which
will be extended to IIPS in this paper:
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e Star order: A < B if A*fA =A*B and AA* = BA*, where A, B € C™" [8].
o Left star order: Ax < B if A*A =A*B and Z(A) C Z(B) [3].
e Right star order: A < *B if AA* = BA* and Z(A*) C Z(B*) [3].

e Minus order: A < B if AVA =AWB and AAY) = BA [10].

s
e Space order: A < B if Z(A) C #(B) and Z(A*) C Z(B*) [18].

o N
e Diamond order: A < B if A < B and AA*A = AB*A [2].

+

s _
e Plus order: A < B if A < B and there are orthogonal projections Q and Q such
that A = QOBQ [17].

The rest of the paper is organized as follows: In Section 2, we provide basic def-
initions and some known results of indefinite inner product spaces and generalized in-
verses of matrices in IIPSs. In Section 3, we present the notion of unitary diagonal-
ization for N-normal and N-Hermitian matrices. As an application of unitary diag-
onalization, we prove some characterizations of matrix partial orderings in Section 4.
Finally, we extend the concepts of space, diamond, and plus orderings to the indefinite
setting.

2. Preliminary concepts of indefinite inner product space

An indefinite inner productin C” is a conjugate symmetric sesquilinear form [x, y]
which satisfies the regularity condition: [x,y] =0, Vy € C* which holds only when x =
0. Any indefinite inner product is associated with a unique invertible Hermitian matrix
N with complex entries such that [x,y] = (x,Ny), where (.,.) denotes the Euclidean
inner product on C". Such a matrix N is called a weight. A space with an indefinite
inner product is called an indefinite inner product space (IIPS). The study of linear
transformations over indefinite inner product space has received considerable attention
over the past decades; see for instance [5], [9], [11] and the references cited therein.

We call u and v orthogonal if [u,v] =0, where u,v € C". Let M and N be weights
of order m and n, respectively. The MN -adjoint of an m x n matrix A denoted Al
is defined by Al = N"1A*M. We call a square matrix A is N-Hermitian, N-normal
N -unitary and N-orthogonal projection if A = A, AAl = AFA, AAl = AA =1,
and A = A2 = Al respectively.

The Moore-Penrose inverse of a matrix A € C™*" in an IIPS is defined as the
unique matrix X € C"*'" satistying the following four equations:

(1) AXA=A, (2) XAX=X, (3) (AX)I!=AX and (4) (xA) =xA.

Such X is denoted by Alfl. A matrix X is said to be {1}-inverse of A if it satisfies
the first Penrose equation and is denoted by A(!). The set of all {1}-inverses of A is
denoted by A{1}. The sets A{1,2}, A{1,2,3} and A{1,2,4} are defined in similar
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manner. Unlike the Euclidean case, not all matrices have the Moore-Penrose inverse.
The necessary and sufficient conditions for the existence of the Moore-Penrose inverse
in an TIPS is r(A) = r(AAF)) = r(AlA). Also, Al exists if and only if %(A) and
N (A[*]) are orthogonal complementary subspaces [21]. More properties of Moore-
Penrose inverse in an IIPS can found in [15].

The next theorem gives sufficient condition for the existence of reverse order law
for Moore-Penrose inverse in an IIPS.

THEOREM 1. ([14], Theorem 3.5) Let A and B be complex matrices of appro-
priate order such that A"l and B exist. If #(A¥JAB) C %#(B) and % (BB*Al) C
R(AF)), then (AB)[T = BITIAlT],

DEFINITION 1. A complex square matrix A is said to have the spectral property
if (A— AN exists for all eigenvalues A of A.

THEOREM 2. ([16], Theorem 3.18) Let A be a linear operator on a real or com-
plex finite dimensional vector space V and let A1, A, ..., A be the distinct eigenvalues
of A. Then A is N-normal and A has a spectral property if and only if there exist
N -orthogonal projections Ey,E;,---,E; on 'V such that:

(i) A=AME + -+ ME;.
) I=E; +---+E.
(iii)) EE;=0,i#j.

COROLLARY 1. ([16], Corollary 3.24) Let A be a linear operator on a finite di-
mensional real or complex vector space V. Then A is N-Hermitian and has spec-
tral property if and only if there exists distinct real numbers Ay, Ay,...,Ax and N -
orthogonal projections E\,E,...,E such that conditions (i)—(iii) of Theorem 2 hold.

