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JENSEN TYPE INEQUALITIES FOR

(m,M,)–CONVEX FUNCTIONS WITH APPLICATIONS

SEVER SILVESTRU DRAGOMIR, SLAVICA IVELIĆ BRADANOVIĆ ∗
AND NEDA LOVRIČEVIĆ

(Communicated by I. Perić)

Abstract. Among various generalized classes of convexity, the class of (m,M,) -convex func-
tions, introduced by Dragomir in 2001, has attracted increasing attention recently. This class
covers many other subclasses of convexity, such as the class of strongly convex functions, delta
convex functions, approximately convex functions and others. In this paper, we present the
Jensen and the Jensen-Steffensen type inequalities for (m,M,) -convex functions. Our results
extend and improve the corresponding results valid for different subclasses of convex functions.
As application of the main results, we derive new lower and upper bounds estimations for some
well-known mean inequalities.

1. Introduction

Recently, various generalized classes of convexity have been studied and the cor-
responding inequalities for these classes have been established. Among these general-
izations, we point out the convexity generalization introduced by Dragomir [7]:

Let m,M ∈ R, I ⊆ R and  : I → R be a convex function . A function  : I → R

is called:

• (m,)-lower convex if the function −m is convex;

• (M,)-upper convex if the function M− is convex;

• (m,M,)-convex if it is (m,)-lower convex and (M,)-upper convex.

In accordance with this definition, if  is (m,M,)-convex, then  −m and
M− are convex and then the function (M−m) is convex, implying that m � M
whenever  is not trivial, i.e. is not the zero function.

Let us note that previous definition can be written in the following way:
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Let m,M ∈ R and  , : I ⊆ R → R be functions such that  is convex. Then 
is said to be (m,)-lower convex if

m [(x)+ (1− )(y)− (x+(1− )y)] (1)

� (x)+ (1− )(y)− (x+(1− )y)

holds for all x,y ∈ I and  ∈ [0,1] . Further,  is said to be (M,)-upper convex if

(x)+ (1− )(y)− (x+(1− )y) (2)

� M [(x)+ (1− )(y)− (x+(1− )y)]

holds for all x,y ∈ I and  ∈ [0,1] . If both inequalities (1) and (2) hold, then  is said
to be (m,M,)-convex with m � M whenever  is not trivial .

In the following part, we consider some particular cases of defined generalized
classes of convexity.

According to [8] (see also [14]), for  = id2, where id denotes the identity func-
tion, i.e. id(t)= t, t ∈ I, function  is called m-lower convex if the function −m · id2

is convex and  is called M -upper convex if the function M · id2 − is convex. The
same class of functions, known as convexifiable and concavifiable functions, was con-
sidered in [31] and [22].

Note that for m = 0 and M = 0 in (1) and (2), we get ordinary convexity and
concavity, respectively.

Since  is convex function, inequality

(x)+ (1− )(y)−(x+(1− )y)� 0

holds for all x,y ∈ I and  ∈ [0,1].
Then in case m > 0, we have

(x+(1− )y)
� (x)+ (1− )(y)−m [(x)+ (1− )(y)−(x+(1− )y)]
� (x)+ (1− )(y),

i.e. (m,)-lower convexity implies ordinary convexity.
In particular, if m > 0 and  = id2, then we come to the notion of strong convex-

ity. The class of strongly convex functions was originally introduced in [27] and has
played an important role in optimization theory. For more details on this concept as
well as on new results on strong convexity, see [15], [16], [25], [28] and the references
therein.

For m < 0 we are going in direction of consideration of approximately convex
functions.

If M < 0, then

(x)+ (1− )(y)
� (x)+ (1− )(y)−M [(x)+ (1− )(y)−(x+(1−)y)]
� (x+(1− )y)
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i.e. (M,)-upper convexity implies ordinary concavity.
For M > 0, (M,)-upper convex functions were investigated in [30] (see also

the references therein) and are named delta convex functions. Such functions play an
important role in convex analysis.

Also notice that for M > 0 and  = id2, corresponding (M, id2)-upper convex
functions were considered in [23] as approximately concave function.

Finally, let us mention the concept of g -convex dominated functions, introduced
in [12], with g being a given convex function. Namely, function  is called g -convex
dominated if the functions g+ and g− are convex. Note that this concept can be
obtained as a particular case of (m,M,)-convexity by choosing m = −1, M = 1 and
 = g .

In the sequel, I denotes a real interval with its interior intI.
We cite the following lemmas from [7] for its importance as characterizations of

(m,M,)-convex functions. The first one considers the supporting lines of convex
functions.

LEMMA 1. Let  , : I → R be differentiable functions on intI and suppose that
 is convex on intI .

a) For m ∈ R, a function  is (m,)-lower convex iff

m
[
(y)−(z)− ′(z)(y− z)

]
� (y)−(z)− ′(z)(y− z) (3)

holds for all y,z ∈ intI.

b) For M ∈ R, a function  is (M,)-upper convex iff

(y)−(z)− ′(z)(y− z) � M
[
(y)−(z)− ′(z)(y− z)

]
(4)

holds for all y,z ∈ intI.

c) For m,M ∈ R, m � M, a function  is (m,M,)-convex iff both (3) and (4)
hold.

The second lemma is a characterization that includes differentiability.

LEMMA 2. Let  , : I → R be twice differentiable on intI and suppose  is
convex on intI .

a) For m ∈ R, a function  is (m,)-lower convex on intI iff

m · ′′(x) �  ′′(x) for all x ∈ intI. (5)

b) For M ∈ R, a function  is (M,)-upper convex on intI iff

 ′′(x) � M · ′′(x) for all x ∈ intI. (6)
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c) For m,M ∈ R, m � M, a function  is (m,M,)-convex iff both (5) and (6)
hold, i.e.

m · ′′(x) �  ′′(x) � M · ′′(x) for all x ∈ intI.

More results related to the class of (m,M,)-convex functions can be found in
the papers [4]–[6], [10], [11], [13] and [19].

