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Abstract. In this paper, we use inertia indices to present a necessary and sufficient condition
in order for eigenvalue inequalities to hold between two Hermitian tensors. As an applica-
tion, we establish the converse of Weyl’s eigenvalue inequality for Hermitian tensors. Also, we
prove some classical eigenvalue inequalities for Hermitian tensors. More precisely, we extend
Cauchy’s interlacing theorem, Weyl’s inequality, the monotonicity theorem, and the inclusion
principle theorem from matrices to tensors, in a simple and unified approach.

1. Introduction

A univariate polynomial is real-rooted if all its coefficients and roots are real. If
f is a real-rooted polynomial of degree n , we denote its roots by r1( f ) � . . . � rn( f ) .
Let f and g be real-rooted polynomials of degrees n and m , respectively. As defined
by Sai-Nan Zheng et al. in [21], f interlaces g , denoted by f � g , if n � m � n+ 1
and ri(g) � ri( f ) � ri+1(g) for all i . Also, f and g are compatible, denoted by f ��
g , if | m− n |� 1 and ri−1(g) � ri( f ) � ri+1(g) for all i . We refer the reader to
[1, 2, 8, 10, 12, 13, 14, 19, 20] for further information on interlacing and compatible
polynomials.

Let A and B be Hermitian matrices. Then, A�B and A �� B if their characteristic
polynomials satisfy det( I−A) � det( I−B) and det( I−A) �� det( I−B), re-
spectively. In 2019, Wang proved some classical eigenvalue inequalities for Hermitian
matrices, including Cauchy’s interlacing theorem and Weyl’s inequality, using inertia
indices [21]. He proposed common generalizations of eigenvalue inequalities for (Her-
mitian) normalized Laplacian matrices. In matrix analysis and spectral graph theory,
Hermitian matrices whose characteristic polynomials are interlacing or compatible ap-
pear frequently [21].

In this paper, we extend some classical eigenvalue inequalities from Hermitian
matrices to Hermitian tensors. These include Cauchy’s interlacing theorem and Weyl’s
inequality. Also, we introduce (p,q)-interlacing polynomials and study their proper-
ties. Using these polynomials, we prove the converse of Weyl’s inequality for tensors.
Recently, Wang and Zheng have shown the converse of Weyl’s eigenvalue inequality
for a Hermitian matrix [20].
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2. The T -product

The T -product is defined for third-order tensors. A third-order tensor

A = (ai jk), 1 � i � m, 1 � j � n, 1 � k � p

consists of mnp entries. We denote the set of all third-order tensors over the complex
field C (or the real field R) by Cm×n×p (or Rm×n×p ).

We denote the frontal faces of A ∈ Cm×n×p and B ∈ Cn×s×p , for k = 1, . . . , p ,
by A(k) = A (:, :, k) ∈ Cm×n and B(k) =B (:, :, k) ∈ Cn×s , respectively. The operators
bcirc, unfold and fold are defined as follows [3, 6, 7].

bcirc(A ) :=

⎡
⎢⎢⎢⎣

A(1) A(p) A(p−1) . . . A(2)

A(2) A(1) A(p) . . . A(3)

...
...

...
A(p) A(p−1) . . . A(2) A(1)

⎤
⎥⎥⎥⎦ , unfold(A ) :=

⎡
⎢⎢⎢⎣

A(1)

A(2)

...
A(p)

⎤
⎥⎥⎥⎦ .

DEFINITION 1. ([3, 6, 7]) The T -product of A ∈ Cm×n×p and B ∈ Cn×s×p ,
denoted by A ∗B , is the m× s× p tensor defined by

A ∗B := fold(bcirc(A)unfold(B)).

DEFINITION 2. ([3, 6, 7]) If A ∈ Cm×n×p , then A T is an n×m× p tensor ob-
tained by transposing each of the frontal slices and then reversing the ordering of trans-
posed frontal slices 2 through p. The conjugate transpose A ∗ is obtained by conjugate
transposing each of the frontal slices and then reversing the ordering of transposed
frontal slices 2 through p.

EXAMPLE 1. If A ∈ Rm×n×4 and its frontal slices are given by m×n×4 matri-
ces A(1) , A(2) , A(3) and A(4) , then

A T = fold

⎡
⎢⎢⎢⎣

A(1)T

A(4)T

A(3)T

A(2)T

⎤
⎥⎥⎥⎦ .

Just as circulant matrices can be diagonalized by the discrete Fourier matrix [5],
we have the following lemma for block-circulant matrices.