3. Unitary diagonalization

The concept of singular value decomposition (SVD) for a matrix in an IIPS was
studied by Hassi [11]. Utilizing the notion of SVD, the unitary diagonalization for
N -normal matrices was obtained in [13]. For completeness, we provide some basic
definitions and results on unitary diagonalization in this section. More detailed proper-
ties and results can be found in [13].

A linear subspace % of a complex indefinite inner product space V is non-
degenerate, if the condition x € #, [x,y] =0 for every y € # implies x = 0. Clearly,
# is non-degenerate if and only if %! is a direct complement to #/, i.e., #L1N
# = {0}. Consequently, for non-degenerate linear subspace %, and only for them,
one can construct an |.,.]-orthonormal basis, i.e., a basis {x',x*,....x'}, s = dim %

of W satisfying:
;o +1 ifi=j
[)C ,X'q - .
0 otherwise.
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REMARK 1. Let E be the N -orthogonal projection onto a linear subspace R(E).
Then it is easy to verify that E[fl = E. Thus, C" = Z(E)® .4 (E). Let x € Z(E) and
suppose [x,y] =0 for all y € Z(E). Then for all z € C", we have [x,z] = [x,z] + 22
= [x,z1] + [x,22] = 0. This implies x = 0. Therefore, R(E) is non degenerate.

DEFINITION 2. A complex square matrix A is called N -unitarily diagonalizable
if and only if there exists a nonsingular matrix U and a diagonal matrix D such that
A =UDU""! where the column vectors u',u?,...,u" of U satisfy [u',u/] = +6;;.

THEOREM 3. Let V be a finite dimensional complex indefinite inner product space
and let A be an n x n complex square matrix. Then the following are equivalent:

(1) A is N-normal and has spectral property.
(i1) V has an N -orthonormal basis consisting of eigenvectors of A.

(iii) A is N -unitarily diagonalizable.

Proof. (1) = (ii)

By Theorem 2, A can be written as A = Ef-; (| ME;, where A;’s are the distinct
eigenvalues of A and E;’s are N -orthogonal projections onto Z(E;) = A (A — Al).
Then by Remark 1, .4 (A — A;l) is non-degenerate. Thus, we can construct a N -
orthonormal basis for .4 (A — A;1) using the well-known Gram-Schmidt orthogonaliza-
tion process. On this basis, every vector is an eigenvector of A. Since V= E§:1 O (E)),
the union of all orthonormal bases of .4 (A — A;I) forms a basis for V.

(i) = (iii)

Let {u',u? ...,u"} be an N -orthonormal basis for V consisting of eigenvectors
of A and let Au' = A/, i=1,2,....,n. Set U = [u', u?, ... ,u"]. Then the column
vectors u',u?,....u" of U satisty [u,u/] = +6;;. Moreover,

U™lAU =U YAd!, Ad?, ..., Au" = U A, A, ... Al

Let S = diag(cy,ca,...,cn) where ¢; = [u',u']. We call S the signature matrix with
respect to U. It follows that S is invertible and S2 =1. Also, the " column of
SU*NU is
(SU*NU)" = SU*Nu'
= S((u')*NU)*
= s() vy
=8 [ (), P, (ui)[*]u”]
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Thus, SU*NU =1, since ¢ = 1, or equivalently, U~! = SU*N. The i" column of
U'AU is
(U~'AU)' = (SU*NAU)’
— (SU*N[)Llu17 A, ..., /lnu”])i
= AiSU*Nu!'
=28 (v
= AS [(ul)l*lul, W, .. (ul)l*lu"}
= A'iS[anv' o 7Ci707' o 70}*
—[0,0,...,24,0,...,0]".
Let D = diag(Ay,...,A,). Then U~!AU = D. Thus A is N-unitarily diagonalizable.
Gii) = (1)
Let A=UDU'. Then the column vectors {u',u?,... ,u"} of U are eigenvectors
of A such that [u',u/] = £6&;;. Let S = diag(cy,ca,...,cn), where ¢; = [u',u']. Then §

is invertible and S? =I. It is easy to check that U~! = SU*N as above. Since SD = DS
then we have,

AAF = ANT'A*N = UDSD*U*N = USDD*U*N
and
A A = N"'A*NA = USD*SDSU*N = USDD*U*N.
Thus A is N-normal. Moreover,
A—-ADA-AD =um-Anu~'w HH (D - DUk
=U(D—AISN(D— A1yt
= US(D - AI)(D— AI)'U*N.
Thus
rank (A — AI) =rank (D — Al)
= rank (D —AI)(D—AI)Y)
= rank ((A—AI)(A — M)l*l) .