Our paper is organized as follows. In the second section, we prove useful lemmas
with important characterizations of (m,)-lower convex and (M,)-upper convex
functions. In the third section we obtain the Jensen type inequalities for (m,)-lower
convex, (M,)-upper convex and (m,M,)-convex functions. In the forth section, we
prove that the same results hold under Steffensen’s conditions (31), i.e. we prove the
Jensen-Steffensen type inequalities for (m,)-lower convex, (M,)-upper convex and
(m,M,)-convex functions. In the last section we present applications of the obtained
results by deriving new lower and upper bounds estimations for some well-known mean
inequalities.

2. More about (m,M,)-convexity

We supplement the characterizations given in Introduction with the following lem-
mas which provide simple consequences of the definition of the class of (m,M,)-
convex functions.

LEMMA 3. Let  , : I → R be functions and suppose  is convex.

a) If for m ∈ R,  is (m,)-lower convex, then for every n ∈ R, n < m,  is
(n,)-lower convex.

b) If for M ∈ R,  is (M,)-upper convex, then for every N ∈ R, N > M,  is
(N,)-upper convex.

c) If for m,M ∈ R, m � M,  is (m,M,)-convex, then for every n,N ∈ R, n <
m � M < N,  is (n,N,)-convex.

Proof. a) Since  is (m,)-lower convex, then

m [(x)+ (1− )(y)−(x+(1− )y)]+(x+(1− )y)
� (x)+ (1− )(y)

holds for all x,y ∈ I and  ∈ [0,1]. Further,  is convex and then

(x)+ (1− )(y)−(x+(1− )y)� 0

holds for all x,y ∈ I and  ∈ [0,1]. Moreover, for every n ∈ R, n < m ,

(x)+ (1− )(y)
� m [(x)+ (1− )(y)−(x+(1−)y)]+(x+(1− )y)
� n [(x)+ (1− )(y)−(x+(1− )y)]+(x+(1− )y),
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what we need to prove.
b) Since  is (M,)-upper convex, then for every N ∈ R, N > M ,

(x)+ (1− )(y)
� M [(x)+ (1− )(y)−(x+(1− )y)]+(x+(1− )y)
� N [(x)+ (1− )(y)−(x+(1− )y)]+(x+(1− )y)

holds for all x,y ∈ I and  ∈ [0,1].
c) This part is combination of a) and b). �

LEMMA 4. Let  , : I →R be functions such that  is a convex one. Let m,M ∈
R .

a) If  is (m,)-lower convex, then it is continuous on intI and has finite left and
right derivatives at each point of intI . Further, for every x,y ∈ intI, x � y, holds

 ′
−(x)−m · ′

−(x) �  ′
+(x)−m · ′

+(x) (7)

�  ′
−(y)−m · ′

−(y) �  ′
+(y)−m · ′

+(y).

Additionally, if  and  are differentiable, then for every x,y ∈ intI, x � y,
holds

m · ( ′(y)− ′(x)) �  ′(y)− ′(x). (8)

b) If  is (M,)-upper convex, then it is continuous on intI and has finite left and
right derivatives at each point of intI . Further, for every x,y ∈ intI, x � y, holds

M · ′
−(x)− ′

−(x) � M · ′
+(x)− ′

+(x) (9)

� M · ′
−(y)− ′

−(y) � M · ′
+(y)− ′

+(y).

Additionaly, if  and  are differentiable, then for every x,y∈ intI, x � y, holds

 ′(y)− ′(x) � M · ( ′(y)− ′(x)
)
. (10)

Proof. a) As an easy consequence of the Stolz theorem (see [24, p. 25.]) applied
to the convex function  and g =  −m , we have that  and g are continuous on
intI and have finite left and right derivatives at each point of intI . Then the same holds
for the function  = g+m . Moreover, by the Stolz theorem, functions  ′−,  ′

+, g′−
and g′+ are nondecreasing and for every x,y ∈ intI, x � y, we have

 ′
−(x) �  ′

+(x) �  ′
−(y) �  ′

+(y)

and
g′−(x) � g′+(x) � g′−(y) � g′+(y),

where the last relations are equivalent to (7).
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If  and  are differentiable, then  ′(x) =  ′−(x) =  ′
+(x) and  ′(x) = ′−(x) =

 ′
+(x), i.e. g′(x) = g′−(x) = g′+(x) holds for all x ∈ intI. Further, for every x,y ∈ intI,

x � y, we have
g′(x) � g′(y),

which is equivalent to (8).
b) We proceed analogously and omitting details, but this time observing the convex

function h = M− . �

Note that inequalities (3) and (4) follow from the fact that the differentiable func-
tions g = −m and h = M− are convex iff

g(y)−g(z) � g′(z)(y− z),
h(y)−h(z) � h′(z)(y− z)

hold for all y,z ∈ intI. Instead of the assumption of differentiability we can take any
c(z) ∈ [g′−(z),g′+(z)], d(z) ∈ [h′−(z),h′+(z)] , where y,z ∈ intI, and

g(y)−g(z) � c(z)(y− z), (11)

h(y)−h(z) � d(z)(y− z)

hold for all y,z ∈ intI.
Without loss of generality we can set c(z) = g′+(z) =  ′

+(z)−m ′
+(z) and d(z) =

h′+(z) = M ′
+(z)− ′

+(z) and then (11) are equivalent to

m
[
(y)−(z)− ′

+(z)(y− z)
]
� (y)−(z)− ′

+(z)(y− z)

(y)−(z)− ′
+(z)(y− z) � M

[
(y)−(z)− ′

+(z)(y− z)
]

for all y,z ∈ intI.
In the rest of the paper, unless otherwise stated, (a,b) denotes a real interval such

that − � a < b �  .
For  , : (a,b) → R , without loss of generality, we may set  ′(x) =  ′

+(x) and
 ′(x) =  ′

+(x), for any x ∈ (a,b).