LEMMA 1. [7, 15] If A ∈Cn×n×p , then

(Fp⊗ In).bcirc(A ).(F∗
p ⊗ In) =

⎡
⎢⎢⎢⎣

A1

A2
. . .

Ap

⎤
⎥⎥⎥⎦ (1)
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is a block-diagonal matrix, where Fp is the p× p discrete Fourier matrix, In is the
n× n identity matrix, and Ak ∈ Cn×n for 1 � k � p. Furthermore, A(1) , A(2) , . . . ,
A(k) are diagonal if and only if A1 , A2 , . . . , Ap are diagonal.

The class of normal matrices is important in matrix analysis; it includes unitary,
Hermitian and skew-Hermitian matrices. Now, we introduce the class of normal tensors
based on the TM -product.

DEFINITION 3. A tensor A ∈ Cn×n×p is normal if A ∗A ∗=A ∗ ∗A , and it is
skew-Hermitian if A ∗ = −A . Also, a tensor U ∈ Cn×n×p is unitary if U ∗U ∗ =
U ∗ ∗U = Innp .

Next, we define symmetric and Hermitian tensors.

DEFINITION 4. [9] A tensor A ∈ Cn×n×p is called symmetric if A T =A , and
it is called Hermitian if A ∗ = A .

Thus, the class of normal tensors includes Hermitian, unitary and skew-Hermitian
tensors.

THEOREM 1. [17, 18] If A ∈ Cn×n×p , then the following statements are true.

(i) A is symmetric if and only if bcirc(A )=(bcirc(A ))T .

(ii) A is Hermitian if and only if bcirc(A )=(bcirc(A ))∗ .

(iii) (A ∗B)∗ = B∗ ∗A ∗ .

(iv) bcirc(A ∗B) = bcirc(A)bcirc(B) .

(v) A ∗ (B+C ) = A ∗B+A ∗C .

(vi) (A +B)∗C = A ∗C +B ∗C .

DEFINITION 5. (The identity tensor [3, 6, 7]) The identity tensor Innp ∈ C
n×n×p

is the tensor whose first frontal slice is the n× n identity matrix, while its all other
frontal faces are zero. Also, bcirc(Innp) = Inp , where Inp is the np× np identity
matrix.

For a tensor A ∈ Cm×n×p we can write

A ∗Innp = A = Immp ∗A .

DEFINITION 6. If A ∈ Cn×n×p , then a tensor B is called the inverse of A if

A ∗B = Innp, B ∗A = Innp. (2)

In this case, we write B = A −1 .
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By Theorem 1 (iv) and (2),

bcirc(A )bcirc(B) = bcirc(Innp) = Inp

and
bcirc(B)bcirc(A ) = bcirc(Innp) = Inp.

Here, Inp is the np×np identity matrix. Therefore, the invertibility of A is equivalent
to that of the matrix bcirc(A ) . Also, if A is invertible, then

bcirc(A −1) = (bcirc(A ))−1,

because

bcirc(A )bcirc(A −1) = bcirc(A ∗A −1) = Inp = bcirc(A )(bcirc(A ))−1

and A has a unique inverse.

DEFINITION 7. (T -congruent tensors) We say that A ∈ Cn×n×p and B ∈
Cn×n×p are congruent if there exists a non-singular tensor P such that

B = PT ∗A ∗P.

DEFINITION 8. (T -eigenvalues and T -eigenvectors) Let A ∈ Cn×n×p , X ∈
Cn×1×p and X �= 0. If

A ∗X = X

for some  ∈ C , then  is called a T -eigenvalue of A , and X is a T -eigenvector
of A .

It is easy to prove that for any T -eigenvalue  of A ,

bcirc(A )unfold(X ) = unfold(X ). (3)

REMARK 1. If A ∈ C
n×n×p , then  (A − rInnp) =  (A )− r for any r ∈ R .

THEOREM 2. If A ∈ Cn×n×p is a Hermitian tensor, then the T -eigenvalues of
A are real.

Proof. Since A is a Hermitian tensor, Theorem 1 shows that the eigenvalues of
bcirc(A ) are real. Hence, by (3), the TM -eigenvalues of A are also real. �

THEOREM 3. (T -EVD) A tensor A ∈ Cn×n×p is normal if and only if there
exists a unitary tensor U ∈ C

n×n×p such that

A = U ∗ ∗D ∗U ,

where D ∈ Cn×n×p is an F -diagonal tensor, that is, one whose all frontal faces are
diagonal matrices.