Similarly, rank (A — AT) = rank ((A —ADH@A -1 )) . Thus A has spectral property.
This completes the proof. [

COROLLARY 2. Let A be a linear operator on a finite-dimensional real or com-
plex vector space V and let Ay, y,..., Ay be the eigenvalues of A. Then A is N-
normal and has spectral property if and only if there exist N -orthogonal projectors
P,P,---,P, on V such that:
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1) A=AMP +-+ ALy
(i) I=P +---+P,.

(iii) PP;=0, i+ j.

Proof. Suppose A is N-normal and has spectral property. Then by Theorem 3,
there exists an N -orthonormal basis {u',u?,...,u"} consisting of eigenvectors of A.
Let P = cju'(u')l*)) where ¢; = [u',u] = 1, i =1,2,...,n. Then it is easy to check
that P; satisfies the conditions (i)—(iii), above.

Conversely, if conditions (i)—(iii) hold and P/ = P, for all i = 1,2,...,n, then
AAF =31 |42P = AMA. Thus A is N-normal. By (i) and (ii),

_Z t_)t’j)IJl7v]:l7277n
;

o

So by (iii)

(A=A - AN = 2 \Ai = Aj|*P;, V).
i-1
i
Post- multiplying by Py, where s # j and 1 < s < n, we get
(A=A (A =MD P = |Ag— APy, V).
Since |A; — A;j| # 0 then

1

B

A-ADA-A I) IP,, Vj.
Using the above formula for P; in equation (i), we get

A— “_ZM /HzA M)A = 2DEP
i#]

— (A=) (A=Al [*12( ~4) B
l#/

Thus, rank (A — A;1) < rank ((A — M) A=Al )l*l) rank (A — A;I) Vj. Therefore,
rank (A — A;I) =rank ((A — A (A— /ljl)[*]> . Since (A —A;I) is N-normal, then (A —
)le)[ﬂ exists for all j =1,2,...,n. This completes the proof. [J
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COROLLARY 3. Let P be a n x n complex square matrix. If P is projection then
the following are equivalent:

(i) P is an N-orthogonal projection.

(ii) P is an N -unitarily diagonalizable.

Proof. Suppose, P is an N-orthogonal projection. Then I — P is also an N-
orthogonal projection. Clearly, P [Tl and (I-P) [T are exist. Thus, P has spectral
property. Therefore, by Theorem 3, P is N -unitarily diagonalizable.

Conversely, let us assume that P is an N -unitarily diagonalizable matrix. Then by

I. 0 1
0 O) U~". Moreover,

U~!' =SU*N where S =diag(cy,c2,...,cn), ci = £1. Itis easy to check that P> = P.
Since, S is a diagonal matrix, thus

PH = N“INUS (1’ O) U*N=US (I’ 0) U*N

Theorem 3, there exists an invertible matrix U such that P =U <

00 00
_ I 0 — LOY, 1
—U<OO>SUN—U<OO)U =P
This completes the proof. [

4. Star partial order, left and right star partial orders

As a natural extension, Stanisev defined the star partial order in an IIPS as follows:

*
A 2 B if AA* = BA* and AFA = AFIB [21]. In this paper, we utilize the definitions
of matrix partial orders based on the works referenced in [6], [7] and [20]. The primary
aim of using these definitions is to explore the potential extension of matrix partial
orders to infinite dimensional Kerin spaces.