LEMMA 5. Let  , : (a,b) → R be functions such that  is convex and let m ∈
R. If  is (m,)-lower convex, then for a fixed z∈ (a,b) , the functions F1,F1 : (a,b)→
R, defined by

F1(y) = (y)−(z)− ′(z)(y− z)−m
[
(y)−(z)− ′(z)(y− z)

]
and

F1(y) = (z)−(y)− ′(y)(z− y)−m
[
(z)−(y)− ′(y)(z− y)

]
are nonnegative on (a,b) , nonincreasing on (a,z] and nondecreasing on [z,b) .
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Proof. Nonnegativity of the functions F1 and F1 follows from (3).
First we prove the statement for the function F1.
Let a < y1 < y2 � z.
By (8) we have  ′(y2)+m · ( ′(z)− ′(y2)) �  ′(z). Multiplying it with (y1 −

y2) < 0, we get

 ′(y2)(y1 − y2)+m · [ ′(z)− ′(y2)
]
(y1− y2) �  ′(z)(y1 − y2). (12)

Let us calculate F1(y1)−F1(y2). It holds

F1(y1)−F1(y2) (13)

= (y1)−(z)− ′(z)(y1 − z)−m
[
(y1)−(z)− ′(z)(y1 − z)

]
−(y2)+(z)+ ′(z)(y2 − z)+m

[
(y2)−(z)− ′(z)(y2 − z)

]
= (y1)−(y2)− ′(z)(y1 − y2)−m

[
(y1)−(y2)− ′(z)(y1 − y2)

]
.

Further, by using (12), we have

(y1)−(y2)− ′(z)(y1 − y2)−m
[
(y1)−(y2)− ′(z)(y1 − y2)

]
� (y1)−(y2)− ′(y2)(y1 − y2)

−m · [ ′(z)− ′(y2)
]
(y1− y2)−m

[
(y1)−(y2)− ′(z)(y1 − y2)

]
= (y1)−(y2)− ′(y2)(y1 − y2)−m · [(y1)−(y2)− ′(y2)(y1 − y2)

]
� 0,

where nonnegativity follows from (3). This proves that F1 is nonincreasing on (a,z] .
Now, let z � y1 < y2 < b.
Then by (8) we have  ′(z)+ m · ( ′(y1)− ′(z)) �  ′(y1). Multiplying it with

(y1− y2) < 0, we get

 ′(y1)(y1 − y2)−m · [ ′(y1)− ′(z)
]
(y1− y2) �  ′(z)(y1 − y2). (14)

Now, by using (14), we have

F1(y1)−F1(y2) (15)

= (y1)−(y2)− ′(z)(y1 − y2)−m
[
(y1)−(y2)− ′(z)(y1 − y2)

]
� (y1)−(y2)− ′(y1)(y1− y2)+m · [ ′(y1)− ′(z)

]
(y1− y2)

−m
[
(y1)−(y2)− ′(z)(y1 − y2)

]
= (y1)−(y2)− ′(y1)(y1− y2)−m

[
(y1)−(y2)− ′(y1)(y1− y2)

]
� 0,

where nonpositivity follows from (3).
This proves that F1 is nondecreasing on [z,b) .
The statement for the function F1 we can prove in an analogous way, so we omite

it. �
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LEMMA 6. Let  , : (a,b) → R be functions such that  is convex and let M ∈
R. If  is (M,)-upper convex, then for a fixed z ∈ (a,b) , functions F2,F2 : (a,b) →
R , defined by

F2(y) = (y)−(z)− ′(z)(y− z)−M
[
(y)−(z)− ′(z)(y− z)

]
and

F2(y) = (z)−(y)− ′(y)(z− y)−M
[
(z)−(y)− ′(y)(z− y)

]
are nonpositive on (a,b) , nondecreasing on (a,z] and nonincreasing on [z,b) .

Proof. Nonpositivity of the functions F2 and F2 follows from (4).
Further, we proceed analogously as in proof of Lemma 5, only instead of (8) and

(3), we use (10) and (4), respectively. We omit the details. �

3. The Jensen type inequalities

In this section we deal with the Jensen type inequalities for (m,)-lower convex,
(M,)-upper convex and (m,M,)-convex functions.

THEOREM 1. Let xxxxx = (x1, . . . ,xn) ∈ (a,b)n and aaaaa = (a1, . . . ,an) be a nonneg-
ative n-tuple such that n

i=1ai = 1 with x = n
i=1aixi. Let m,M ∈ R and suppose

 , : (a,b) → R are functions such that  is convex.

a) If  is an (m,)-lower convex function, then for any d,e ∈ (a,b),

(d)+ ′(d)(x −d)+m

(
n


i=1

ai(xi)−(d)− ′(d)(x −d)

)

�
n


i=1

ai(xi) (16)

� (e)−
n


i=1

ai ′(xi)(e− xi)

−m

(
(e)−

n


i=1

ai(xi)−
n


i=1

ai ′(xi)(e− xi)

)
.

b) If  is an (M,)-upper convex function, then for any e,d ∈ (a,b),

M

(
n


i=1

ai(xi)+
n


i=1

ai ′(xi)(e− xi)−(e)

)
+(e)−

n


i=1

ai ′(xi)(e− xi)

�
n


i=1

ai(xi) (17)

� M

(
n


i=1

ai(xi)−(d)− ′(d)(x −d)

)
+(d)+ ′(d)(x −d).
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c) If  is (m,M,)-convex, m � M, then both (16) and (17) hold.

Proof. a) Applying (3) to z = d and y = xi, i ∈ {1, . . . ,n}, we have

m
[
(xi)−(d)− ′(d)(xi −d)

]
� (xi)−(d)− ′(d)(xi −d). (18)

Multiplying (18) with ai and summing over i, i = 1, . . . ,n, we get

m

(
n


i=1

ai(xi)−(d)− ′(d)(x −d)

)
�

n


i=1

ai(xi)−(d)− ′(d)(x −d). (19)

On the other side, applying (3) to y = e and z = xi, i ∈ {1, . . . ,n}, we have

m
[
(e)−(xi)− ′(xi)(e− xi)

]
� (e)−(xi)− ′(xi)(e− xi)

and multiplying it with ai and summing over i, i = 1, . . . ,n, we get

m

(
(e)−

n


i=1

ai(xi)−
n


i=1

ai ′(xi)(e− xi)

)
(20)

� (e)−
n


i=1

ai(xi)−
n


i=1

ai ′(xi)(e− xi).