INERTIA INDICES AND THE CONVERSE OF WEYL’S EIGENVALUE INEQUALITY 47

Proof. Since A ∗A ∗ =A ∗ ∗A , bcirc(A )(bcirc(A ))∗ = (bcirc(A ))∗bcirc(A ) .
By (1),

bcirc(A )(bcirc(A ))∗ = (F∗
p ⊗ Inp)

⎡
⎢⎢⎢⎣

D1

D2
. . .

Dp

⎤
⎥⎥⎥⎦(Fp⊗ Inp)(F∗

p ⊗ Inp)

⎡
⎢⎢⎢⎣

D∗
1

D∗
2

. . .
D∗

p

⎤
⎥⎥⎥⎦(Fp⊗ Inp) = (F∗

p ⊗ Inp)

⎡
⎢⎢⎢⎣

D1D∗
1

D2D∗
2

. . .
DpD∗

p

⎤
⎥⎥⎥⎦

(Fp⊗ Inp) = (F∗
p ⊗ Inp)

⎡
⎢⎢⎢⎣

D∗
1D1

D∗
2D2

. . .
D∗

pDp

⎤
⎥⎥⎥⎦(Fp⊗ Inp).

It follows that DkD∗
k = D∗

kDk for 1 � k � p , that is, Dk is a normal matrix. There exists
a unitary Uk ∈ Cn×n such that Dk = U∗

k kUk . Thus,

bcirc(A ) = (F∗
p ⊗ Inp)

⎡
⎢⎢⎢⎣
U∗

1
U∗

2
. . .

U∗
p

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
1

2
. . .

p

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
U1

U2
. . .

Up

⎤
⎥⎥⎥⎦(Fp⊗ Inp)

= (F∗
p ⊗ Inp)

⎡
⎢⎢⎢⎣
U∗

1
U∗

2
. . .

U∗
p

⎤
⎥⎥⎥⎦(Fp⊗ Inp)(F∗

p ⊗ Inp)

⎡
⎢⎢⎢⎣
1

2
. . .

p

⎤
⎥⎥⎥⎦

(Fp⊗ Inp)(F∗
p ⊗ Inp)

⎡
⎢⎢⎢⎣
U1

U2
. . .

Up

⎤
⎥⎥⎥⎦(Fp⊗ Inp) = bcirc(U ∗)bcirc(D)bcirc(U ),

that is,

A = U ∗ ∗D ∗U ,

where D := D . The reverse implication can be easily verified. �

DEFINITION 9. (The T -characteristic polynomial [15]) Let A ∈ C
n×n×p be a
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complex tensor. If bcirc(A ) can be Fourier block-diagonalized as

bcirc(A ) = (Fp⊗ In)∗

⎡
⎢⎢⎢⎣

A1

A2
. . .

Ap

⎤
⎥⎥⎥⎦(Fp⊗ In),

then the T -characteristic polynomial pA (t) is

pA (t) := LCM(det( In−A1), . . . ,det( In−Ap)), (4)

where LCM means the least common multiplier, and det( In−Ai) (i ∈ {1, . . . , p}) is
the characteristic polynomial of the matrix Ai .

REMARK 2. If tensors A and B have the same characteristic polynomial, then
there exists a unitary tensor U such that A = U ∗ ∗B ∗U . Since det( In −Ai) =
det( In − Bj) for all i, j , we may assume without loss of generality that det( In −
Ai) = det( In−Bi) , for if det( In−Ai) = det( In−Bj) , then we can define a permu-
tation matrix and the desired result follows. Thus, let det( In −Ai) = det( In −Bi) .
Then, there exist unitary matrices Ui such that Ai = U∗

i BiUi . By (1),

bcirc(A ) = (Fp⊗ In)∗

⎡
⎢⎢⎢⎣
U1

U2
. . .

Up

⎤
⎥⎥⎥⎦(Fp⊗ In)(Fp⊗ In)∗

⎡
⎢⎢⎢⎣

B1

B2
. . .

Bp

⎤
⎥⎥⎥⎦(Fp⊗ In)

(Fp⊗ In)∗

⎡
⎢⎢⎢⎣
U1

U2
. . .

Up

⎤
⎥⎥⎥⎦

∗

(Fp⊗ In) = bcirc(U )bcirc(B)bcirc(U ∗),

that is, A = U ∗B ∗U ∗ . The converse of this remark can be easily proved.

We arrange the T -eigenvalues of a Hermitian tensor A in the non-increasing or-
der: 1(A ) � . . . � n(A ) . Let n+(A ) (respectively, n−(A )) denote the positive
(respectively, negative) inertia index, that is, the number of positive (respectively, neg-
ative) eigenvalues of A .