DEFINITION 3. Let A and B be any two complex matrices of the same order. We
say A is below B with respect to

[+]
e Star order: A < B if there exist M -orthogonal projection P and N -orthogonal
projection Q such that A= PA=PB, A=AQ = BQ, Z(P) = #(A) = Z(AA))
and A (Q) = A (A) = .4 (AFFIA).

o Leftstarorder: A" < B if and only if there exist M -orthogonal projection P and
projection Q such that A=PA=PB, A=AQ=BQ, #(P) =% (A) = Z(AA),
N (A) = A(Q).

e Right star order: A <M B if and only if there exist projection P and N -orthogonal
projection Q such that A=AP =BP, A=AQ=BQ, Z(P)=%(A), ¥ (A) =
N (Q) = ./ (AMA).
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e Minus order: A % B if and only if there exist projections P and Q such that
A=AP=BP,A=AQ=BQ, Z(P)=%(A), /(A)=4(0).

4] .
REMARK 2. From Definition 3, it is easy to observe that A< B = A : ]g B =
A % B. Additionally in view of Baksalary [1, p. 164], it is observed that A i B if and
only if A =ABWA = BBA = ABUB for some B(") € B{1}. Thus, it is clear that
the definition for minus order given in Definition 3 is equivalent to AA(!) = BA(1) and
AWA =ADB for some AL,

THEOREM 4. Let A and B have any two complex m x n matrices. Then the
following are equivalent:

(i) A [;]B.
(ii) Al exists, #(A)[ L)% (B —A) and 2 (A¥)[ L)% (Bl — Al¥).

Proof. Suppose A [g] B. Then by Definition 3, there exist M -orthogonal projection
P and N-orthogonal projection Q such that A = PA = PB, A = AQ = BQ. Thus,
B—A=B—PB=(I—P)B and (I—P)A =0. Clearly, [Ax,(B—A)y] = [Ax,(I —
P)By] = [(I — P)Ax,By] = 0 for all x and y. Therefore, Z(A)[L]|Z(B—A). Similarly,
we can prove the other one using the fact that Al = A¥/Q = B*/Q. The existence of
Moore-Penrose inverse of A directly follows from the definition.

Conversely, if All exists then, 2(A) @ A4 (AlFl) = C™ and 2 (AF)) @ ¥ (A) =
C". Thus, there exists an N -orthogonal projection P such that Z(P) = #(A) and
N (P) = Z(A)H = 4 (AF]). Therefore, Z(B—A) C Z(A)H C o (AF)) = v (P).
This shows that PB = PA = A. Similarly, we can prove the other one. This completes
the proof. [

LEMMA 1. Let A and B be two complex matrices of the same order such that Al
and B! exist. If AAlY) = BAL) and Al1A = AlTIB, then

1. (BA[T = AB.
2. (AlB)H = BlilA,

Proof. To prove (i), by Theorem 1, it is enough to show Z(B*BAlTl) C 72(Al))
and Z(AT(AFDF B € 2(BM). Thus,

#(BYBAITY = 2B AAT) = 2 ((AAl B))y = 2((AAT A 1)) = 22(AlF)) € 22(ATT).
Also,
2 (AF (A B = g2((Alf1A)H AT (AN M BE)Y = 2((AlT1B)H AL (AT BlHY)

— %(B[*] (A[T])[*]A[T] (A[T])[*]B[*]) C %’(B[*]).
(ii) can be proved in similar manner. [J

The following theorem provides main characterization of star partial order.



APPLICATIONS OF UNITARILY DIAGONALIZABLE MATRICES 9

THEOREM 5. Let A and B have any two m X n complex matrices of the same
order. Then the following are equivalent:

[#]
(i) A<B.
(ii) There exists invertible matrices U and V such that

_ AIO -1 o A] 0 1
A-U(OO)V and B-U(OB4)V 7

for some matrix By and invertible A;. Moreover, U'=SU*M and v~ =
RV*N, where S and R are signature matrices with respect to U and V respec-
tively.

(iii) A exists, AAV! = BAV and AMA = AFIB.
(iv) AAT = BAlTl and AlT1A = AlTlB.
(v) AALIB = A = BAlIA.
Moreover if Bl exists, then the following statement is equivalent to (i)—(v)

(vi) AAT = AB and AlTlA = BITIA.

[+]

Proof. (i) = (ii) Since A < B, there exist M -orthogonal projection P and N-
orthogonal projection Q such that A = PA = PB, A=AQ =BQ, #(P) = %(A) =
R(AAF)) and A (Q) = A (A) = 4 (AFA). Clearly, by Corollary 3, there exist in-
vertible matrices U and V such that P = U ({)’ 8) U'and 0=V (I(; 8) vl
where 7 is equal to rank of A. Moreover, U~! = SU*M and V~! = RV*N where
S=diag(ci,c2,...,¢m), ci==+1 and R =diag(dy,ds,...,d,), di=+1.