Now, combining inequalities (19) and (20), we get (16).
b) We proceed analogously, only instead of (3) we use (4).
c) This case is proved by a) and b) combined. �
As an easy consequence of the previous theorem we get the following corollary.

COROLLARY 1. Let the assumptions of Theorem 1 hold.

a) If  is (m,)-lower convex, then

m

(
n


i=1

ai(xi)−(x)

)
(21)

�
n


i=1

ai(xi)−(x)

�
n


i=1

ai ′(xi)(xi − x)−m

(
(x)−

n


i=1

ai(xi)−
n


i=1

ai ′(xi)(x − xi)

)
.

b) If  is (M,)-upper convex, then

M

(
n


i=1

ai(xi)+
n


i=1

ai ′(xi)(x − xi)−(x)

)
−

n


i=1

ai ′(xi)(x − xi)

�
n


i=1

ai(xi)−(x) (22)

� M

(
n


i=1

ai(xi)−(x)

)
.
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c) If  is (m,M,)-convex, m � M, then

m

(
n


i=1

ai(xi)−(x)

)
�

n


i=1

ai(xi)−(x) (23)

� M

(
n


i=1

ai(xi)−(x)

)

and

M

(
n


i=1

ai(xi)+
n


i=1

ai ′(xi)(x − xi)−(x)

)

�
n


i=1

ai(xi)−(x)+
n


i=1

ai ′(xi)(x − xi) (24)

� m

(
n


i=1

ai(xi)+
n


i=1

ai ′(xi)(x − xi)−(x)

)
.

Proof. a) If we set d = e = x , then (16) becomes

(x)+m

(
n


i=1

ai(xi)−(x)

)

�
n


i=1

ai(xi)

� (x)−
n


i=1

ai ′(xi)(x − xi)−m

(
(x)−

n


i=1

ai(xi)−
n


i=1

ai ′(xi)(x − xi)

)

which is equivalent to (21).
b) If we set d = e = x , then (17) becomes

M

(
n


i=1

ai(xi)+
n


i=1

ai ′(xi)(x − xi)−(x)

)
+(x)−

n


i=1

ai ′(xi)(x − xi)

�
n


i=1

ai(xi)

� M

(
n


i=1

ai(xi)−(x)

)
+(x)

which is equivalent to (22).
c) Combining inequalities (21) and (22), we get (23) and (24). �

REMARK 1. Note that if  is a zero function, i.e. (t) = 0, for all t ∈ (a,b),
then  is convex in the usual sense and (16) becomes

(d)+ ′(d)(x −d) �
n


i=1

ai(xi) � (e)−
n


i=1

ai ′(xi)(e− xi), (25)
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i.e. we get the Jensen type inequalities for convex functions. Specially, (21) becomes

0 �
n


i=1

ai(xi)−(x) �
n


i=1

ai ′(xi)(xi − x), (26)

where the first inequality in (26), i.e.

(x) �
n


i=1

ai(xi) (27)

is Jensen’s inequality for convex functions and the second inequality in (26) is a coun-
terpart of Jensen’s inequality for convex functions, proved in [9].

If m = c > 0 and  = id2, then (16) becomes

(d)+ ′(d)(x −d)+ c
n


i=1

ai (xi−d)2 (28)

�
n


i=1

ai(xi)

� (e)−
n


i=1

ai ′(xi)(e− xi)− c
n


i=1

ai (xi − e)2 ,

i.e. we get the Jensen type inequalities for strongly convex functions which accompa-
nies an integral version of (28) for strongly convex functions observed in [29].

Furthermore, the first inequality in (21) is Jensen’s inequality for (m,)-lower
convex functions, while the second inequality in (22) is Jensen’s inequality for (M,)-
upper convex functions. Jensen’s inequality for (m,M,)-convex function  is in-
equality (23). On the other hand, the Jessen type inequalities for (m,M,)-convex
functions, i.e. generalizations of (23) for positive linear functionals were proved in [6].

If m = c > 0 and  = id2, then (21) becomes

c
n


i=1

ai (xi− x)2 �
n


i=1

ai(xi)−(x) (29)

�
n


i=1

ai ′(xi)(xi − x)− c
n


i=1

ai (xi − x)2 .

The first inequality in (29), i.e.

(x)+ c
n


i=1

ai (xi − x)2 �
n


i=1

ai(xi)

is Jensen’s inequality for strongly convex functions with modulus c (see [25]).
For M = c > 0 and  = id2, inequality (22) becomes

c
n


i=1

ai (x − xi)
2 −

n


i=1

ai ′(xi)(x − xi) �
n


i=1

ai(xi)−(x) (30)

� c
n


i=1

ai (xi − x)2 .



30 S. S. DRAGOMIR, S. IVELIĆ BRADANOVIĆ AND N. LOVRIČEVIĆ

The second inequality in (30), i.e.

n


i=1

ai(xi) � (x)+ c
n


i=1

ai (xi − x)2

is Jensen’s inequality for approximately concave functions, obtained in [23].