In this paper, we use inertia indices to present a necessary and sufficient condition
in order for eigenvalue inequalities to hold between two Hermitian tensors. Then, we
apply this result to determine when the characteristic polynomials of Hermitian tensors
interlace or are compatible. Let A and B be n× n× p Hermitian tensors. We write
A �B and A �� B when their characteristic polynomials satisfy pA (t)� pB(t) and
pA (t) �� pB(t) , respectively.

THEOREM 4. Let A ,B ∈ Cn×n×p be Hermitian tensors and m ∈ Z . Then,
i+m(B) � i(A ) for all i if and only if n+(B − rInnp)− n+(A − rInnp) � m for
every r ∈ R .



INERTIA INDICES AND THE CONVERSE OF WEYL’S EIGENVALUE INEQUALITY 49

Proof. Assume that i+m(B) � i(A ) . By Remark 1,

i+m(B− rInnp) = i+m(B)− r � i(A )− r = i(A − rInnp), (5)

for any r ∈ R . Let n+(A − rInnp) = t . Then t+1(A − rInnp) � 0, that is,
t+m+1(B − rInnp) � 0, by (5). It follows that n+(B − rInnp) � t + m , or equiv-
alently, n+(B− rInnp)−n+(A − rInnp) � m .

Conversely, assume that an index k exists such that k+m(B) > k(A ) . Consider
some rk ∈ (k(A),k+m(B)) . Then, k(A − rkInnp) < 0 and k+m(B− rkInnp) > 0.
Thus, n+(A − rkI ) � k−1 and n+(B− rkInnp) � k+m , which imply that n+(B−
rkInnp)− n+(A − rkInnp) � m + 1. In other words, if n+(B − rInnp)− n+(A −
rInnp) � m for every r ∈ R , then i+m(B) � i(A ) for all i . This completes the
proof. �

REMARK 3. The following statements are particularly interesting special cases of
Theorem 4.

(i) A �B if and only if 0 � n+(B−rInnp)−n+(A −rInnp) � 1 for every r ∈R .

(ii) A �� B if and only if | n+(B− rInnp)−n+(A − rInnp) |� 1 for every r ∈ R .

LEMMA 2. The operator bcirc is linear, that is,

bcirc(A +B) = bcirc(A )+bcirc(B),

where A and B are of the same size, and , ∈ C .

The truth of Lemma 2 follows from [11, Theorem 3]. Note that detT (A ) :=
det(bcirc(A )) .

THEOREM 5. (The inclusion principle [4, Theorem 4.3.28]) Let A ∈ C
n×n be

Hermitian and partitioned as

A =
[

B C
C∗ D

]
B ∈ C

m×m, C ∈ C
n−m,n−m, D ∈ C

m×n−m.

Then, n−m+i(A) � i(B) � i(A) for all i .

Next, we extend the inclusion principle. We consider the structures of two Her-
mitian tensors similar to Theorem 5. Suppose that B ∈ Cm×m×p , C ∈ Cn−m×n−m×p ,
and D ∈ Cm×n−m×p are Hermitian, and that B(k) ∈Cm×m , C(k) ∈Cn−m,n−m and D(k) ∈
C

m×n−m are their frontal faces, for 1 � k � p , respectively. We obtain the following
result.

THEOREM 6. Let A ∈ Cn×n×p be Hermitian, and A(k) ∈ Cn×n be its frontal face
partitioned as

A(k) =
[

B(k) C(k)

C(k)∗ D(k)

]
.

Then, p(n−m)+i(A ) � i(B) � i(A ) for all i .
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Proof. Let r be a real number such that detT (B− rI ) �= 0. By (1),

bcirc(B) = (Fp⊗ Im)∗

⎡
⎢⎢⎢⎣

B1

B2
. . .

Bp

⎤
⎥⎥⎥⎦(Fp⊗ Im).

Thus, det(Bi− rIn) �= 0 for 1 � i � p . Also,

bcirc(A ) = (Fp⊗ In)∗

⎡
⎢⎢⎢⎣

A1

A2
. . .

Ap

⎤
⎥⎥⎥⎦(Fp⊗ In) (6)

= (Fp⊗ In)∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
B1 C1

C∗
1 D1

]
[
B2 C2

C∗
2 D2

]
. . . [

Bp Cp

C∗
p Dp

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(Fp⊗ In), (7)

where Di is a linear combination of the frontal faces of D . Also,

bcirc(C ) = (Fp⊗ In)∗

⎡
⎢⎢⎢⎣
C1

C2
. . .

CP

⎤
⎥⎥⎥⎦(Fp⊗ In).