The matrices A and B can be written, with suitable block matrices, as

. A1A2 -1 o 3132 1
A_U<A3A4)V and B=U By B, V-

Now, using the fact that A = PA and AQ = A, we get A, =0, A3 =0 and A4 = 0.
Similarly, using the fact that PB =A and BQ = A, we get By = A;, B, =0 and
B3 =0. Also, rank(A;) =rank (A) = rank (P) = r. Thus A; is invertible.

(1) = (iii)

Suppose A and B have the decomposition mentioned in (ii). Then

Al = Nyl (%1 8) U*M

A% 0
_ a1 —1\* 1 —1
=NV )(OO)SU

s (ATS1OY
_ 1 1y* 1”1 1
=N (V)(OO)U.
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05 0 Ry
It is easy to verify that,

Where S = (Sl 0 ) and R = (Rl 0 ) . Since, U~! = SU*M and V! = RV*N

0 0
and
*
AAF =y (AI%IAI 8) VM = BAl.

Also, rank (A"/A) = rank (A7S1A) = rank (A;) = rank (A). Similarly, rank (AAl*])
=rank (A|R A}) = rank (A;) = rank (A). Thus, A"l exists.
(iii) = (iv)
(7] (7] (7]
Since, ATl exists then, (AA[*]> and <A[*]A> are exist and AlTl = Al (AA[*]>

[] (1] .
- (AMA) A, Post-multiplying by (AAM) in Al = BAM | we get AAll =

S (7]
BAlT . Similarly, pre-multiplying by (A[*]A> in AFJA = AMB, we get AlflA = AlilB.

@iv) = (v)

Post- and pre-multiplying by A, we get AAlTIB=A = BAlflA.
(iv) = (vi)

By Lemma 1, we get AAlTl = ABIT and AlflA = BIlA.

v) = ()

Since, AAIB = A and BAlIA = A. Choose P = AAl" and 0 = AllA. Clearly,
A =AATA = PA and A = BAIA = BQ. Thus A = PA = BQ. Since Alfl exists, thus
R(A) = Z(AAM) = Z(AAlT) = % (P) and A (A) = 4 (AFA) = v (AlT1A) = ¥ (Q).

*
It shows that A 2 B.

(v) = (vi)

From the assumptions, it is easy to observe that Z(A) C Z(B) and Z(Al*) C
Z(B") equivalently, BBIIA = A = ABIIB. Post-multiplying AAIIB = A by BlTl we
get AB!Tl = AAlIBBIT = (BBITIAAlT) I = Al Other one is similar.

(vi) = (iii)

Let AAlTT = ABlTl and AllA = BIfIA, then by Lemma 1, AAlfl = (AAlh[f] =
(ABITH[Tl = BAlTl | Post-multiplying by AA!, we get AAITIAAl = BAIIAAM . This
gives AA = BA. Similarly, we can be prove A/A = AF/B.

This completes the theorem. [

(%]
THEOREM 6. The relation < is a partial order on C"*",

[+ [+]
Proof. From Definition 3, it is easy to observe that A < A. It ensures that < reflex-
[+] ]
ive. Suppose A < B and B < A, then there exist M -orthogonal projections P; and P,
and N -orthogonal projections Q; and Q, such that A= P/A =P,B, A=AQ| = B0,
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B=P,B=P,A and B=BQ> =AQ;. Then A = P|B = PlAQ> = AQ, = B. This shows
[+]
that the relation < is anti-symmetric.

5 [+]
Next, suppose A < B and B < C, then by Theorem 5 (v), we have A = AA[IB =

BAIIA and B = BEIC — CBI B, 1tis clear that R(A) C Z(B) and Z(A*)) C #(B").
Thus A = AATIB = AAlTIBBlIC = AAlTIC and A = BAITIA = CBlTIBAlTIA = cAlTIA .

(%] (%]
This shows that A < C by Theorem 5, (v). Therefore, the relation < is transitive.
This completes the theorem. [

(4]
THEOREM 7. Let A and B have any two complex m X n matrices. If A< B. Then
(i) AFIBAlT = Alfl,
(ii) AAVBAA =A.