4. The Jensen-Steffensen type inequalities

The assumption “aaaaa = (a1, . . . ,an) is nonnegative n -tuple” can be relaxed at the
expense of more restrictions on the n -tuple xxxxx . Namely, if aaaaa = (a1, . . . ,an) is a real
n -tuple that satisfies

0 � Aj =
j


i=1

ai � An, j = 1, . . . ,n, An = 1, (31)

then for any monotonic (increasing or decreasing) n -tuple xxxxx = (x1, . . . ,xn) ∈ (a,b)n we
have

x = n
i=1aixi ∈ (a,b),

and for any convex function  : (a,b) → R, inequality (27) still holds. Inequality (27)
considered under conditions (31) is known as the Jensen-Steffensen inequality for con-
vex functions (see [26]). The Jensen-Steffensen inequality is a proper generalization of
Jensen’s inequality since nonnegative weights aaaaa satisfy Steffensen’s conditions (31) in
every order, which means that for nonnegative weights the monotonicity condition on
xxxxx becomes irrelevant.

In this section we prove the Jensen-Steffensen type inequalities for (m,)-lower
convex, (M,)-upper convex functions and (m,M,)-convex functions, i.e. we prove
that inequalities from the previous section hold under Steffensen’s conditions (31).

THEOREM 2. Let xxxxx = (x1, . . . ,xn) be any monotonic n-tuple (increasing or de-
creasing) in (a,b)n and a = (a1, . . . ,an) be a real n-tuple such that (31) holds. Let
m,M ∈ R and  , : (a,b) → R be functions such that  is convex.

a) If  is (m,)-lower convex, then (16) holds for all d,e ∈ (a,b). In particular,
(21) holds.

b) If  is (M,)-upper convex, then (17) holds for all d,e ∈ (a,b). In particular,
(22) holds.

c) If  is (m,M,)-convex, m � M, then both (16) and (17) hold. In particular,
(23) and (24) hold.

Proof. Without any loss of generality, we may assume that x1 � x2 � . . . � xn .
Let x = n

i=1 aixi. Under the assumptions of theorem, we have x1 � x � xn (for
the proof see [3].)
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a) Let F1(y) = (y)−(d)− ′(d)(y−d)−m [(y)−(d)− ′(d)(y−d)] .
From Lemma 5 we have F1(xi) � 0 for all i ∈ {1, . . . ,n}.
Comparing d with x1, . . . ,xn we need to consider three cases.

Case 1. xn < d < b : In this case xi ∈ (a,d) for all i = 1, . . . ,n . Hence, according
to Lemma 5 we have

F1 (x1) � F1 (x2) � . . . � F1 (xn) � 0.

Denoting A0 = 0 it follows

ai = Ai −Ai−1, i = 1, . . . ,n,

and therefore
n


i=1

aiF1 (xi) =
n


i=1

(Ai −Ai−1)F1 (xi)

= A1F1 (x1)+ (A2 −A1)F1 (x2)+ . . .+(An−An−1)F1 (xn)

=
n−1


i=1

Ai (F1 (xi)−F1 (xi+1))+AnF1 (xn)

� 0.

Case 2. a � d < x1 : In this case xi ∈ (d,b) for all i = 1, . . . ,n. Hence, according
to Lemma 5 we have

0 � F1 (x1) � F1 (x2) � . . . � F1 (xn) .

Denoting An+1 = 0 it follows

Ak =
n


i=k

ai = An−Ak−1, k = 1, . . . ,n,

ai = Ai−Ai+1, i = 1, . . . ,n,

and therefore
n


i=1

aiF1 (xi) =
n


i=1

(
Ai −Ai+1

)
F1 (xi)

= A1F1 (x1)+
n


i=2

Ai (F1 (xi)−F1 (xi−1))

� 0.

Case 3. x1 � d � xn : In this case there exists k ∈ {1, . . . ,n− 1} such that xk �
d � xk+1.

By Lemma 5 we get

F1 (x1) � F1 (x2) � . . . � F1 (xk) � 0 and 0 � F1 (xk+1) � F1 (xk+2) � . . . � F1 (xn) .
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Then

n


i=1

aiF1 (xi) =
k


i=1

aiF1 (xi)+
n


i=k+1

aiF1 (xi)

=
k−1


i=1

Ai (F1 (xi)−F1 (xi+1))+AkF1 (xk)

+Ak+1F1 (xk+1)+
n


i=k+2

Ai (F1 (xi)−F1 (xi−1))

� 0.

In all three cases we have

n


i=1

aiF1 (xi)

=
n


i=1

ai(xi)−(d)− ′(d)(x−d)−m

(
n


i=1

ai(xi)−(d)− ′(d)(x−d)

)

� 0,

and therefore, the first inequality in (16) holds.
Now, let F1(xi)=(e)−(xi)− ′(xi)(e−xi)−m [(e)−(xi)− ′(xi)(e− xi)] ,

i = 1, . . . ,n.

Analogously, applying Lemma 5, we can prove that

n


i=1

aiF1 (xi) = (e)−
n


i=1

ai(xi)−
n


i=1

ai ′(xi)(e− xi)

−m

[
(e)−

n


i=1

ai(xi)−
n


i=1

ai ′(xi)(e− xi)

]

� 0,

i.e. the second inequality in (16) holds.
Inserting d = e = x in (16), we get (21).
b) Analogously as in the proof of case a), we show that

n


i=1

aiF2(xi) =
n


i=1

ai(xi)−(d)− ′(d)(x −d)

−M

(
n


i=1

ai(xi)−(d)− ′(d)(x −d)

)

� 0
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and

n


i=1

aiF2(xi) = (e)−
n


i=1

ai(xi)−
n


i=1

ai ′(xi)(e− xi)

−M

(
(e)−

n


i=1

ai(xi)−
n


i=1

ai ′(xi)(e− xi)

)

� 0,

i.e. (17) holds.
Inserting d = e = x in (17), we get (22).
c) This case is obtained by a) and b) combined. �

REMARK 2. Note that in the trivial case of  being a zero function, function 
is convex in the usual sense and (16) reduces to the Jensen-Steffensen type inequalities
for convex functions, i.e. inequality (25) holds under Steffensen’s conditions (31) and
its particular case is (26). Similar inequalities for convex functions were proved in [20].
For related results see also [1], [2], [17], [18] and [21].