Thus, by (6) and (7),

bcirc(A − rInnp) =

(Fp⊗ In)∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
B1−rIm C1

C∗
1 D1− In−m

]
[
B2−rIm C2

C∗
2 D2−rIn−m

]
. . . [

Bp−rIm Cp

C∗
p Dp−rIn−m

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× (Fp⊗ In)

because [
Bi− rIm Ci

C∗
i Di− rIn−m

]
∼=

[
Bi− rIm 0

0 Di− rIn−m−C∗
i (Bi− rIm)−1Ci

]
,
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for any 1 � i � p . So,

n+(B− rInnp) � n+(A − rInnp) � n+(B− rInnp)+ p(n−m). (8)

Clearly, there are only finitely many real numbers r such that detT (B− rInnp) = 0.
Hence, (8) holds for all r ∈ R . Thus, p(n−m)+i(A ) � i(B) � i(A ) by Theorem
4. �

Cauchy’s interlacing theorem is a special case of the inclusion principle for ma-
trices. We obtain the following version of Cauchy’s interlacing theorem for tensors,
which is a special case of Theorem 6.

COROLLARY 1. Let B ∈ C(n−1)×(n−1)×p be Hermitian and B(k) ∈ C(n−1)×(n−1)

be its frontal faces, for k = 1, . . . , p. Similarly, let A ∈ Cn×n×p and let A(k) ∈ Cn×n be
its frontal faces partitioned as

A(k) =
[

B(k) x(k)

(y(k))∗ a(k)

]
,

where x(k),y(k) ∈ Cn and a(k) ∈ R , for k = 1,2, . . . , p. Then, B �A .

PROPOSITION 7. [21] Let A,B ∈ Cq×l be Hermitian matrices. Then, n+(A +
B) � n+(A)+n+(B) .

PROPOSITION 8. Let A ,B ∈ Cn×n×p be Hermitian tensors. Then, n+(A +
B) � n+(A )+n+(B) .

Proof. Since bcirc(A ) is a linear operator, bcirc(A +B)= bcirc(A )+bcirc(B) .
By Proposition 7,

n+(bcirc(A +B)) � n+(bcirc(A ))+n+(bcirc(B)),

that is, n+(A +B) � n+(A )+n+(B) . �

PROPOSITION 9. Let A ,B be Hermitian tensors and m ∈ Z .

(i) If n+(B) � m, then i+m(A +B) � i(A ) for all i.

(ii) If n−(B) � m, then i+m(A ) � i(A +B) for all i.

Proof. For every r ∈ R , n+(A + B − rInnp)− n+(A − rInnp) � n+(B) by
Proposition 8. Thus, (i) follows from Theorem 4, and (ii) follows from (i) if we note
that n+(−B) = n−(B) . �

We define an inner product 〈., .〉T on Cn×1×p by

〈X ,Y 〉T =
n


j=1

unfold(X )( j)unfold(Y )( j) = 〈unfold(X ),unfold(Y )〉, (9)

where 〈., .〉 is the Euclidean inner product and X ,Y ∈ Cn×1×p . Let A ∈ Cn×n×p be
given. We say that A is T -positive semi-definite if



52 M. PAKMANESH AND H. AFSHIN

〈A ∗X ,X 〉T � 0, for X �= 0,

where

〈A ∗X ,X 〉T = 〈unfold(A ∗X ),unfold(Y )〉 = 〈bcirc(A )unfold(X ),unfold(Y )〉.

The monotonicity theorem. Let A,B ∈ Cn×n be Hermitian, and suppose that B is
positive semi-definite. Then,

i(A) � i(A+B).

In what follows, we extend the monotonicity theorem.

COROLLARY 2. Suppose that A ,B ∈ Cn×n×p are Hermitian, and that B is T -
positive semi-definite. Then, i(A ) � i(A +B) .

COROLLARY 3. Let A ,B ∈Cn×n×p be Hermitian. If n+(B) � p and n−(B) �
q, then

i+q(A ) � i(A +B) � i−p(A ). (10)

Next, we present an extension of Weyl’s inequality to tensors.

COROLLARY 4. If A ,B ∈ Cn×n×p are Hermitian, then

i+ j−1(A +B) � i(A )+ j(B). (11)

Proof. Clearly, n+(B− j(B)Innp)� j−1. Thus, i+ j−1(A +B− j(B)Innp)
� i(A ) by Proposition 9, that is, i+ j−1(A +B) � i(A )+ j(B) . �

COROLLARY 5. Let A be a Hermitian tensor and X ∈ Cn×1×p . Then A �

(A +X ∗X ∗) , that is,

i(A ) � i(A +X ∗X ∗) � i−1(A ).

Another useful, special case of Corollary 3 is the following result on compatible
polynomials.