Proof. By Theorem 5 (ii),

(A0, (A0,
A_U<OO)V and B—U<0B4>V

-1
for some matrix B4 and invertible A . It is easy to verify that A() =V (Al 0) U-!

—1
for some L and Al =V <A(1) 8) Uu-'.
Thus,

-1 1
fpaltl — v (A1 O -1 (A1 0\ -1y (AT 0 -1
A'BA V(OO)U U(OB4 vy o 0o U

v (AT
_v< : O)U
= Al

Also,

Il
>
N
Do>o
o O
N——
S

PROPOSITION 1. Let A and B have complex matrices of the same order. Then the
following characterizations are hold:

[ [
(i) A< B < AM < BF.



12 K. KAMARAJ AND A. KARPAGAM

(ii) If U and V are unitary matrices of order m x m and n X n respectively then
(4] [+]
A< B & UAV <UBV.

Proof. 1t is well known that Alfl exists if and only if (A)f] exists. Also, by
Theorem 5

[+]
A< B = AMA = AMB and AAl = Al
o (AM)EAR = (aBYEIBE ang Al (Al = Bl (41))

oAl gl

Similarly, to prove (ii) it is easy to check that Alfl exists if and only if (UAV)[T] exist.
Thus,

[4]
A<B & AFlA = AMB and AAl = Al
o viAHyHyay = viAHuEyBy and vavviFabyll = ypyviHallyld
& (UAV)Huav = (UAv)HUBY and UAV (UAV)H = UBV (UAV )

[+
< UAV <UBV. O

THEOREM 8. Let A, B and C be complex matrices of the same order. Then the
following conditions are equivalent:

[+
(i) A<B.
(ii) ATl exists and %(C) C Z(B), AMC =0 and CA¥ =0, where C =B —A.

Proof. If A [g] B, then by Theorem 5, we have AJA = AFIB and AAl = BAl,
This implies A*/(B—A) =0 and (B—A)Al" = 0. Let C = B— A, then it follows that
Z(C)C Z(B) and AF/C =0 and CAF = 0. Conversely, if Alfl exists and 2(C) C
Z#(B), AFIC =0 and CcA¥l =0, where C=B—A, it directly follows from these

(*]
conditionsthat A < B. [

THEOREM 9. Let A and B be any two matrices of same order. If A 2 B and both

BAW and AVB are M and N -Hermitian matrices, respectively, for some A1) e A{l},

(%]
then A < B.

Proof. Clearly, AA() = BA() :( AAMH and AWA = AR = (AWA) | Thus,
A=AAWA = A(AMA)H = AAF(AMW) | Tt shows that rank (A) = rank (AAl). Sim-
ilarly, we can prove that ra k(A) = rank (A[*]A) Thus Al exists.

Also, [Ax, By] = [AA(DAx, By] = [Ax, (AAM)) ¥ By] = [Ax,AA(VBy] = [Ax,AA() Ay
=[Ax,Ay]. Thus [Ax, (B— ) ] =0 forall x and y. This shows that Z(A)[_L|Z(B—A).

[+]
Similarly, we can prove Z(A*)[ L] (B — AF]). Thus A < B, by Theorem 4. [J
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(4]
THEOREM 10. Let A and B be any two m X n complex matrices. Then A < B if

and only if Al exists, A i B and AB™ and A¥IB are M -Hermitian and N -Hermitian
matrices, respectively.

Proof. Necessity is straightforward. Suppose, P and Q are projections such that
A=PA=PB and A = AQ = BQ then AAl¥l = PBAl) = P(AB!*)l¥] = pABIY = ABI*]

4
and AMA = AMBO = (AMB)HQ = BHAQ = BFA. Thus A<B. O

Next, we characterize left star partial ordering in an IIPS.

THEOREM 11. Let A and B have any two m X n complex matrices of the same
order. Then the following are equivalent:

(i) A< B.

(ii) There exist invertible matrices U and V such that

A:U(AIO)V—l and B:U(A‘ O)V—l,
0 By

for some matrix By and invertible A;. Moreover, U~'=SU*M where S is a
signature matrix with respect to U.

(iii) AMA =AHB, %(A) C %#(B) and AV23) exists.
(iv) AU23) exists, A023A = AL23B and (A) C % (B).
(v) A3 exists and AA23)B = A = BAVA.