If m = c > 0 and  = id2, then (16) considered under (31) assumes form as in
(28), i.e. we get the Jensen-Steffensen type inequalities for strongly convex functions,
with particular case (29). These accompany analogous integral versions for strongly
convex functions, proved in [29].

5. Applications

First we present the Jensen type inequalities for twice differentiable (m,)-lower
convex, (M,)-upper convex and (m,M,)-convex functions with some specified
forms of the function  .

PROPOSITION 1. Let I ⊆ (0,) be an open interval, x = (x1, . . . ,xn) ∈ In and
a = (a1, . . . ,an) be nonnegative n-tuple such that n

i=1 ai = 1 and x = n
i=1 aixi. Let

 : I → R be a twice differentiable function and gp : I → R be defined by gp(t) =
 ′′(t)t2−p, where p ∈ (−,0)∪ (1,) .

a) If inft∈I gp(t) =  > −, then


p(p−1)

(
n


i=1

aix
p
i − x p

)

�
n


i=1

ai(xi)−(x) (32)

�
n


i=1

ai ′(xi)(xi − x)− 
p(p−1)

(
x p− px

n


i=1

aix
p−1
i +(p−1)

n


i=1

aix
p
i

)
.
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b) If supt∈I gp(t) =  < , then


p(p−1)

(
px

n


i=1

aix
p−1
i +(1− p)

n


i=1

aix
p
i − x p

)
−

n


i=1

ai ′(xi)(x − xi)

�
n


i=1

ai(xi)−(x) (33)

� 
p(p−1)

(
n


i=1

aix
p
i − x p

)
.

c) If −<  � gp(t) �  < , for all t ∈ I, then


p(p−1)

(
n


i=1

aix
p
i − x p

)
�

n


i=1

ai(xi)−(x) (34)

� 
p(p−1)

(
n


i=1

aix
p
i − x p

)

and


p(p−1)

(
px

n


i=1

aix
p−1
i +(1− p)

n


i=1

aix
p
i − x p

)

�
n


i=1

ai(xi)−(x)+
n


i=1

ai ′(xi)(x − xi) (35)

� 
p(p−1)

(
px

n


i=1

aix
p−1
i +(1− p)

n


i=1

aix
p
i − x p

)
.

Proof. a) Let’s consider the function hp(t) = (t)− 
p(p−1)t

p. Then

h′′p(t) =  ′′(t)− t p−2 = t p−2 (t2−p ′′(t)− 
)
= t p−2(gp(t)− ) � 0,

i.e. hp is convex and then the function  is
(


p(p−1) ,(·)p

)
-lower convex.

Now, applying (21) to the
(


p(p−1) ,(·)p

)
-lower convex function  , we get (32).

b) Let us consider the function ip(t) = 
p(p−1)t

p−(t). Then

i′′p(t) =  t p−2− ′′(t) = t p−2( − t2−p ′′(t))

= t p−2( −gp(t)) � 0,

i.e. ip is convex and then the function  is
(


p(p−1) ,(·)p

)
-upper convex.

Now, applying (22) to the
(


p(p−1) ,(·)p

)
-upper convex function  , we get (33).

c) This case is a combination of a) and b). �
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REMARK 3. If −<  �  ′′(t) �  <, for all t ∈ I, then for p = 2, as a direct
consequence of (34) and (35) from Proposition 1, we get


2

(
n


i=1

aix
2
i − x2

)
�

n


i=1

ai(xi)−(x) � 
2

(
n


i=1

aix
2
i − x2

)
(36)

and


2

(
2x

n


i=1

aixi −
n


i=1

aix
2
i − x2

)
�

n


i=1

ai(xi)−(x)+
n


i=1

ai ′(xi)(x − xi)

� 
2

(
2x

n


i=1

aixi −
n


i=1

aix
2
i − x2

)
. (37)

Related results for
(

2 , 2 ,(·)2

)
-convex functions, but in the context of so called  -

lower and  -upper convex functions, can be found in [8] .

PROPOSITION 2. Let I ⊆ (0,) be an open interval, x = (x1, . . . ,xn) ∈ In and
a = (a1, . . . ,an) be a nonnegative n-tuple such that n

i=1 ai = 1 and x =n
i=1 aixi. Let

 : I →R be a twice differentiable function and g : I →R be defined by g(t)= t2 ′′(t).

a) If inft∈I g(t) =  > −, then

ln

(
x

n
i=1x

ai
i

)
�

n


i=1

ai(xi)−(x) (38)

�
n


i=1

ai ′(xi)(xi − x)+ 

(
ln

x

n
i=1x

ai
i
− x

n


i=1

ai

xi
+1

)
.

b) If supt∈I g(t) =  < , then



(
ln

x

n
i=1x

ai
i
− x

n


i=1

ai

xi
+1

)
−

n


i=1

ai ′(xi)(x − xi)

�
n


i=1

ai(xi)−(x) (39)

� ln

(
x

n
i=1x

ai
i

)
.

c) If −<  � g(t) �  < , for all t ∈ I, then

ln

(
x

n
i=1x

ai
i

)
�

n


i=1

ai(xi)−(x) � ln

(
x

n
i=1x

ai
i

)
(40)
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and



(
ln

x

n
i=1x

ai
i
− x

n


i=1

ai

xi
+1

)
�

n


i=1

ai(xi)−(x)+
n


i=1

ai ′(xi)(x − xi)

� 

(
ln

x

n
i=1x

ai
i
− x

n


i=1

ai

xi
+1

)
. (41)

Proof. a) Let’s consider the function h(t) = (t)− (− lnt). Then

h′′(t) =  ′′(t)− 
1
t2

=
1
t2
(
t2 ′′(t)− 

)
=

1
t2

(g(t)− ) � 0,

i.e. h is convex and then the function  is (,− ln(·)) -lower convex.
Now, applying (21) to the (,− ln(·)) -lower convex function  , we get (38).
b) Let’s consider the function i(t) =  (− ln t)−(t). Then

i′′(t) = 
1
t2

− ′′(t) =
1
t2

( − t2 ′′(t)) =
1
t2

( −g(t)) � 0,

i.e. i is convex and then the function  is ( ,− ln(·)) -upper convex.
Now, applying (22) to the ( ,− ln(·)) -upper convex function  , we get (39).
c) This case is a combination of a) and b). �

PROPOSITION 3. Let I ⊆ (0,) be an open interval, x = (x1, . . . ,xn) ∈ In and
a = (a1, . . . ,an) be a nonnegative n-tuple such that n

i=1 ai = 1 and x =n
i=1 aixi. Let

 : I → R be a twice differentiable function and g : I →R be defined by g(t) = t ′′(t).

a) If inft∈I g(t) =  > −, then

ln

(
n

i=1x
aixi
i

x x

)
(42)

�
n


i=1

ai(xi)−(x)

�
n


i=1

ai ′(xi)(xi − x)+  x ln
n

i=1x
ai
i

x
.

b) If supt∈I g(t) =  < , then

 x ln
n

i=1x
ai
i

x
−

n


i=1

ai ′(xi)(x − xi)

�
n


i=1

ai(xi)−(x)

� ln

(
n

i=1x
aixi
i

x x

)
. (43)



JENSEN TYPE INEQUALITIES 37

c) If −<  � g(t) �  < , for all t ∈ I, then

ln

(
n

i=1x
aixi
i

x x

)
�

n


i=1

ai(xi)−(x) � ln

(
n

i=1x
aixi
i

x x

)
(44)

and

 x ln
n

i=1x
ai
i

x

�
n


i=1

ai(xi)−(x)+
n


i=1

ai ′(xi)(x − xi)

�  x ln
n

i=1x
ai
i

x
. (45)

Proof. a) Let’s consider the function h(t) = (t)− t ln t. Then

h′′(t) =  ′′(t)− 
1
t

=
1
t

(
t ′′(t)− 

)
=

1
t
(g(t)− ) � 0,

i.e. h is convex and then the function  is (,(·) ln(·)) -lower convex.
Now, applying (21) to the (,(·) ln(·)) -lower convex function  , we get



(
n


i=1

aixi lnxi − x ln x

)

�
n


i=1

ai(xi)−(x)

�
n


i=1

ai ′(xi)(xi − x)− 

(
x ln x −

n


i=1

aixi lnxi −
n


i=1

ai

xi
(x − xi)

)
,

what is equivalent to (42).
b) Let’s consider the function  t lnt −(t). Then

i′′(t) = 
1
t
− ′′(t) =

1
t

(
 − t ′′(t)

)
=

1
t
( −g(t)) � 0,

i.e. i is convex and then the function  is ( ,(·) ln(·)) -upper convex.
So, applying (22) to such function we obtain



(
n


i=1

aixi lnxi +
n


i=1

ai

xi
(x − xi)− x ln x

)
−

n


i=1

ai ′(xi)(x − xi)

�
n


i=1

ai(xi)−(x)

� 

(
n


i=1

aixi lnxi− x ln x

)
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what is equivalent to (43).
c) This case is a combination of a) and b). �

REMARK 4. Making use of Theorem 2 we could obtain analogous results as in
the previous propositions, concerning Steffensen’s conditions (31).

Now we use the previous propositions to derive new lower and upper bounds for
the well known mean inequalities. For this purpose, let us recall that for 0 < l < L, x =
(x1, . . . ,xn) ∈ (l,L)n and a nonnegative n -tuple a = (a1, . . . ,an) such that n

i=1 ai = 1,
weighted power mean of order s ∈ R is defined by

Ms(x,ax,ax,ax,ax,a) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(n
i=1aixs

i )
1
s , s �= 0

n
i=1x

ai
i , s = 0

min{x1, . . . ,xn}, s →−
max{x1, . . . ,xn} s → .

. (46)

In particular, classical weighted means are then given as follows:

• arithmetic mean A(x,ax,ax,ax,ax,a) = M1(x,ax,ax,ax,ax,a) = n
i=1aixi,

• geometric mean G(x,ax,ax,ax,ax,a) = M0(x,ax,ax,ax,ax,a) = n
i=1x

ai
i ,

• harmonic mean H(x,ax,ax,ax,ax,a)=M−1(x,ax,ax,ax,ax,a) = 1
n

i=1
wi
xi

.

EXAMPLE 1. Let 0 < l < L and let functions  ,gp : (l,L) → R be such that
gp(t) =  ′′(t)t2−p, where p ∈ (−,0)∪ (1,). Applying Proposition 1 to particular
cases of the function  , we get the following results.

a) If (t) = − ln t, then inft∈(l,L) gp(t) = L−p and supt∈(l,L) gp(t) = l−p.

Applying (34) and (35), we get

L−p

p(p−1)
(
Mp

p(x,ax,ax,ax,ax,a)−Ap(x,ax,ax,ax,ax,a)
)

� ln
A(x,ax,ax,ax,ax,a)
G(x,ax,ax,ax,ax,a)

� l−p

p(p−1)
(
Mp

p(x,ax,ax,ax,ax,a)−Ap(x,ax,ax,ax,ax,a)
)

and

l−p

p(p−1)

(
pA(x,ax,ax,ax,ax,a)Mp−1

p−1(x,ax,ax,ax,ax,a)+ (1− p)Mp
p(x,ax,ax,ax,ax,a)−Ap(x,ax,ax,ax,ax,a)

)

� ln
A(x,ax,ax,ax,ax,a)
G(x,ax,ax,ax,ax,a)

− A(x,ax,ax,ax,ax,a)
H(x,ax,ax,ax,ax,a)

+1

� L−p

p(p−1)

(
pA(x,ax,ax,ax,ax,a)Mp−1

p−1(x,ax,ax,ax,ax,a)+ (1− p)Mp
p(x,ax,ax,ax,ax,a)−Ap(x,ax,ax,ax,ax,a)

)
.
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If p = 2, then

1
2L2

(
M2

2 (x,ax,ax,ax,ax,a)−A2(x,ax,ax,ax,ax,a)
)