COROLLARY 6. Let A ,B ∈ Cn×n×p be Hermitian. If n+(B) = n−(B) = 1 ,
then A �� (A +B) , that is,

i+1(A ) � i(A +B) � i−1(A ).

Suppose that P,A ∈ Cn×n×p are Hermitian tensors and define

f ( ;P,A ) = detT (P −A ).

Then, f ( ;I ,A ) is the characteristic polynomial of bcirc(A ) . For a real-rooted
polynomial f , let n+( f ),n−( f ) and n0( f ) denote the number of positive, negative
and zero roots of f , respectively. Call (n+( f ),n−( f ),n0( f )) the inertia index of f .
Clearly, if f is the characteristic polynomial of a Hermitian tensor A , then the inertia
index of f coincides with that of A . We obtain the following result.
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COROLLARY 7. Suppose that P,A ∈ Cn×n×p are Hermitian, and that P is
T -positive definite. Then, the following statements are true.

(i) f ( ;P,A ) is a real-rooted polynomial in  .

(ii) f ( ;P,A ) has the same inertia index as A .

(iii) f ( ;P,A )� f ( ;P,A ) , where P (respectively, A ) is the tensor obtained
from P (respectively, A ) by deleting the last row and column of frontal faces
P (respectively, A ).

Proof. Let B = P−1/2 ∗A ∗P−1/2 , where P1/2 ∗P1/2 = P . Then, B is a
Hermitian tensor which is T -congruent to A . Moreover, f ( ;P,A ) = detT (P −
A ) = detT (P)detT (Innp−B) . So, f ( ;P,A ) has the same roots as the charac-
teristic polynomial detT (Innp−B) of B . Thus, (i) and (ii) follow.

Similarly, let C = P
−1/2 ∗A ∗P

−1/2
. Then, f ( ;P ,A ) has the same roots

as detT (Innp−C ) . So, to prove (iii) it suffices to show that C �B . We prove this
by Remark 3 (i). Let r ∈ R . Note that B − rInnp = P−1/2 ∗ (A − rP) ∗P−1/2 .
Hence, n+(B− rInnp) = n+(A − rP) . Similarly, n+(C − rInnp) = n+(A − rP) .
Since A − rP is the (n−1)× (n−1)× p tensor obtained from A − rP , Theorem 1
and Remark 3 (i) allow us to deduce that 0 � n+(A − rP)−n+(A − rP) � 1. Thus,
0 � n+(B− rInnp)−n+(C − rInnp) � 1 and so C �B , again by Remark 3 (i). �

REMARK 4. Let Pk (respectively, Ak ) be a k× k× p tensor obtained from P
(respectively, A ) and fk( )= f ( ;Pk,Ak) . Then, each fk( ) interlaces f ( ;P,A ) .
It follows that k ck fk( ) is real-rooted for all ck � 0.

3. The converse of Weyl’s eigenvalue inequality

In this section, we consider a more general problem, namely, to find the converse
of Weyl’s inequality. First, we present some definitions and fix our notation. Let R
(respectively, Rn ) denote the set of real polynomials (respectively, polynomials of de-
gree n ) with only real roots and with positive leading coefficients. In particular, let
R(1) denote the set of monic polynomials in R . For g ∈ R , we use ri(g) to denote
its roots, and we arrange them in the non-increasing order: r1(g) � · · · � rn(g) . For
convenience, set ri(g) = + for i < 1 and ri(g) = − for i > deg g .

We refer to (10) as Weyl’s inequality, because it is equivalent to (11). Assume that
(10) holds for any A and B . Noting that n+(B− j(B)∗Innp) � j−1 we obtain

i+ j−1(A +B) = i+ j−1(A +B− j(B)∗Innp)+ j(B) � i(A )+ j(B).

Let A and B be Hermitian tensors. Write A �
p
q B whenever their characteristic

polynomials satisfy pA (t)�
p
q pB(t) . Using this notation, Weyl’s inequality (10) can

be restated as follows.
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Weyl’s inequality. Let A and B be Hermitian tensors of the same size. Assume
that n+(B−A ) � p and n−(B−A ) � q . Then, A �

p
q B .

For f ∈ R(1) , denote by H ( f ) the set of Hermitian tensors whose characteristic
polynomials are equal to f . The aim of this note is to establish the converse of Weyl’s
inequality.

THEOREM 10. Let f ,g ∈ R(1) have the same degree, and f �
p
q g. Then, there

exist A ∈ H ( f ) and B ∈ H (g) such that n+(B−A ) � p and n−(B−A ) � q.