Proof. (i) = (ii) Since A . < B, there exist M -orthogonal projection P and pro-
jection Q such that A= PA =PB, A=AQ =BQ, Z(P)=%(A) = %(AA[*]) and

N (Q) =4 (A). Then by Theorem 3, P can be written as P = U (I(; 8) U~', where
U~! = SU*M. Also, it is well known that any projection matrix can be written as

o=V 16 8) V~1. The rest of the proof is similar to Theorem 5.

(1) = (iii)
Suppose A and B have the decomposition mentioned in (ii). Then

4 — vt -1 (ATS1A1 0 o1 o
AFA = NL (V) ( 0 Jvt=alls.

I, 0
00
rank (AJA) = rank (A5S1A,) = rank (A;) = rank (A). It ensures that A("?3) exists.

Let Y =V ( ) V~!, then BY = A. It concludes that Z(A) C Z(B). Also,
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(iii) < (iv) Pre-multiplying AMIA = AFIB by 4129 we get (441231 4 =
(AA023N . B implies A = AAU123) B, Again, pre-multiply by AU1:23) | we get (iv).
Pre-multiplying A(123)A = A0:23)B by AFA we get (iii).

(iii) = (v) Post- and pre-multiplying A*JA = AFB by B(VA and Al:23) , Te-
spectively, we get AB(A = A. Also, the inclusions Z(A) C Z(B) and Z(AFJA) C
#(B") give A=BB(A = ABUB is equivalent to A(VA = AR and AA() = BA(D)
for some A() € A{1}, by Remark 2. Thus, BA(VA = BAUB = AA(VB = AA(NA =
A. Also, A =AA123A = AA(123),

(v) = (i) By setting, P = AA(1:23) and 0 = A(DA then we get the desired result.
This completes the proof. [

The next theorem characterizes the right star partial order. The proof is similar to
Theorem 11.

THEOREM 12. Let A and B have any two m X n complex matrices of the same
order. Then the following are equivalent:

(i) A< B.

(ii) There exists invertible matrices U and V such that

- A1 0 -1 _ A O -1
A_U<OO)V and B_U<OB4)V ,

for some matrix By and invertible Ay. Moreover, V=1 = RV*N where R is
signature matrix with respect to V.

(iii) AAF =BAl (A" € 2 (BM), ALY exists.
(iv) AAL24) = BA(124) - (Al € 2(BF)), AL24) exists.
(v) AU2HAB = A = BAAW.
5. Space, diamond and plus matrix partial orders

In this section, we introduce the space, diamond and plus order in an IIPS and
study some of their properties.

DEFINITION 4. Let A and B be any two matrices of same order. We call A is
below B with respect to

(8]
e Space order, denoted A < B if Z(A) C #(B) and Z(Al*)) C % (Bl*)).
. [o] . N
e Diamond order, denoted A < B if Alil exists, A < B and AAMA = ABIHA.

[+] N
e Plus order, denoted A < B if Alf] exists, A < B and A = PBQ, where P and Q
are some projections.
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(5] N
REMARK 3. The relation < is not a partial order on C"*". Since, < is reflexive
and transitive but not an anti-symmetric.

[¢]
THEOREM 13. The relation < is a partial order on C™ ",

o o o
Proof. Clearly [g] is reflexive. Now, we assume A [g] B and B [<]A. Then by Def-
inition 4, we have AAJA = ABA, BBYIB = BAVIB, %(A) = %(B) and Z(Al") =
Z(B"). Thus there exist invertible matrices X and Y, such that B = AY = XA.
Since AAMA = ABIFA = AAMIX A Pre- and post-multiplying by AlTl, we get A"l =
AHXAA = (xA)HAAL] = BHAALT = BI¥ | Tt concludes that B = A. Finally, let
< <
A 2 B and B [<] C, we have AAFIA = ABMA and BB B = BC*IB. Thus there ex-
ist matrices X and Y, such that A = BY = XB. It follows that AA*A = AB¥lA =

[o]
XBBYBY = XBCIBY = AC!*/A and hence A < C. This completes the proof. [

PROPOSITION 2. Let A and B be matrices of the same order. Then the following
characterizations are hold:

[ (]
(i) A<B < A < Bl
y . : . . fe]
(ii) If U and V are M -unitary and N -unitary matrices, respectively. Then A < B
[]
< UAV < UBV.