� ln
A(x,ax,ax,ax,ax,a)
G(x,ax,ax,ax,ax,a)

� 1
2l2
(
M2

2(x,ax,ax,ax,ax,a)−A2(x,ax,ax,ax,ax,a)
)

and

1
2l2
(
A2(x,ax,ax,ax,ax,a)−M2

2(x,ax,ax,ax,ax,a)
)

� ln
A(x,ax,ax,ax,ax,a)
G(x,ax,ax,ax,ax,a)

− A(x,ax,ax,ax,ax,a)
H(x,ax,ax,ax,ax,a)

+1

� 1
2L2

(
A2(x,ax,ax,ax,ax,a)−M2

2(x,ax,ax,ax,ax,a)
)
.

b) Let (t) = t ln t. Then for p ∈ (−,0), we have inft∈(l,L) gp(t) = l1−p and
supt∈(l,L) gp(t) = L1−p.

Applying (34) and (35), we get

l1−p

p(p−1)
(
Mp

p(x,ax,ax,ax,ax,a)−Ap(x,ax,ax,ax,ax,a)
)

(47)

� ln
n

i=1x
aixi
i

(A(x,ax,ax,ax,ax,a))A(x,ax,ax,ax,ax,a)

� L1−p

p(p−1)
(
Mp

p(x,ax,ax,ax,ax,a)−Ap(x,ax,ax,ax,ax,a)
)

and

L1−p

p(p−1)

(
pA(x,ax,ax,ax,ax,a)Mp−1

p−1(x,ax,ax,ax,ax,a)+ (1− p)Mp
p(x,ax,ax,ax,ax,a)−Ap(x,ax,ax,ax,ax,a)

)

� ln
n

i=1x
aixi
i

(A(x,ax,ax,ax,ax,a))A(x,ax,ax,ax,ax,a) +
A(x,ax,ax,ax,ax,a)
H(x,ax,ax,ax,ax,a)

−1 (48)

� l1−p

p(p−1)

(
pA(x,ax,ax,ax,ax,a)Mp−1

p−1(x,ax,ax,ax,ax,a)+ (1− p)Mp
p(x,ax,ax,ax,ax,a)−Ap(x,ax,ax,ax,ax,a)

)
.

If p ∈ (1,), then inft∈(l,L) gp(t) = L1−p and supt∈(l,L) gp(t) = l1−p and then
inequalities (47) and (48) are reversed.

EXAMPLE 2. Let 0 < l < L and the functions  ,g : (l,L) → R be such that
(t) = t ln t and g(t) = t2 ′′(t) = t. Then inft∈(l,L) g(t) = l and supt∈(l,L) g(t) = L.

Applying (40) and (41), we get

ln

(
A(x,ax,ax,ax,ax,a)
G(x,ax,ax,ax,ax,a)

)l

� ln
n

i=1x
aixi
i

(A(x,ax,ax,ax,ax,a))A(x,ax,ax,ax,ax,a) � ln

(
A(x,ax,ax,ax,ax,a)
G(x,ax,ax,ax,ax,a)

)L
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and

L

(
ln

A(x,ax,ax,ax,ax,a)
G(x,ax,ax,ax,ax,a)

− A(x,ax,ax,ax,ax,a)
H(x,ax,ax,ax,ax,a)

+1

)
� ln

n
i=1x

aixi
i

(A(x,ax,ax,ax,ax,a))A(x,ax,ax,ax,ax,a) +
A(x,ax,ax,ax,ax,a)
H(x,ax,ax,ax,ax,a)

−1)

� l

(
ln

A(x,ax,ax,ax,ax,a)
G(x,ax,ax,ax,ax,a)

− A(x,ax,ax,ax,ax,a)
H(x,ax,ax,ax,ax,a)

+1

)
.

EXAMPLE 3. Let 0 < l < L and let functions  ,gp : (l,L) → R be such that
gp(t) = t ′′(t), where p ∈ (−,0)∪ (1,). Applying Proposition 3 to particular case
of the function  , we get the following results.

a) If (t) = − ln t, then inft∈(l,L) gp(t) = 1
L and supt∈(l,L) gp(t) = 1

l .

Now applying (44) and (45), we have

ln

(
n

i=1x
aixi
i

A(x,ax,ax,ax,ax,a)A(x,ax,ax,ax,ax,a)

) 1
L

� ln
A(x,ax,ax,ax,ax,a)
G(x,ax,ax,ax,ax,a)

� ln

(
n

i=1x
aixi
i

A(x,ax,ax,ax,ax,a)A(x,ax,ax,ax,ax,a)

) 1
l

and

A(x,ax,ax,ax,ax,a)
l

ln
G(x,ax,ax,ax,ax,a)
A(x,ax,ax,ax,ax,a)

� ln
A(x,ax,ax,ax,ax,a)
G(x,ax,ax,ax,ax,a)

− A(x,ax,ax,ax,ax,a)
H(x,ax,ax,ax,ax,a)

+1

� A(x,ax,ax,ax,ax,a)
L

ln
G(x,ax,ax,ax,ax,a)
A(x,ax,ax,ax,ax,a)

.

b) If (t) = et , then inft∈(l,L) gp(t) = lel and supt∈(l,L) gp(t) = LeL.

Applying (44) and (45), we get

ln

(
n

i=1x
aixi
i

x x

)lel

�
n


i=1

aie
xi − ex � ln

(
n

i=1x
aixi
i

x x

)LeL

and

LeLA(x,ax,ax,ax,ax,a) ln
G(x,ax,ax,ax,ax,a)
A(x,ax,ax,ax,ax,a)

�
n


i=1

aie
xi − eA(x,ax,ax,ax,ax,a) +

n


i=1

aie
xi(A(x,ax,ax,ax,ax,a)− xi)

� lelA(x,ax,ax,ax,ax,a) ln
G(x,ax,ax,ax,ax,a)
A(x,ax,ax,ax,ax,a)

.
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