In the next section, we investigate the property of being (p,q)-interlacing. Some
known results on interlacing and compatible polynomials will be extended to (p,q)-
interlacing polynomials.

DEFINITION 10. [20] Let f ,g ∈ R and p,q ∈ N . The polynomial f is said to
(p,q)-interlace the polynomial g , denoted by f �

p
q g , if

ri+p(g) � ri( f ) � ri−q(g),

for all i ∈ Z .

The following properties immediately follow from the definition.

PROPOSITION 11. [20]

(a) f �
p
q f for any p and q.

(b) f �
p
q g is equivalent to g �

q
p f.

(c) f �
p
q h and h�s

t g imply f �
p+s
q+t g.

(d) f �
p
q g implies f �s

t g for any s � p and t � q.

(e) f �
p
q g implies -p � deg f - deg g � q.

When f �1
1 g , we say that f and g are compatible, and we simply write f �� g .

When f �1
0 g , we say that f interlaces g , and we denote this by writing f � g . Let

n( f ,r) be the number of real roots of f (x) in the interval [r,+) . It is well-known
that f interlaces g if and only if n( f ,r) � n(g,r) � n( f ,r) + 1 for any r ∈ R . A
result proved by Chudnovsky and Seymour ([1, Theorem 3.4]) states that f and g
are compatible if and only if | n(g,r)− n( f ,r) |� 1 for any r ∈ R . We show that the
converse of Proposition 11 (c) is also true.

LEMMA 3. [20] Suppose that f �
p
q g. For 0 � s � p and 0 � t � q, let k =

max{deg f − t,deg g− p+ s} and m = min{deg f + s,deg g+q− t} . Then, for each
integer d ∈ [k,m] there exists a real-rooted polynomial h of degree d such that f �s

t h
and h�

p−s
q−t g .
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Let A ∈Cn×n×p be a complex tensor. The T -rank of A is defined by

rankT (A) = rank(bcirc(A )).

For convenience, we agree to define a Hermitian tensor A as A = p
i=1i ∗∗

i ,
where i ∈ Cn×1×p . This is equivalent to bcirc(A ) =p

i=1 bcirc(i)bcirc(∗
i ) , which

we simply denote by A = p . Also, we use the convention that 0 = 0. Obviously,
p is T -positive semi-definite and of T -rank at most p . It is also clear that p+q =
p +q , and that U ∗p ∗U ∗ = p for any unitary tensor.

LEMMA 4. Let A be a Hermitian tensor. Then, n+(A ) � p and n−(A ) � q if
and only if A = p−q .

Proof. Let A = p−q . Then, we can write

n+(
p
−

q
) � n+(

p
) � rankT (

p
) � p,

and

n−(
p
−

q
) = n+(

q
−

p
) � q.

Conversely, let n+(A ) � p and n−(A ) � q . By Theorem 3, A = U ∗D ∗U ∗
or bcirc(A ) = bcirc(U )bcirc(D)bcirc(U ∗) . Thus, by (1),

bcirc(A ) = (Fp⊗ In)∗

⎡
⎢⎢⎢⎣
U1

U2
. . .

Up

⎤
⎥⎥⎥⎦(Fp⊗ In)(Fp⊗ In)∗

⎡
⎢⎢⎢⎣

D1

D2
. . .

Dp

⎤
⎥⎥⎥⎦(Fp⊗ In)

(Fp⊗ In)∗

⎡
⎢⎢⎢⎣
U∗

1
U∗

2
. . .

U∗
p

⎤
⎥⎥⎥⎦(Fp⊗ In)

= (Fp⊗ In)∗

⎡
⎢⎢⎢⎣
U1

U2
. . .

Up

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
V

⎡
⎢⎢⎢⎣

D1

D2
. . .

Dp

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
D

⎡
⎢⎢⎢⎣
U∗

1
U∗

2
. . .

U∗
p

⎤
⎥⎥⎥⎦(Fp⊗ In)

︸ ︷︷ ︸
V∗

= VDV ∗.

Since D is F-diagonal, Di is diagonal. Thus, D is a diagonal matrix. By (1), V is the
unitary matrix defined by

V = bcirc(U )(Fp⊗ In)∗.
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By Sylvester’s law of inertia for Hermitian matrices,

bcirc(A ) =
i
 (D)ViV

∗
i =

i
i(D)(bcirc(U ))i(bcirc(U ))∗i =

p
−

q
,

where (bcirc(U ))i is the i th column of bcirc(U ) . �
Note that (A ∗B)(k) = A(k)B(k) for A ,B ∈ Cn×n×p .

LEMMA 5. Let f, g ∈ R
(1)
n and f � g. Then, there exist a Hermitian tensor A

and a complex vector  such that A ∈ H ( f ) and A + ∗∗ ∈ H (g) .