Proof. Similar to Proposition 1. [

THEOREM 14. Let A and B have two complex matrices of the same order. If Alfl
exists, then the following are equivalent:

(i) AAITIBAlTIA = A.
(ii) AAMA = ABIA.
(i) Al1BAlTl = Alf]
(iv) AllBAlT € A{1}.

Proof. (i) = (ii) Suppose AA[T'BAITIA = A. Pre- and post-multiplying by A,
we get AAA = ABMA.

(ii) = (iii) Let AF/BAlF = AlAAF] | Pre-multiplying by (AA)["] and post-multi-
plying by (AAFNT we get (AMA)TAKBAM (A4 = (A1) T AA (A4
Thus ATBAlT = AlilAAlT] = Al

(iii) = (iv) Since AfIBAI = Alfl € A {1,2,3,4}. Thus AllBAIT] € A {1}.

(iv) = (i) Since Al1BAlTl € A {1}, thus by Definition of {1} inverse we get,
AABATIA=A. O
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THEOREM 15. If A and B are complex matrices of the same order. If AUl and
Bl exists. Then the following conditions are equivalent:

fo
(i) A<B.

(ii) BBMAALT = AAlfl) BIBAITIA = AIA ana ATFIBAT = Al

<
Proof. (i) = (ii) Suppose A [g] B, then #Z(A) C Z(B) and Z(A) C % (Bl)
and AAMA = ABIJA. By Theorem 14, AlTl = AlFIBAlT]. Since Z(A) C % (B), we have
BBlIA = A and hence BBITAAlT = AAlT | Similar way, we can prove the other one.
(i) = (i) It is clear that Z(A) = Z(AAl)) = %(BBT1AAlT) C %(B) and simi-
larly, Z(Al) € 2(B!*]). Finally, pre- and post-multiplying the equation Af/BAlTl =

o [o]
Al by AFA and AA | it gives AFIBA = AFAAM  Thus A< B. O

[+]
THEOREM 16. The relation < is a partial order on C™*",

Proof. Choose P=AA" and 0 =AWA, then PAQ = AAMAAWMA = A. Clearly
[+] [+] [+]
< isreflexive. Now, we assume A < B and B < A. By Definition 4, we have A = PBQ
[+]
and B = PAQ, such that A = PBQ = PPAQQ = PAQ = B. Finally, let A < B and

[+]
B < C. We have A = PBQ, B=PCQ, then A = PBQ = PPCQQ = PCQ, which gives
[+] [+]
A < C. Thus < isa partial order. [
The next theorem establishes a relationship between the star, diamond and plus
partial orders.

THEOREM 17. Let A and B be any two m X n complex matrices. Then

4] (] [+]
A<KB=A<B=A<B.

Conversely, if AB¥ and A¥IB are M -Hermitian and N -Hermitian matrices, re-
spectively, then

[+ [] [+]
A<KB&SALSB&SALB.

(%]
Proof. Let A < B, then by Theorem 5, AAF = BAP and A¥JA = BIHA . Clearly,

[s]
R(A) C Z(B) and Z(AM) C Z(B). Thus A < B. Also, by Theorem 5, we have
AlflA = AlFIB. Pre- and post-multiplying by A/A and Al | respectively, we get AAl¥A

[¢]
= AB*A . It concludes that A < B.
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[0]
Suppose A < B, then A*JAAl = Al¥/BAl*! | Pre- and post-multiplying by (Al
we get AAINBAITIA = A. Clearly, P = AAlTl and O = AlTA are projections and A =

[+]
PBQ. Thus A < B.

[0]
Conversely, let A < B and AB™ and A¥B are Hermitian. Then AA[ = AAF AA[T]
= ABHAALT = Al (ABF)) ) = ABF). Similarly, we can prove Al¥A = B¥A . Tt con-

[+]
cludes A < B.

[+]
Suppose A < B and set P=AAlTl and 0 = AllA, then we have AAl = PBQA] =
AATBAlTAAL] = AAlTIBAl = AALT(ABIH) ) = AB! | Similarly, we can prove AlA =

%]
BYA . It concludes A< B. O
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