Proof. First, consider the special case where f and g are coprime. Then, by
the fact f � g , f only has simple roots. Let ri = ri( f ) , fi(x) = f (x)

x−ri
and g(x) =

f (x) +n
i=1 ci fi(x) . Then, g(ri) = ci fi(ri) . Note that sign [ fi(ri)] = (−1)(i−1) and

sign [g(ri)] = (−1)i . Hence, ci < 0. Define A = (ai jk) ∈ Cn×n×p such that A(1) =
diag(r1,r2, . . . ,rn) and A(k) = 0 for 2 � k � p , and  ∈Cn×1×p , where (1) = (a1,a2,
. . . ,an)T ,ai =

√−ci , and (k) = 0 for 2 � k � p . Then, det(xIn −A(1)) = f (x) . By
(1),

det(xInp−bcirc(A )) = det(xInp−DA) = f n(x),

where DA = diag(A1,A2, . . . ,Ap) in (1). It follows that det(xIn−Ai) = f (x) , for all i .
On the other hand, by (4), pA (x) = f (x) . Thus, A ∈ H ( f ) . We can write

det(xIn−A(1)−(1)(∗)(1)) = det(xIn−A(1))−
n


i=1

a2
i 

j �=i

(x− r j) = g(x).

Similarly, A + ∗∗ ∈ H ( f ) .
Next, consider the general case. Let f = ( f ,g) f1 and g = ( f ,g)g1 . Then, f1 �g1

and ( f1,g1) = 1. Thus, there exist Hermitian tensors A1 ∈ H ( f1) and A1 +1 ∗
∗

1 ∈ H (g1) . Assume that ( f ,g) = m
j=1(x− s j) and define A ∈ Cn×n×p such that

A(1) = diag(A(1)
1 ,s1, . . . ,sm) and A(k) = 0 for 2 � k � p . Also, define  ∈ Cn×1×p

such that (1) = ((1)
1 ,0, . . . ,0) and (k) = 0 for 2 � k � p . Then, A ∈ H ( f ) and

A + ∗∗ ∈ H (g) . This completes the proof. �

LEMMA 6. Let f, g ∈ R
(1)
n and f �

p
0 g. Then, there exist Hermitian tensors A ∈

H ( f ) and B ∈ H (g) such that B−A = p .

Proof. We proceed by induction on p . For p = 1, the statement follows from
Lemma 5. Now, suppose that p > 1 and f �

p
0 g . Then, by Lemma 3, there exists

h ∈ R
(1)
n such that f �

p−1
0 h and h �1

0 g . By the fact f �
p−1
0 h and the induction

hypothesis, there exist A ∈ H ( f ) and C ∈ H (h) such that C −A = p−1 . By
the fact h �1

0 g and Lemma 5, there exist B1 ∈ H (g) and C1 ∈ H (h) such that
B1 −C1 = 1 . Since the Hermitian tensors C and C1 have the same characteristic
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polynomial, by Remark 2 there exists a unitary tensor U such that U ∗C1 ∗U ∗ .
Define B = U ∗B1 ∗U ∗ . Then, B ∈ H (g) and

B−C = U ∗ (B1−C1)∗U ∗ = U ∗
1
∗U ∗ =

1
.

It follows that

B−A = (B−C )+ (C −A ) =
1

+ 
p−1

=
p

.

Thus, the proof is complete by induction. �

Proof of Theorem 10. By Lemma 4, it suffices to show that if f �
p
q g , then there

exist Hermitian tensors A ∈ H ( f ) and B ∈ H (g) such that B−A = p−q .
If p = 0 or q = 0, then the statement follows from Lemma 6. Next, assume

that p,q > 0. Then, by Lemma 3, there exists h ∈ R(1)
n such that f �

p
0 h and g �

q
0 h .

By the fact f �
p
0 h and Lemma 6, there exist A ∈ H ( f ) and C ∈ H (h) such that

C −A = p . By the fact g �
q
0 h and Lemma 6, there exist B1 ∈ H (g) and C1 ∈

H (h) such that C1−B1 = q . Since the Hermitian tensors C and C1 have the same
characteristic polynomial, there exists a unitary tensor U such that C = U ∗C1 ∗U ∗ .
Define B = U ∗B1 ∗U ∗ . Then, B ∈ H (g) and

B−C = U ∗ (B1−C1)∗U ∗ = U ∗
q
∗U ∗ =

q
.

It follows that

B−A = (B−C )+ (C −A ) =
p
−

q
.

This completes the proof. �
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